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Abstract

This paper aims to uncover fairly interesting optical soliton solutions in (2 + 1)-dimensions.

The fractional temporal Kundu-Mukherjee-Naskar (KMN) equation is reviewed as a governing

model. Local M-derivative along with the unified approach is used to acquire these soliton

solutions. The predicted solutions are yielded with the constraint conditions and highlighted by

their graphical portrayal. Lastly, the influence of a local fractional parameter upon predicted

solutions are depicted through 2D and 3D graphs.

Keywords: Kundu-Mukherjee-Naskar equation; Local M-derivative; Unified method; Optical soli-

tons in (2 + 1)-dimensions.

1 Introduction

Over the previous couple of decades, various different techniques are discovered to deal with nonlinear

partial differential equations (NPDEs) due to symbolic programming innovations and new compu-

tational methodologies. Classical computing packages like Maple and Mathematica have also been

∗Email:: bekirahmet@gmail.com
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modified several times to enhance performance. While on another side, the mathematical features

of solution strategies have been developed and different new approaches have been implemented to

address various issues based on NPDEs [1–4]. The most familiar techniques in the literature can be

classified as expansion based approaches such as the technique of Kudryashov and its varied expan-

sions and the direct substitution of some specific expected solution-based techniques.

To date, numerous mathematical approaches to study the nonlinear aspects of analytical solutions

have been applied across several disciplines like fluid dynamics,mechanics, plasma physics, biology,

economics, and many other scientific and engineering fields [5–11]. Such approaches include the

Darboux transformation technique [12], the tan(φ(η)/2)-expansion technique [13], the Exp-function

technique [14,15], the sine-Gordon expansion technique [16,17], the homogeneous balance technique

[18], the modified auxiliary equation technique [19], the first integral technique [20, 21], the expo-

nential rational function technique [22,23], the extended trial function technique [24], the homotopy

perturbation technique [25], the bilinear transformation technique [26] and so on.

During the last few years, fractional calculus is one in every of the foremost prolific fields of

mathematical study alongside fractional operators, for example, Caputo, Grunwald-Letnikov, and

Riemann-Liouville [27]. The integer order integro-differential calculus presented by Leibniz and

Newton was an enormous disclosure in mathematics with different implementations in such a signif-

icant number of fields of science and engineering: today its applications within the economy, signal

processing, as well as image processing, are among the most interesting. In 1695, l’Hospital asked

Leibniz in a letter concerning the chance of enlarging the sense of an integer order derivative to

the case of a fraction of the order. This idea initiated the development of a modern calculus that

was termed the arbitrary order calculus and is currently widely known as the fractional calculus.

Up to date, different kinds of fractional derivatives have been developed such as Riemann-Liouville,

Caputo, Hadamard, Caputo-Hadamard, and Riesz [27,28]. Practically such derivatives are described

within the Riemann-Liouville sense on the basis of the corresponding fractional integral.

In 2014, Katugampola presented a new fractional derivative generalizing the so-called alterna-

tive fractional derivative [29]. This new differential operator is identified by Dγ,µ
M , where γ is the

order, such that γ ∈ (0, 1), µ > 0 and M indicates the derived function involves a function known as

Mittag-Leffler along side one parameter. This new kind of derivative is familiar as local M-derivative,

it assures certain characteristics of integer order calculus, for example, linearity, product rule, quo-

tient rule, chain rule, and composition of functions. Additionally, the local M-derivative of a constant

function is zero. Since the Mittag-Leffler function is a generalized form of the exponential function,

a number of the classical outcomes of integer order calculus can be enlarged, such as the mean value
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theorem, Rolle’s theorem, and its enlargement. In particular, if we assume that the order of fractional

derivative λ = 1 and the Mittag-Leffler function parameter is also unitary, then our perception is

identical to ordinary derivative of order one.

It is important to point out that a number of authors have discussed soliton dynamics in the

past using a diverse range of effective mathematical schemes due to an abundance of physical sys-

tems. They are used to illustrate the particle-like features of nonlinear pulses. The significance of

solitons is because of its presence in a context of nonlinear differential equations describing numerous

complex nonlinear dynamics as well as water waves, nonlinear optics, telecommunication industry,

plasma physics, solid-state physics, and engineering [30–34]. Particularly, many authors discussed

solitons in (2+1)-dimensions, but significantly between 2005 [35] and 2009 [36]. Kundu-Mukherjee-

Naskar (KMN) equation is one of the models which highlights optical soliton dynamics in (2 +

1)-dimensions. It is also explored in the aspect of Fluid Dynamics by which rogue wave solutions

were developed. This became first presented in 2013/ 2014 and later it has received attention and a

number of researchers are streaming outcomes from this model [37–41]. The model was considered,

previously, to encounter the bright and singular solitons by using an extended trial function method

[37]. Furthermore, higher-order rational solutions were additionally reported [38]. During 2016, the

rogue wave solutions for KMN equation were also introduced [39]. Afterward, a diversity of soliton

solutions were developed utilizing the versatile approaches, namely; the trial equation technique and

modified simple equation technique [40,41].

This study aims to construct specific fractional temporal optical solitons of the KMN equation

by employing a versatile approach, namely the unified method. The rest of this paper is conducted

as follows: Section 2 carried out with the basic definition of local M-derivative and its properties. A

brief overview of the used methodology is encountered in Section 3. The interpretation of the con-

sidered model is presented in Section 4 and Section 5 providing the extraction of temporal fractional

solitons of the governing model. The conclusion is eventually illustrated in Section 6.

2 Local M-derivative

The basic definition and fundamental properties of Local M-derivative, which generalizes the classical

definition of a derivative and overcome the drawbacks of the existing properties, are given by:

Definition : If h : [0,∞)→ R and t > 0, then the local M-derivative of order γ ∈ (0, 1) of function
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h, is defined as

Dγ;µ
M {h(t)} = lim

ε→0

h
(
tEµ(εt−γ)

)
− h(t)

ε
, ∀ t > 0, (1)

where M shows the derived function includes a function called Mittag-Leffler (Eµ(·),∀µ > 0)

alongside one parameter. Also, if h(t) is r-differentiable within a given range (0, r), r > 0 and

limt→0+ D
γ;µ
M {h(t)} exists, then we have

Dγ;µ
M {h(0)} = lim

t→0+
Dγ;µ
M {h(t)}, (2)

certain local M-derivative characteristics are

Dγ;µ
M {h(t)} =

t1−γ

Γ(µ+ 1)

d

dt
{h(t)}, (3)

therefore,

Dγ;µ
M

(Γ(µ+ 1)tγ

γ

)
= 1. (4)

Such a derivative of fractional order also satisfy the property mentioned below:

Dγ;µ
M (g · h)(r) = g′(h(r))Dγ;µ

M h(r), (5)

therefore, from Eq.(4) and Eq.(5), the corresponding relationship can be developed:

Dγ;µ
M F

[
Γ(µ+ 1)tγ

γ

]
= F ′

[
Γ(µ+ 1)tγ

γ

]
Dγ;µ
M

[
Γ(µ+ 1)tγ

γ

]
= F ′

[
Γ(µ+ 1)tγ

γ

]
, (6)

with

η =
b

γ
Γ
(
µ+ 1

)
tγ, (7)

where b is a constant and eventually we get the relation given by

Dγ;µ
M {F (η)} = bF ′(η). (8)

3 Description of the proposed method

Consider the general structure of temporal fractional evolution as follows

H
(
x, y, t,

∂γu

∂tγ
,
∂u

∂x
,
∂u

∂y
,
∂2γu

∂t2γ
,
∂2u

∂x2
, ...
)

= 0, t ≥ 0, 0 < γ ≤ 1. (9)
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where H is a polynomial function of u(x, y, t) with its arguments. By using the fractional traveling

wave variable of the type s = x+ y − ν tγ
γ

, Eq.(9) can be reduced to

G
(
u,
du

ds
,
d2u

ds2
, ...
)

= 0, (10)

where ν is velocity of soliton, G is a function of u(s) as well as corresponding derivatives. To hunt

the solutions for Eq.(10), by UM method are to be grouped into two classes such as a polynomial

function or rational function solutions [42].

3.1 Polynomial function solution

The basic principle of this approach is to assume that Eq.(10) has polynomial solution as

u(ξ) =
n∑
j=0

ajφ
j(ξ), (11)

with satisfying

(φ′(ξ))σ =
σk∑
j=0

mjφ
j(ξ), ξ = x+ y − ν t

γ

γ
, σ = 1, 2. (12)

Here, in Eq.(11) and Eq.(12), aj and mj are the unknown coefficients, such that solution given in

Eq.(11) satisfies the Eq.(10).

It is necessary to note that the value of n and k is assessed by the balancing of the highest order

of linear and nonlinear terms in Eq.(10) [43]. In addition, a condition that is usually referred to as

a consistency condition that claims the unknown coefficients of Eq.(11) could be reliably decided is

used. Also, the UM method solves Eq.(11) for elementary or elliptic solutions when σ = 1 or σ = 2,

respectively.

3.2 Rational function solution

To acquire the rational solution of Eq.(10), we suppose the formal solution is as follows:

u(ξ) =

∑n
j=0 rjφ

j(ξ)∑r
j=0 sjφ

j(ξ)
, n ≥ r, (13)

with satisfying

(φ′(ξ))σ =
σk∑
j=0

hjφ
j(ξ), ξ = x+ y − ν t

γ

γ
, σ = 1, 2. (14)
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Here, in Eq.(13) and Eq.(14), rj, sj and hj are the unknown coefficients to be determined, such that

solution given in Eq.(13) satisfies the Eq.(10).

It is important to keep in mind that the value of n and k are assessed due to balancing the

highest order of linear and the nonlinear terms in Eq.(10) [43]. In addition, a condition that is

usually referred to as a consistency condition that claims the unknown coefficients of Eq.(13) could

be reliably decided is used. Also, the UM method solves Eq.(13) for elementary or elliptic solutions

when σ = 1 or σ = 2, respectively.

To obtain the solutions for Eq.(10) in polynomial function or rational function solutions, the

following steps are involved:

i. Solve the algebraic system of equations.

ii. Solve the auxiliary equation.

iii.Find the exact formal solutions given in Eq.(11) (or Eq.(13)).

4 Governing model

Consider the temporal fractional KMN equation as follows:

i
∂γu

∂tγ
+ α

∂2u

∂x∂y
+ iβu

(
u
∂u∗

∂x
− u∗∂u

∂x

)
= 0, (15)

where u(x, y, t) is wave portrait signifying the complex nonlinear wave envelope, γ is a local frac-

tional parameter and ∗ denotes the complex conjugation. The first term in Eq.(15) indicates the

fractional temporal wave evolution followed by means of the dispersion term that is identified by the

coefficient of α. Ultimately, the nonlinear term which appears as a coefficient of β is different from

the conventional Kerr law nonlinearity or any known non-Kerr law media.

Now, applying the definition of local M-derivative and its properties the time fractional KMN equa-

tion is presented as follows:

iDγ;µ
M,tu+ α

∂2u

∂x∂y
+ iβu

(
u
∂u∗

∂x
− u∗∂u

∂x

)
= 0, (16)

where Dγ;µ
M,tu indicates the local M-derivative of order γ of function u(x, y, t), with respect to t. It is

worthwhile to note that when γ = µ = 1, Eq.(16) can be transformed into original KMN equation.

Assume that the complex transformation of fractional traveling wave variable is as follows

u(x, y, t) = q(ξ)eiΦ, ξ = P1x+ P2y −
ν

γ
Γ(µ+ 1)tγ, (17)
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where q(ξ) and ν are the amplitude and velocity of the soliton respectively, and

Φ = Q1x+Q2y +
ω

γ
Γ(µ+ 1)tγ, (18)

here, Q1 and Q2 are respectively the soliton frequencies in x− and y−directions while ω indicates

the soliton wave number.

Substituting Eq.(17) into Eq.(16), yields

αP1P2q
′′ − (ω + αQ1Q2)q + 2Q1βq

3 = 0, (19)

from real part and

ν = α
(
P1Q2 + P2Q1

)
, (20)

from imaginary part.

5 Extraction of fractional optical solitons

Here, we implement the UM approach to obtain the fractional optical solitons of Eq.(16).

5.1 Polynomial function solution

To search for polynomial solution of Eq.(19), assume that

q(ξ) =
n∑
j=0

κjφ
j(ξ), (21)

(φ′(ξ))σ =
σk∑
j=0

mjφ
j(ξ), ξ = P1x+ P2y −

ν

γ
Γ(µ+ 1)tγ, σ = 1, 2.

Where κj and mj are arbitrary coefficients to be determined. Apply the balancing condition between

the terms q′′ and q3 in Eq.(19), yields the relation n = k − 1, where k = 2, 3, ....

Here, we restrict to hunt those solutions for k = 2 and σ = 1 or σ = 2. Hence, the Eq.(21) can be

converted into

q(ξ) = κ0 + κ1φ(ξ), (22)

(φ′(ξ))% =
2σ∑
i=0

miφ
i(ξ), σ = 1, 2.

7



5.1.1 Solitary wave solution

To acquire the solitary wave solution of Eq.(19), put σ = 1 in Eq.(22) and we have

q(ξ) = κ0 + κ1φ(ξ), (23)

φ′(ξ) = m0 +m1φ(ξ) +m2φ
2(ξ).

Now, applying Eq.(23) into Eq.(19) yields an algebraic system of equations. By adopting any symbolic

computing package to solve this system for κ0, κ1,m0,m1,m2, ω and we obtained the following results:

ω =
1

2
α
(

(4κ1m0R1 −m2
1)P1P2 − 2Q1Q2

)
, κ0 = −1

2

αm1P1P2R1

βQ1

, m2 = κ1R1, (24)

where R1 =
√
− βQ1

αP1P2
. On solving the auxiliary equation Eq.(23)2 and putting together with Eq.(24)

into Eq.(23), we get the following solution for Eq.(16) for µ = 1, namely

u1(x, y, t) = −1

2

R2 tanh(1
2
ξR2)e

i

(
Q1x+Q2y+ 1

2
α
(

(4κ1m0R1−m2
1)P1P2−2Q1Q2

)
tγ

γ

)
R1

, (25)

where ξ = P1x+P2y−α
(
P1Q2 +P2Q1

)
tγ

γ
, R2 =

√
m2

1 − 4m0κ1R1 and R1 =
√
− βQ1

αP1P2
provided that

m2
1 > 4m0κ1R1 and (βQ1)(αP1P2) < 0.

(a) y=0 (b) x=0, y=0

Figure 1. Depicts the pictorial representation of the modulus of wave solution specified by Eq.(25)

through 3D and 2D-plots at γ = 1 and γ = 0.4, 0.6, 0.8, 1 respectively, and with with a series of given

choice of parameters m0 = 0.4,m1 = 0.2, P1 = 0.5, P2 = 0.3, Q1 = 1.2, Q2 = 0.4, α = −1.2, β = 0.5

and κ1 = −2.5.
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5.1.2 Soliton wave solution

To get the soliton wave solution for Eq.(19), put σ = 2 in Eq.(22) and assume solution of the following

form

q(ξ) = κ0 + κ1φ(ξ), (26)

φ′(ξ) = φ(ξ)
√
m0 +m1φ(ξ) +m2φ2(ξ).

Substituting Eq.(26) into Eq.(19) in a similar fashion as we have done in the last case gives:

κ0 =

√
αQ1Q2 + ω

2βQ2

,m0 = −2(αQ1Q2 + ω)

αP1P2

,m1 = −
4βQ1κ1

√
αQ1Q2+ω

2βQ2

αP1P2

,m2 = −βQ1κ
2
1

αP1P2

. (27)

On solving the auxiliary equation Eq.(26)2 and putting together with Eq.(27) into Eq.(23), we get

the following solution for Eq.(16) for µ = 1, namely

u2(x, y, t) =

(√
2(αQ1Q2+ω)

βQ2
αP1P2 − 8κ1e

ξR3(αQ1Q2 + ω)
)
ei(Q1x+Q2y+ω t

γ

γ
,)

αP1P2 + 4βQ1κ1

(2(αQ1Q2+ω)
βQ2

)
eξR3

, (28)

where ξ = P1x+P2y−α
(
P1Q2+P2Q1

)
tγ

γ
, R3 =

√
−2(αQ1Q2+ω)

αP1P2
provided that (αQ1Q2+ω)(αP1P2) < 0

and (αQ1Q2 + ω)(βQ2) > 0.

(c) y=0 (d) x=0, y=0

Figure 2. Depicts the pictorial representation of the modulus of wave solution specified by Eq.(28)

through 3D and 2D-plots at γ = 1 and γ = 0.4, 0.6, 0.8, 1 respectively, and with a series of given choice

of parameters P1 = −0.6, P2 = 0.3, Q1 = 1.2, Q2 = 0.4, α = 3.5, β = 0.5, ω = 0.4 and κ1 = −2.5.
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5.1.3 Elliptic wave solution

To acquire the elliptic wave solution of Eq.(19), assume the initial solution of the following form:

q(ξ) = κ0 + κ1φ(ξ), (29)

φ′(ξ) =
√
m0 +m2φ2(ξ) +m4φ4(ξ).

Substituting Eq.(29) into Eq.(19) and by adopting a similar fashion as we did in previous sections

gives:

ω = −α(Q1Q2 − P1P2m2), κ0 = 0, κ1 =

√
−αP1P2m4

βQ1

, (30)

where mj (j = 0, 2, 4) are constants. For specific values of mj, we obtain various solutions in the

context of Jacobi elliptic functions. Following the categorization defined in [44], for

m4 = −1

4
,m2 =

1 + λ2

2
,m0 = −(1− λ2)2

2
, 0 < λ < 1, (31)

we take φ(ξ) = λ cn(ξ, λ)+dn(ξ, λ) and yields the following solution for Eq.(16) for µ = 1, namely

u3(x, y, t) =

√
αP1P2

4βQ1

(
λcn(ξ, λ) + dn(ξ, λ)

)
ei
(
Q1x+Q2y−α2

(
2Q1Q2−P1P2(1+λ2)

)
tγ

γ

)
, (32)

where ξ = P1x + P2y − α
(
P1Q2 + P2Q1

)
tγ

γ
and λ ∈ (0, 1) is known as the modulus of jacobi elliptic

functions. It is important to bear in mind that when λ tends to zero, sn(ξ), cn(ξ) and dn(ξ)

approaches to sin(ξ), cos(ξ) and 1, respectively. While, when λ tends to one, sn(ξ), cn(ξ) and dn(ξ)

degenerate to tanh(ξ), sech(ξ) and sech(ξ), respectively.

(e) y=0 (f) x=0, y=0
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Figure 3. Depicts the pictorial representation of the modulus of wave solution specified by Eq.(32)

through 3D and 2D-plots at γ = 1 and γ = 0.4, 0.6, 0.8, 1 respectively, and with a series of given

choice of parameters P1 = 0.3, P2 = 0.25, Q1 = 0.01, Q2 = 0.3, α = 0.1, β = 0.02 and λ = 0.5.

5.2 Rational function solution

In order to get the Eq.(19) rational solution, we assume that the solution has form as

q(ξ) =

∑n
j=0 ajφ

j(ξ)∑r
j=0 bjφ(ξ)

, n ≥ r, (33)

(φ′(ξ))σ =
σk∑
j=0

mjφ
j(ξ), ξ = P1x+ P2y −

ν

γ
Γ(µ+ 1)tγ, σ = 2.

Where aj, bj and mj are arbitrary coefficients to be determined. Using the balance condition given

by Lemma 2.3 [43], we get k = 1 and n is free by taking n = r. Here, we find those optical wave

solutions when n = r = 1, 2 and σ = 2.

Case 1. Here, we take n = r = 1 and the solution results in the following form

q(ξ) =
a0 + a1φ(ξ)

b0 + b1φ(ξ)
,

φ′(ξ) =
√
m0 +m1φ(ξ) +m2φ2(ξ). (34)

Now, applying Eq.(34) into Eq.(19) yields a system of algebraic equations. By using any symbolic

computing package to solve this system for a0, a1, b0, b1,m0,m1,m2, α, β and we obtained the following

results:

β =
1

2

b2
1(αQ1Q2 + ω)

Q1a2
1

,m0 = −1

2

(αQ1Q2 + ω)(b0a1 + a0b1)2

αP1P2b2
1a

2
1

,

m1 = −
2
(
αQ1Q2 + ω

)
(b0a1 + a0b1)

αP1P2b1a1

,m2 = −2(αQ1Q2 + ω)

αP1P2

. (35)

On solving the auxiliary equation Eq.(34)2 and putting together with Eq.(35) into Eq.(34), we get

the following solution for Eq.(16) for µ = 1, namely

u4(x, y, t) = −
a1

(
(a0b1 − b0a1)R3 + eξR3b1a1

)
ei(Q1x+Q2y+ω t

γ

γ
)

b1

(
(a0b1 − b0a1)R3 − eξR3b1a1

) , (36)

where ξ = P1x+P2y−α
(
P1Q2+P2Q1

)
tγ

γ
, R3 =

√
−2(αQ1Q2+ω)

αP1P2
provided that (αQ1Q2+ω)(αP1P2) < 0.
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(g) y=0 (h) x=0, y=0

Figure 4. Depicts the pictorial representation of the modulus of wave solution specified by Eq.(36)

through 3D and 2D-plots at γ = 1 and γ = 0.4, 0.6, 0.8, 1 respectively, and with a series of given choice

of parameters P1 = −0.6, P2 = 0.3, Q1 = 1.2, Q2 = 0.4, α = 3.5, ω = 0.4, a0 = 0.5, a1 = 1, b0 = 1 and

b1 = 0.3.

Case 2. Here, we take n = r = 2 and the solution results in the following form

q(ξ) =
a0 + a1φ(ξ) + a2φ

2(ξ)

b0 + b1φ(ξ) + b2φ2(ξ)
,

φ′(ξ) =
√
m0 +m1φ(ξ) +m2φ2(ξ). (37)

Substituting Eq.(37) for Eq.(19) in a similar fashion as we have done in the last case gives:

β = −1

4

b2
2αP1P2m2

Q1a2
2

,m0 =
m2

1

4m2

, a0 =
1

4

m2
2(b2

2a
2
1 − b2

1a
2
2)−m2

1a
2
2b

2
2 + 2m1m2a

2
2b1b2

m2
2b

2
2a2

,

b0 = −1

4

m2
2(b2

2a
2
1 − b2

1a
2
2) +m2

1a
2
2b

2
2 − 2m1m2b

2
2a1a2

m2
2a

2
2b2

, ω = −α
2

(
P1P2m2 + 2Q1Q2

)
. (38)

On solving the auxiliary equation Eq.(37)2 and putting together with Eq.(38) into Eq.(37), we get

the following solution for Eq.(16) for µ = 1, namely

u5(x, y, t) =

a2

(
m

3
2
2 (b2

2a
2
1 − b2

1a
2
2) + 2a2b2m1

√
m2(a2b1 − a1b2) + 2b2

2a2(a1m2 − a2m1)eξ
√
m2 + a2

2b
2
2

√
m2e

2ξ
√
m2

)
b2

(
m

3
2
2 (b2

1a
2
2 − b2

2a
2
1) + 2a2b2m1

√
m2(a1b2 − a2b1) + 2a2

2b2(b1m2 − b2m1)eξ
√
m2 + a2

2b
2
2

√
m2e2ξ

√
m2

)
×e

i

(
Q1x+Q2y−α2

(
P1P2m2+2Q1Q2

)
tγ

γ

)
, (39)

where ξ = P1x+ P2y − α
(
P1Q2 + P2Q1

)
tγ

γ
provided that m2 > 0 and a2, b2 6= 0.
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(i) y=0 (j) x=0, y=0

Figure 5. Depicts the pictorial representation of the modulus of wave solution specified by Eq.(39)

through 3D and 2D-plots at γ = 1 and γ = 0.4, 0.6, 0.8, 1 respectively, and with a series of given

choice of parameters P1 = 2, P2 = 0.3, Q1 = 1.2, Q2 = 0.4, α = 3.5, ω = 0.4, a1 = 0.5, a2 = 0.1, b1 =

2, b2 = 0.3,m1 = 0.4 and m2 = 0.2.

6 Conclusion

This work addresses the unified method together with local M-derivative to uncover fairly interesting

optical solitons of the governing equation. The imaginary and real part of the equation led to the

soliton solutions. We reach to a constraint relation and the velocity of the soliton by equating

the soliton parameters such the amplitude and the width. The predicted results are yielded with

constraint conditions and highlighted by their 3D graphical portrayal. The impact of a local fractional

parameter on dispersion is also presented via 2D graphs. The obtained results revealed that the

suggested approach with the local M-derivative is useful and effective for addressing other nonlinear

evolution equations in mathematical physics. The reportable solutions are novel and gift a valuable

addition to the literature in soliton wave theory.

Being a recently developed model, there is plenty of flexibility to extend the horizon in this regard.

The UM technique being a nontrivial scheme, further integration approaches are to be implemented,

later on, to tie down additional new solutions for KMN model.
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