References:
Allimuthu D, Hubler Z, Najm FJ, Tang H, Bederman I, Seibel W, et al. (2019). Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP. Cell Chem Biol 26: 593-599 e594.
Ansari GA, Walker RD, Smart VB, & Smith LL (1982). Further investigations of mutagenic cholesterol preparations. Food Chem Toxicol 20: 35-41.
Aramaki Y, Kobayashi T, Imai Y, Kikuchi S, Matsukawa T, & Kanazawa K (1967). Biological studies of cholestane-3beta,5alpha,6beta-triol and its derivatives. 1. Hypocholesterolemic effects in rabbits, chickens and rats on atherogenic diets. J Atheroscler Res 7: 653-669.
Aringer L, & Eneroth P (1974). Formation and metabolism in vitro of 5,6-epoxides of cholesterol and beta-sitosterol. J Lipid Res 15: 389-398.
Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, et al.(2017). The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 8: 864.
Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, Mallinger A, de Medina P, Rives A, et al. (2019). The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. J Steroid Biochem Mol Biol 192: 105390.
Berrodin TJ, Shen Q, Quinet EM, Yudt MR, Freedman LP, & Nagpal S (2010). Identification of 5alpha, 6alpha-epoxycholesterol as a novel modulator of liver X receptor activity. Mol Pharmacol 78:1046-1058.
Bizzarri M, Giuliani A, Cucina A, & Minini M (2020). Redifferentiation therapeutic strategies in cancer. Drug Discov Today 25:731-738.
Black HS, & Douglas DR (1973). Formation of a carcinogen of natural origin in the etiology of ultraviolet light-induced carcinogenesis. Cancer Res 33: 2094-2096.
Black HS, & Lo WB (1971). Formation of a carcinogen in human skin irradiated with ultraviolet light. Nature 234: 306-308.
Blackmond DG (2019). The Origin of Biological Homochirality. Cold Spring Harb Perspect Biol 11: a002147.
Board PG, & Menon D (2013). Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830:3267-3288.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, & Jemal A (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394-424.
Carvalho JF, Silva MM, Moreira JN, Simoes S, & Sa e Melo ML (2010). Sterols as anticancer agents: synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. J Med Chem 53: 7632-7638.
Carvalho JF, Silva MM, Moreira JN, Simoes S, & Sa EMML (2011). Selective cytotoxicity of oxysterols through structural modulation on rings A and B. Synthesis, in vitro evaluation, and SAR. J Med Chem 54: 6375-6393.
Cavenee WK, Gibbons GF, Chen HW, & Kandutsch AA (1979). Effects of various oxygenated sterols on cellular sterol biosynthesis in Chinese hamster lung cells resistant to 25-hydroxycholesterol. Biochim Biophys Acta 575: 255-265.
Chan JT, & Black HS (1974). Skin carcinogenesis: cholesterol-5alpha,6alpha-epoxide hydrase activity in mouse skin irradiated with ultraviolet light. Science 186: 1216-1217.
Chang CC, Jone C, Trosko JE, Peterson AR, & Sevanian A (1988). Effect of cholesterol epoxides on the inhibition of intercellular communication and on mutation induction in Chinese hamster V79 cells. Mutat Res 206: 471-478.
Chapman K, Holmes M, & Seckl J (2013). 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93: 1139-1206.
Cheng YW, Kang JJ, Shih YL, Lo YL, & Wang CF (2005). Cholesterol-3-beta, 5-alpha, 6-beta-triol induced genotoxicity through reactive oxygen species formation. Food Chem Toxicol 43:617-622.
Cully M (2016). Anticancer drugs: Exploiting a weakness in colorectal cancers. Nat Rev Drug Discov 15: 820-821.
Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, et al. (2017). Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. J Steroid Biochem Mol Biol 169: 210-218.
Dalenc F, Poirot M, & Silvente-Poirot S (2015). Dendrogenin A: A Mammalian Metabolite of Cholesterol with Tumor Suppressor and Neurostimulating Properties. Curr Med Chem 22: 3533-3549.
Danhier P, Banski P, Payen VL, Grasso D, Ippolito L, Sonveaux P, et al. (2017). Cancer metabolism in space and time: Beyond the Warburg effect. Biochim Biophys Acta Bioenerg 1858: 556-572.
De Bosscher K, Desmet SJ, Clarisse D, Estebanez-Perpina E, & Brunsveld L (2020). Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol in press.
de Medina P, Paillasse MR, Payre B, Silvente-Poirot S, & Poirot M (2009). Synthesis of new alkylaminooxysterols with potent cell differentiating activities: identification of leads for the treatment of cancer and neurodegenerative diseases. J Med Chem 52:7765-7777.
de Medina P, Paillasse MR, Segala G, Poirot M, & Silvente-Poirot S (2010). Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci U S A 107: 13520-13525.
de Medina P, Paillasse MR, Segala G, Voisin M, Mhamdi L, Dalenc F, et al. (2013). Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nat Commun 4: 1840.
de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F, Silvente-Poirot S, et al. (2009). Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ 16: 1372-1384.
de Medina P, Silvente-Poirot S, & Poirot M (2009). Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5: 1066-1067.
el-Bayoumy K, Ji BY, Upadhyaya P, Chae YH, Kurtzke C, Rivenson A, et al. (1996). Lack of tumorigenicity of cholesterol epoxides and estrone-3,4-quinone in the rat mammary gland. Cancer Res 56:1970-1973.
Fessler MB (2016). The Intracellular Cholesterol Landscape: Dynamic Integrator of the Immune Response. Trends Immunol 37: 819-830.
Fransson A, de Medina P, Paillasse MR, Silvente-Poirot S, Poirot M, & Ulfendahl M (2015). Dendrogenin A and B two new steroidal alkaloids increasing neural responsiveness in the deafened guinea pig. Front Aging Neurosci 7: 145.
Fujii N, & Saito T (2004). Homochirality and life. Chem Rec 4:267-278.
Garcia-Estevez L, & Moreno-Bueno G (2019). Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res 21: 35.
Global Burden of Disease Cancer C, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. (2019). Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 5: 1749-1768.
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. (2011). Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22: 1736-1747.
Gorzynski Smith J (1984). Synthetically Useful Reactions of Epoxides. Synthesis 1984: 629-656.
Grouleff J, Irudayam SJ, Skeby KK, & Schiott B (2015). The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta 1848: 1783-1795.
Gruenke LD, Wrensch MR, Petrakis NL, Miike R, Ernster VL, & Craig JC (1987). Breast fluid cholesterol and cholesterol epoxides: relationship to breast cancer risk factors and other characteristics. Cancer Res 47: 5483-5487.
Herman GE (2003). Disorders of cholesterol biosynthesis: prototypic metabolic malformation syndromes. Hum Mol Genet 12 Spec No 1:R75-88.
Huang B, Song B-l, & Xu C (2020). Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2: 132-141.
Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, et al. (2018). Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560:372-376.
Imai H, Werthessen NT, Subramanyam V, LeQuesne PW, Soloway AH, & Kanisawa M (1980). Angiotoxicity of oxygenated sterols and possible precursors. Science 207: 651-653.
Iuliano L (2011). Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 164: 457-468.
Iuliano L, Crick PJ, Zerbinati C, Tritapepe L, Abdel-Khalik J, Poirot M, et al. (2015). Cholesterol metabolites exported from human brain. Steroids 99: 189-193.
Jordan VC, & Brodie AM (2007). Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72: 7-25.
Kadmiel M, & Cidlowski JA (2013). Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34: 518-530.
Kanai A, McNamara KM, Iwabuchi E, Miki Y, Onodera Y, Guestini F, et al. (2020). Significance of glucocorticoid signaling in triple-negative breast cancer patients: a newly revealed interaction with androgen signaling. Breast Cancer Res Treat 180: 97-110.
Kandutsch AA, Chen HW, & Heiniger HJ (1978). Biological activity of some oxygenated sterols. Science 201: 498-501.
Kedjouar B, de Medina P, Oulad-Abdelghani M, Payre B, Silvente-Poirot S, Favre G, et al. (2004). Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem 279:34048-34061.
Khalifa SA, de Medina P, Erlandsson A, El-Seedi HR, Silvente-Poirot S, & Poirot M (2014). The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells. Biochem Biophys Res Commun 446: 681-686.
Kodani SD, & Hammock BD (2015). The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 43: 788-802.
Korade Z, Kim HY, Tallman KA, Liu W, Koczok K, Balogh I, et al.(2016). The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts. J Med Chem 59: 1102-1115.
Kuzu OF, Noory MA, & Robertson GP (2016). The Role of Cholesterol in Cancer. Cancer Res 76: 2063-2070.
Lamberson CR, Muchalski H, McDuffee KB, Tallman KA, Xu L, & Porter NA (2017). Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol. Chem Phys Lipids 207:51-58.
Latif SA, Pardo HA, Hardy MP, & Morris DJ (2005). Endogenous selective inhibitors of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2 of adrenal origin. Mol Cell Endocrinol 243: 43-50.
Le Cornet C, Walter B, Sookthai D, Johnson TS, Kuhn T, Herpel E, et al. (2020). Circulating 27-hydroxycholesterol and breast cancer tissue expression of CYP27A1, CYP7B1, LXR-beta, and ERbeta: results from the EPIC-Heidelberg cohort. Breast Cancer Res 22: 23.
Leignadier J, Dalenc F, Poirot M, & Silvente-Poirot S (2017). Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochem Pharmacol 144: 18-28.
Lin CY, Huo C, Kuo LK, Hiipakka RA, Jones RB, Lin HP, et al.(2013). Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One 8: e65734.
Liu H, Yuan L, Xu S, Wang K, & Zhang T (2005). Cholestane-3beta,5alpha,6beta-triol inhibits osteoblastic differentiation and promotes apoptosis of rat bone marrow stromal cells. J Cell Biochem 96: 198-208.
Lo W, & Black HS (1973). Inhibition of carcinogen formation in skin irradiated with ultraviolet light. Nature 246: 489-491.
Lo WB, & Black HS (1972). Formation of cholesterol-derived photoproducts in human skin. J Invest Dermatol 58: 278-283.
Long T, Hassan A, Thompson BM, McDonald JG, Wang J, & Li X (2019). Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition. Nat Commun 10: 2452.
Lu DL, Le Cornet C, Sookthai D, Johnson TS, Kaaks R, & Fortner RT (2019). Circulating 27-Hydroxycholesterol and Breast Cancer Risk: Results From the EPIC-Heidelberg Cohort. J Natl Cancer Inst 111: 365-371.
Luo J, Yang H, & Song BL (2020). Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21: 225-245.
Ma L, & Nelson ER (2019). Oxysterols and nuclear receptors. Mol Cell Endocrinol 484: 42-51.
Mahfouz MM, Smith TL, Zhou Q, & Kummerow FA (1996). Cholestane-3 beta, 5 alpha, 6 beta-triol stimulates phospholipid synthesis and CTP-phosphocholine cytidyltransferase in cultured LLC-PK cells. Int J Biochem Cell Biol 28: 739-750.
Mitic T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, et al. (2013). 11beta-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol 86: 146-153.
Moresco MA, Raccosta L, Corna G, Maggioni D, Soncini M, Bicciato S, et al. (2018). Enzymatic Inactivation of Oxysterols in Breast Tumor Cells Constraints Metastasis Formation by Reprogramming the Metastatic Lung Microenvironment. Front Immunol 9: 2251.
Morisseau C (2013). Role of epoxide hydrolases in lipid metabolism. Biochimie 95: 91-95.
Morisseau C, & Hammock BD (2005). Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45: 311-333.
Morris DJ, Latif SA, Hardy MP, & Brem AS (2007). Endogenous inhibitors (GALFs) of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2: derivatives of adrenally produced corticosterone and cortisol. J Steroid Biochem Mol Biol 104: 161-168.
Nashed NT, Michaud DP, Levin W, & Jerina DM (1985). Properties of liver microsomal cholesterol 5,6-oxide hydrolase. Arch Biochem Biophys 241: 149-162.
Nelson ER (2018). The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol 466: 73-80.
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342: 1094-1098.
Nes WD (2011). Biosynthesis of cholesterol and other sterols. Chem Rev 111: 6423-6451.
Newman JW, Morisseau C, & Hammock BD (2005). Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44: 1-51.
Obradovic MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM, et al. (2019). Glucocorticoids promote breast cancer metastasis. Nature 567: 540-544.
Odermatt A, & Klusonova P (2015). 11β-Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. J Steroid Biochem Mol Biol 151: 85-92.
Ohgane K, Karaki F, Noguchi-Yachide T, Dodo K, & Hashimoto Y (2014). Structure-activity relationships of oxysterol-derived pharmacological chaperones for Niemann-Pick type C1 protein. Bioorg Med Chem Lett 24: 3480-3485.
Paillasse MR, Saffon N, Gornitzka H, Silvente-Poirot S, Poirot M, & de Medina P (2012). Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles. J Lipid Res 53: 718-725.
Parker RE, & Isaacs NS (1959). Mechanisms of epoxide reactions. Chem Rev 59: 737-799.
Pavlova NN, & Thompson CB (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23: 27-47.
Payre B, de Medina P, Boubekeur N, Mhamdi L, Bertrand-Michel J, Terce F, et al. (2008). Microsomal antiestrogen-binding site ligands induce growth control and differentiation of human breast cancer cells through the modulation of cholesterol metabolism. Mol Cancer Ther 7: 3707-3718.
Perez Kerkvliet C, Dwyer AR, Diep CH, Oakley RH, Liddle C, Cidlowski JA, et al. (2020). Glucocorticoid receptors are required effectors of TGFbeta1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast Cancer Res 22: 39.
Peterson AR, Peterson H, Spears CP, Trosko JE, & Sevanian A (1988). Mutagenic characterization of cholesterol epoxides in Chinese hamster V79 cells. Mutat Res 203: 355-366.
Petrakis NL, Gruenke LD, & Craig JC (1981). Cholesterol and cholesterol epoxides in nipple aspirates of human breast fluid. Cancer Res 41: 2563-2565.
Poirot M, & Silvente-Poirot S (2013). Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer. Biochimie 95: 622-631.
Poirot M, & Silvente-Poirot S (2018). The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochem Pharmacol 153: 75-81.
Poirot M, Soules R, Mallinger A, Dalenc F, & Silvente-Poirot S (2018). Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3beta,5alpha-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 153: 139-149.
Porter FD, & Herman GE (2011). Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52: 6-34.
Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, et al. (2010). Cholesterol Oxidation Products Are Sensitive and Specific Blood-Based Biomarkers for Niemann-Pick C1 Disease. Sci Transl Med 2: 56ra81.
Porter NA, Xu L, & Pratt DA (2020). Reactive Sterol Electrophiles: Mechanisms of Formation and Reactions with Proteins and Amino Acid Nucleophiles. Chemistry 2: 390-417.
Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, et al. (2013). The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711-1728.
Raccosta L, Fontana R, Traversari C, & Russo V (2013). Oxysterols recruit tumor-supporting neutrophils within the tumor microenvironment: The many facets of tumor-derived oxysterols. Oncoimmunology 2:e26469.
Scallen TJ, Dhar AK, & Loughran ED (1971). Isolation and characterization of C-4 methyl intermediates in cholesterol biosynthesis after treatment of rat liver in vitro with cholestan-3 beta, 5 alpha,6 beta-triol. J Biol Chem 246: 3168-3174.
Schroepfer GJ, Jr. (2000). Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80: 361-554.
Segala G, David M, de Medina P, Poirot MC, Serhan N, Vergez F, et al. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat Commun 8: 1903.
Segala G, de Medina P, Iuliano L, Zerbinati C, Paillasse MR, Noguer E, et al. (2013). 5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochem Pharmacol 86: 175-189.
Sevanian A, & McLeod LL (1986). Catalytic properties and inhibition of hepatic cholesterol-epoxide hydrolase. J Biol Chem 261: 54-59.
Sevanian A, & Peterson AR (1984). Cholesterol epoxide is a direct-acting mutagen. Proc Natl Acad Sci U S A 81: 4198-4202.
Sevanian A, & Peterson AR (1986). The cytotoxic and mutagenic properties of cholesterol oxidation products. Food Chem Toxicol 24: 1103-1110.
Silvente-Poirot S, Dalenc F, & Poirot M (2018). The Effects of Cholesterol-Derived Oncometabolites on Nuclear Receptor Function in Cancer. Cancer Res 78: 4803-4808.
Silvente-Poirot S, de Medina P, Record M, & Poirot M (2016). From tamoxifen to dendrogenin A: The discovery of a mammalian tumor suppressor and cholesterol metabolite. Biochimie 130: 109-114.
Silvente-Poirot S, & Poirot M (2012). Cholesterol epoxide hydrolase and cancer. Curr Opin Pharmacol 12: 696-703.
Silvente-Poirot S, & Poirot M (2014). Cancer. Cholesterol and cancer, in the balance. Science 343: 1445-1446.
Silvente-Poirot S, Segala G, Poirot MC, & Poirot M (2018). Ligand-dependent transcriptional induction of lethal autophagy: a new perspective for cancer treatment. Autophagy 14: 555-557.
Simpson E, & Santen RJ (2015). Celebrating 75 years of oestradiol. J Mol Endocrinol 55: T1-20.
Smith LL (1981) Cholesterol Autoxidation . Plenum press: New York.
Smith LL, & Johnson BH (1989). Biological activities of oxysterols. Free Radic Biol Med 7: 285-332.
Smith LL, Smart VB, & Ansari GA (1979). Mutagenic cholesterol preparations. Mutat Res 68: 23-30.
Sola B, Poirot M, de Medina P, Bustany S, Marsaud V, Silvente-Poirot S, et al. (2013). Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism. Oncotarget 4: 911-922.
Song C, Hiipakka RA, & Liao S (2001). Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors: implications for the development and treatment of atherosclerosis. Steroids 66:473-479.
Soules R, Audouard-Combe F, Huc-Claustre E, de Medina P, Rives A, Chatelut E, et al. (2019). A fast UPLC-HILIC method for an accurate quanti fi cation of dendrogenin A in human tissues. J Steroid Biochem Mol Biol 194: 105447.
Soules R, Noguer E, Iuliano L, Zerbinati C, Leignadier J, Rives A, et al. (2017). Improvement of 5,6alpha-epoxycholesterol, 5,6beta-epoxycholesterol, cholestane-3beta,5alpha,6beta-triol and 6-oxo-cholestan-3beta,5alpha-diol recovery for quantification by GC/MS. Chem Phys Lipids 207: 92-98.
Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, et al. (2015). Cholesterol metabolite cholestane-3beta,5alpha,6beta-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 98: 166-172.
Tang L, Yan M, Leng T, Yin W, Cai S, Duan S, et al. (2018). Cholestane-3beta, 5alpha, 6beta-triol suppresses neuronal hyperexcitability via binding to voltage-gated sodium channels. Biochem Biophys Res Commun 496: 95-100.
Theodoropoulos PC, Wang W, Budhipramono A, Thompson BM, Madhusudhan N, Mitsche MA, et al. (2020). A Medicinal Chemistry-Driven Approach Identified the Sterol Isomerase EBP as the Molecular Target of TASIN Colorectal Cancer Toxins. J Am Chem Soc 142: 6128-6138.
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, et al. (2019). Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association. Breast Cancer Res 21: 82.
Touvier M, Fassier P, His M, Norat T, Chan DS, Blacher J, et al.(2015). Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr 114: 347-357.
Vander Heiden MG, & DeBerardinis RJ (2017). Understanding the Intersections between Metabolism and Cancer Biology. Cell 168:657-669.
Vandewalle J, Luypaert A, De Bosscher K, & Libert C (2018). Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab 29:42-54.
Vitku J, Starka L, Bicikova M, Hill M, Heracek J, Sosvorova L, et al. (2016). Endocrine disruptors and other inhibitors of 11beta-hydroxysteroid dehydrogenase 1 and 2: Tissue-specific consequences of enzyme inhibition. J Steroid Biochem Mol Biol 155: 207-216.
Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, et al. (2017). Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 114: E9346-E9355.
Wang W, Zhang L, Morlock L, Williams NS, Shay JW, & De Brabander JK (2019). Design and Synthesis of TASIN Analogues Specifically Targeting Colorectal Cancer Cell Lines with Mutant Adenomatous Polyposis Coli (APC). J Med Chem 62: 5217-5241.
Watabe T, & Sawahata T (1979). Biotransformation of cholesterol to cholestane-3beta,5alpha,6beta-triol via cholesterol alpha-epoxide (5alpha,6alpha-epoxycholestan-3beta-ol) in bovine adrenal cortex. J Biol Chem 254: 3854-3860.
Witiak DT, Parker RA, Dempsey ME, & Ritter MC (1971). Inhibitors and stimulators of cholesterolgenesis enzymes. A structure-activity study in vitro of amino and selected N-containing analogs of 5α-cholestane-3β ,5α ,6β-triol. J Med Chem 14: 684-693.
Wrensch MR, Petrakis NL, Gruenke LD, Miike R, Ernster VL, King EB, et al. (1989). Breast fluid cholesterol and cholesterol beta-epoxide concentrations in women with benign breast disease. Cancer Res 49: 2168-2174.
Yin H, Xu L, & Porter NA (2011). Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111: 5944-5972.
Zhang L, Kim SB, Luitel K, & Shay JW (2018). Cholesterol Depletion by TASIN-1 Induces Apoptotic Cell Death through the ER Stress/ROS/JNK Signaling in Colon Cancer Cells. Mol Cancer Ther 17: 943-951.
Zhang L, Theodoropoulos PC, Eskiocak U, Wang W, Moon YA, Posner B, et al. (2016). Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer. Sci Transl Med 8: 361ra140.
Zhou C, Ye F, Wu H, Ye H, & Chen Q (2017). Recent advances in the study of 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2)Inhibitors. Environ Toxicol Pharmacol 52: 47-53.