References:
1. Knol EF, Mul FP, Jansen H, Calafat J, Roos D. Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol. 1991;88(3 Pt 1):328-338.
2. Hausmann OV, Gentinetta T, Fux M, Ducrest S, Pichler WJ, Dahinden CA. Robust expression of CCR3 as a single basophil selection marker in flow cytometry. Allergy. 2011;66(1):85-91.
3. Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 2015;70(11):1393-1405.
4. Santos AF, Becares N, Stephens A, Turcanu V, Lack G. The expression of CD123 can decrease with basophil activation: implications for the gating strategy of the basophil activation test. Clin Transl Allergy. 2016;6:11.
5. Hennersdorf F, Florian S, Jakob A, et al. Identification of CD13, CD107a, and CD164 as novel basophil-activation markers and dissection of two response patterns in time kinetics of IgE-dependent upregulation.Cell Res. 2005;15(5):325-335.
6. Smiljkovic M, Stanisavljevic D, Stojkovic D, et al. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 2017;16:795-807.
7. Hoffmann HJ, Frandsen PM, Christensen LH, Schiotz PO, Dahl R. Cultured human mast cells are heterogeneous for expression of the high-affinity IgE receptor FcepsilonRI. Int Arch Allergy Immunol.2012;157(3):246-250.
8. Yeung L, Hickey MJ, Wright MD. The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front Immunol. 2018;9:1644.
9. Shelke GV, Yin Y, Jang SC, et al. Endosomal signalling via exosome surface TGFbeta-1. J Extracell Vesicles. 2019;8(1):1650458.
10. Ebo DG, Bridts CH, Mertens CH, Hagendorens MM, Stevens WJ, De Clerck LS. Analyzing histamine release by flow cytometry (HistaFlow): a novel instrument to study the degranulation patterns of basophils. J Immunol Methods. 2012;375(1-2):30-38.
11. MacGlashan D, Jr. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin Exp Allergy. 2010;40(9):1365-1377.
12. Hoffmann HJ, Knol EF, Ferrer M, et al. Pros and Cons of Clinical Basophil Testing (BAT). Curr Allergy Asthma Rep. 2016;16(8):56.
13. Grochowy G, Hermiston ML, Kuhny M, Weiss A, Huber M. Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand-receptor systems. Cell Signal. 2009;21(8):1277-1286.
14. Xu H, Bin NR, Sugita S. Diverse exocytic pathways for mast cell mediators. Biochem Soc Trans. 2018;46(2):235-247.
15. Sander LE, Frank SP, Bolat S, et al. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur J Immunol. 2008;38(3):855-863.
16. Klein O, Sagi-Eisenberg R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J Immunol Res. 2019;2019:9542656.
17. Aranda A, Mayorga C, Ariza A, et al. In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy.2011;66(2):247-254.
18. Van Gasse AL, Elst J, Bridts CH, et al. Rocuronium Hypersensitivity: Does Off-Target Occupation of the MRGPRX2 Receptor Play a Role? J Allergy Clin Immunol Pract. 2019;7(3):998-1003.
19. Chirumbolo S, Vella A, Ortolani R, et al. Differential response of human basophil activation markers: a multi-parameter flow cytometry approach. Clin Mol Allergy. 2008;6:12.
20. Prussin C, Metcalfe DD. 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2006;117(2 Suppl Mini-Primer):S450-456.
21. MacGlashan DW, Jr. Basophil activation testing. J Allergy Clin Immunol. 2013;132(4):777-787.
22. Macglashan D, Jr., Moore G, Muchhal U. Regulation of IgE-mediated signalling in human basophils by CD32b and its role in Syk down-regulation: basic mechanisms in allergic disease. Clin Exp Allergy. 2014;44(5):713-723.
23. MacGlashan D, Jr. Subthreshold desensitization of human basophils re-capitulates the loss of Syk and FcepsilonRI expression characterized by other methods of desensitization. Clin Exp Allergy.2012;42(7):1060-1070.
24. Puan KJ, Andiappan AK, Lee B, et al. Systematic characterization of basophil anergy. Allergy. 2017;72(3):373-384.
25. Santos AF, Du Toit G, O’Rourke C, et al. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. J Allergy Clin Immunol. 2020.
26. Schroeder JT, Chichester KL, Bieneman AP. Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. J Immunol. 2009;182(4):2432-2438.
27. Knol EF, Mul FP, Kuijpers TW, Verhoeven AJ, Roos D. Intracellular events in anti-IgE nonreleasing human basophils. J Allergy Clin Immunol. 1992;90(1):92-103.
28. Kwok M, Lack G, Santos AF. Improved standardisation of the whole blood basophil activation
test to peanut. Clin Transl Allergy. 2017;8 (Suppl 2)(26):15-16.
29. Mukai K, Gaudenzio N, Gupta S, et al. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J Allergy Clin Immunol. 2017;139(3):889-899 e811.
30. Sturm GJ, Kranzelbinder B, Sturm EM, Heinemann A, Groselj-Strele A, Aberer W. The basophil activation test in the diagnosis of allergy: technical issues and critical factors. Allergy.2009;64(9):1319-1326.
31. M P, A N, C M, et al. Building confidence in the basophil activation test: standardization and external quality assurance - an EAACI task force Allergy. 2020.
32. Patil SU, Calatroni A, Schneider M, et al. Data-driven programmatic approach to analysis of basophil activation tests. Cytometry B Clin Cytom. 2017.
33. Santos AF, Du Toit G, Douiri A, et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol. 2015;135(1):179-186.
34. Erdmann SM, Sachs B, Kwiecien R, Moll-Slodowy S, Sauer I, Merk HF. The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immunotherapy. Allergy.2004;59(10):1102-1109.
35. Johansson SG, Nopp A, van Hage M, et al. Passive IgE-sensitization by blood transfusion. Allergy. 2005;60(9):1192-1199.
36. Dahlen B, Nopp A, Johansson SG, Eduards M, Skedinger M, Adedoyin J. Basophil allergen threshold sensitivity, CD-sens, is a measure of allergen sensitivity in asthma. Clin Exp Allergy.2011;41(8):1091-1097.
37. Nopp A, Cardell LO, Johansson SG. CD-sens can be a reliable and easy-to-use complement in the diagnosis of allergic rhinitis. Int Arch Allergy Immunol. 2013;161(1):87-90.
38. Glaumann S, Nopp A, Johansson SG, Rudengren M, Borres MP, Nilsson C. Basophil allergen threshold sensitivity, CD-sens, IgE-sensitization and DBPCFC in peanut-sensitized children. Allergy.2012;67(2):242-247.
39. Nilsson N, Nilsson C, Hedlin G, Johansson SG, Borres MP, Nopp A. Combining analyses of basophil allergen threshold sensitivity, CD-sens, and IgE antibodies to hydrolyzed wheat, omega-5 gliadin and timothy grass enhances the prediction of wheat challenge outcome. Int Arch Allergy Immunol. 2013;162(1):50-57.
40. Santos AF, Douiri A, Becares N, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol. 2014;134(3):645-652.
41. Nopp A, Cardell LO, Johansson SG, Oman H. CD-sens: a biological measure of immunological changes stimulated by ASIT. Allergy.2009;64(5):811-814.
42. Schmid JM, Wurtzen PA, Dahl R, Hoffmann HJ. Early improvement in basophil sensitivity predicts symptom relief with grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134(3):741-744 e745.
43. Kosnik M, Silar M, Bajrovic N, Music E, Korosec P. High sensitivity of basophils predicts side-effects in venom immunotherapy.Allergy. 2005;60(11):1401-1406.
44. Lalek N, Kosnik M, Silar M, Korosec P. Immunoglobulin G-dependent changes in basophil allergen threshold sensitivity during birch pollen immunotherapy. Clin Exp Allergy. 2010;40(8):1186-1193.
45. Schmid JM, Wurtzen PA, Siddhuraj P, et al. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy. 2020.
46. Nopp A, Johansson SG, Ankerst J, et al. Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy. 2006;61(3):298-302.
47. Nopp A, Johansson SG, Ankerst J, Palmqvist M, Oman H. CD-sens and clinical changes during withdrawal of Xolair after 6 years of treatment.Allergy. 2007;62(10):1175-1181.
48. Nopp A, Johansson SG, Adedoyin J, Ankerst J, Palmqvist M, Oman H. After 6 years with Xolair; a 3-year withdrawal follow-up.Allergy. 2010;65(1):56-60.
49. Konradsen JR, Nordlund B, Nilsson OB, et al. High basophil allergen sensitivity (CD-sens) is associated with severe allergic asthma in children. Pediatr Allergy Immunol. 2012;23(4):376-384.
50. Brandstrom J, Nopp A, Johansson SG, et al. Basophil allergen threshold sensitivity and component-resolved diagnostics improve hazelnut allergy diagnosis. Clin Exp Allergy.2015;45(9):1412-1418.
51. Zidarn M, Kosnik M, Silar M, Grahek A, Korosec P. Rhinitis symptoms caused by grass pollen are associated with elevated basophile allergen sensitivity and a larger grass-specific immunoglobulin E fraction.Clin Exp Allergy. 2012;42(1):49-57.
52. Zidarn M, Kosnik M, Silar M, Bajrovic N, Korosec P. Sustained effect of grass pollen subcutaneous immunotherapy on suppression of allergen-specific basophil response; a real-life, nonrandomized controlled study. Allergy. 2015;70(5):547-555.
53. Patil SU, Shreffler WG. Immunology in the Clinic Review Series; focus on allergies: basophils as biomarkers for assessing immune modulation. Clin Exp Immunol. 2012;167(1):59-66.
54. MacGlashan DW, Jr. Releasability of human basophils: cellular sensitivity and maximal histamine release are independent variables.J Allergy Clin Immunol. 1993;91(2):605-615.
55. MacGlashan DW, Jr. Relationship between spleen tyrosine kinase and phosphatidylinositol 5’ phosphatase expression and secretion from human basophils in the general population. J Allergy Clin Immunol.2007;119(3):626-633.
56. Ishmael S, MacGlashan D, Jr. Early signal protein expression profiles in basophils: a population study. J Leukoc Biol.2009;86(2):313-325.
57. Santos AF, Shreffler WG. Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy.2017;47(9):1115-1124.
58. Hemmings O, Kwok M, McKendry R, Santos AF. Basophil Activation Test: Old and New Applications in Allergy. Curr Allergy Asthma Rep.2018;18(12):77.
59. Santos AF, Du Toit G, O ’ Rourke C, et al. Identifying allergic children with severe adverse events during oral peanut challenges in the LEAP studies by assessing basophil activation. Allergy.2019;74(S106):73.
60. Santos AF, Lack G. Basophil activation test: food challenge in a test tube or specialist research tool? Clin Transl Allergy.2016;6:10.
61. Eberlein B, Krischan L, Darsow U, Ollert M, Ring J. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J Allergy Clin Immunol. 2012;130(1):155-161.
62. Arzt L, Bokanovic D, Schrautzer C, et al. Immunological differences between insect venom-allergic patients with and without immunotherapy and asymptomatically sensitized subjects. Allergy.2018;73(6):1223-1231.
63. Wanich N, Nowak-Wegrzyn A, Sampson HA, Shreffler WG. Allergen-specific basophil suppression associated with clinical tolerance in patients with milk allergy. J Allergy Clin Immunol.2009;123(4):789-794 e720.
64. Berin MC, Grishin A, Masilamani M, et al. Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with phenotypes of clinical egg allergy. J Allergy Clin Immunol.2018;142(1):149-158 e148.
65. Song Y, Wang J, Leung N, et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. Ann Allergy Asthma Immunol. 2015;114(4):319-326.
66. Rubio A, Vivinus-Nebot M, Bourrier T, Saggio B, Albertini M, Bernard A. Benefit of the basophil activation test in deciding when to reintroduce cow’s milk in allergic children. Allergy.2011;66(1):92-100.
67. Chinthrajah RS, Purington N, Andorf S, et al. Development of a tool predicting severity of allergic reaction during peanut challenge.Ann Allergy Asthma Immunol. 2018;121(1):69-76 e62.
68. Reier-Nilsen T, Michelsen MM, Lodrup Carlsen KC, et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clin Exp Allergy. 2018;48(4):415-423.
69. Burks AW, Jones SM, Wood RA, et al. Oral immunotherapy for treatment of egg allergy in children. N Engl J Med. 2012;367(3):233-243.
70. Vickery BP, Scurlock AM, Kulis M, et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy.J Allergy Clin Immunol. 2014;133(2):468-475.
71. Shamji MH, Layhadi JA, Scadding GW, et al. Basophil expression of diamine oxidase: a novel biomarker of allergen immunotherapy response.J Allergy Clin Immunol. 2015;135(4):913-921 e919.
72. Thyagarajan A, Jones SM, Calatroni A, et al. Evidence of pathway-specific basophil anergy induced by peanut oral immunotherapy in peanut-allergic children. Clin Exp Allergy. 2012;42(8):1197-1205.
73. Gorelik M, Narisety SD, Guerrerio AL, et al. Suppression of the immunologic response to peanut during immunotherapy is often transient.J Allergy Clin Immunol. 2015;135(5):1283-1292.
74. Hoffmann HJ, Valovirta E, Pfaar O, et al. Novel approaches and perspectives in allergen immunotherapy. Allergy.2017;72(7):1022-1034.
75. Santos AF, James LK, Kwok M, et al. Peanut oral immunotherapy induces blocking antibodies but does not change functional characteristics of peanut-specific IgE. J Allergy Clin Immunol.2019.
76. Patil SU, Steinbrecher J, Calatroni A, et al. Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. J Allergy Clin Immunol.2019;144(5):1310-1319 e1314.
77. Santos AF, James LK, Bahnson HT, et al. IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. J Allergy Clin Immunol.2015;135(5):1249-1256.
78. McKendry RT, Kwok M, Hemmings O, James LK, AF S. Basophil and mast cell responses to food allergens in sensitised but tolerant patients are not mediated via the FcgRII and FcgRII receptors. Allergy.2019;74(S106):97.
79. MacGlashan DW, Jr., Saini SS. Syk expression and IgE-mediated histamine release in basophils as biomarkers for predicting the clinical efficacy of omalizumab. J Allergy Clin Immunol.2017;139(5):1680-1682 e1610.
80. MacGlashan DW, Jr., Savage JH, Wood RA, Saini SS. Suppression of the basophil response to allergen during treatment with omalizumab is dependent on 2 competing factors. J Allergy Clin Immunol.2012;130(5):1130-1135 e1135.
81. Ankerst J, Nopp A, Johansson SG, Adedoyin J, Oman H. Xolair is effective in allergics with a low serum IgE level. Int Arch Allergy Immunol. 2010;152(1):71-74.
82. Brandstrom J, Vetander M, Sundqvist AC, et al. Individually dosed omalizumab facilitates peanut oral immunotherapy in peanut allergic adolescents. Clin Exp Allergy. 2019;49(10):1328-1341.
83. Savage JH, Courneya JP, Sterba PM, Macglashan DW, Saini SS, Wood RA. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J Allergy Clin Immunol. 2012;130(5):1123-1129 e1122.
84. Macglashan DW, Jr., Saini SS. Omalizumab increases the intrinsic sensitivity of human basophils to IgE-mediated stimulation. J Allergy Clin Immunol. 2013;132(4):906-911 e901-904.
85. Eckman JA, Sterba PM, Kelly D, et al. Effects of omalizumab on basophil and mast cell responses using an intranasal cat allergen challenge. J Allergy Clin Immunol. 2010;125(4):889-895 e887.
86. Johansson SG, Nopp A, Oman H, et al. The size of the disease relevant IgE antibody fraction in relation to ’total-IgE’ predicts the efficacy of anti-IgE (Xolair) treatment. Allergy.2009;64(10):1472-1477.
87. Patil SU, Calatroni A, Schneider M, et al. Data-driven programmatic approach to analysis of basophil activation tests. Cytometry B Clin Cytom. 2018;94(4):667-673.
88. Depince-Berger AE, Sidi-Yahya K, Jeraiby M, Lambert C. Basophil activation test: Implementation and standardization between systems and between instruments. Cytometry A. 2017;91(3):261-269.
89. Uyttebroek AP, Sabato V, Faber MA, et al. Basophil activation tests: time for a reconsideration. Expert Rev Clin Immunol.2014;10(10):1325-1335.
90. Ryherd M, Plassmeyer M, Alexander C, et al. Improved panels for clinical immune phenotyping: Utilization of the violet laser.Cytometry B Clin Cytom. 2018;94(5):671-679.
91. Mukai K, Gaudenzio N, Gupta S, et al. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J Allergy Clin Immunol.2017;139(3):889-899.e811.
92. https://eur-lex.europa.eu/eli/reg/2017/746/oj. Accessed 6th July 2020.
93. Davis BH, Wood B, Oldaker T, Barnett D. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part I - rationale and aims. Cytometry B Clin Cytom. 2013;84(5):282-285.
94. Davis BH, Dasgupta A, Kussick S, Han JY, Estrellado A. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part II - preanalytical issues. Cytometry B Clin Cytom.2013;84(5):286-290.
95. Barnett D, Louzao R, Gambell P, De J, Oldaker T, Hanson CA. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part IV - postanalytic considerations.Cytometry B Clin Cytom. 2013;84(5):309-314.
96. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. J Allergy Clin Immunol.2020;145(3):885-896 e886.
97. Santos AF, Couto-Francisco N, Becares N, Kwok M, Bahnson HT, Lack G. A novel human mast cell activation test for peanut allergy. J Allergy Clin Immunol. 2018;142(2):689-691 e689.
98. Kleine-Tebbe J, Erdmann S, Knol EF, MacGlashan DW, Jr., Poulsen LK, Gibbs BF. Diagnostic tests based on human basophils: potentials, pitfalls and perspectives. Int Arch Allergy Immunol.2006;141(1):79-90.
99. de Weck AL, Sanz ML, Gamboa PM, et al. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls.Int Arch Allergy Immunol. 2008;146(3):177-189.
100. Wojtalewicz N, Goseberg S, Kabrodt K, Schellenberg I. Six years of INSTAND e. V. sIgE proficiency testing: An evaluation of in vitro allergy diagnostics. Allergo J Int. 2017;26(2):43-52.
101. Korosec P, Turner PJ, Silar M, et al. Basophils, high-affinity IgE receptors, and CCL2 in human anaphylaxis. J Allergy Clin Immunol.2017;140(3):750-758 e715.
102. Ocmant A, Mulier S, Hanssens L, et al. Basophil activation tests for the diagnosis of food allergy in children. Clin Exp Allergy.2009;39(8):1234-1245.
103. Eberlein B, Leon Suarez I, Darsow U, Rueff F, Behrendt H, Ring J. A new basophil activation test using CD63 and CCR3 in allergy to antibiotics. Clin Exp Allergy. 2010;40(3):411-418.
104. Leysen J, Bridts CH, De Clerck LS, Ebo DG. Rocuronium-induced anaphylaxis is probably not mitigated by sugammadex: evidence from an in vitro experiment. Anaesthesia. 2011;66(6):526-527.
105. Sturm GJ, Bohm E, Trummer M, Weiglhofer I, Heinemann A, Aberer W. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study. Allergy. 2004;59(10):1110-1117.
106. Gernez Y, Waters J, Mirkovic B, et al. Blood basophil activation is a reliable biomarker of allergic bronchopulmonary aspergillosis in cystic fibrosis. Eur Respir J. 2016;47(1):177-185.