References
  1. Liu WJ, Li WW, Jiang H, Yu HQ. Fates of chemical elements in biomass during its pyrolysis. Chem Rev . 2017;117:6367-6398.
  2. Zhang ZR, Song JL, Han BX. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev . 2017;117(10):6834-6880.
  3. Asgher M, Ahmad Z, Iqbal HMN. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crop Prod . 2013;44:488-495.
  4. Aro T, Fatehi P. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem . 2017;10:1861-1877.
  5. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev . 2010;110:3552-3599.
  6. Deepa AK, Dhepe PL. Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal . 2015;5:365-379.
  7. Rahimi A, Ulbrich A, Coon JJ, Stahl SS. Formic acid-induced depolymerization of oxidized lignin to aromatics. Nature . 2014;515:249-252.
  8. Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li YD, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.Science . 2016;354(6310):329-333.
  9. Cai ZP, Long JX, Li YW, Ye L, Yin BL, France LJ, Dong JC, Zheng LR, He HY, Liu SJ, Tsang SCE, Li XH. Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit. Chem . 2019;5(9):2365-2377.
  10. Behling R, Valange S, Chatel G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem . 2016;18:1839-1854.
  11. Olivier G, Pouya H, Faïcal L. Magnetically induced agitation in liquid-liquid-magnetic nanoparticle emulsions: potential for process intensification.AIChE J . 2014;60(3):1176-1181.
  12. Stankiewicz A, Moulijn JA. Process intensification. Ind Eng Chem Res . 2002;41(8):1920-1924.
  13. Timko MT, Smith KA, Danheiser RL, Steinfel JI, Tester JW. Reaction rates in ultrasonic emulsions of dense carbon dioxide and water. AIChE J . 2006;52(3):1127-1141.
  14. Trufanova MV, Parfenova LN, Yarygina ON. Surfactant properties of lignosulfonates. Russ J Appl Chem . 2010;83(6):1096-1098.
  15. Qiu XQ, Kong Q, Zhou MS, Yang DJ. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B . 2010;114:15857-15861.
  16. Zhou HF, Lou HM, Yang DJ, Zhu JY, Qiu XQ. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin.Ind Eng Chem Res . 2013;52:8464-8470.
  17. Cai ZP, Li YW, He HY, Zeng Q, Long JX, Wang LF, Li XH. Catalytic depolymerization of organosolv lignin in a novel water/oil emulsion reactor: lignin as the self-surfactant. Ind Eng Chem Res . 2015;54:11501-11510.
  18. Liu SJ, Lin ZY, Cai ZP, Long JX, Li ZM, Li XH. Selective depolymerization of lignosulfonate via hydrogen transfer enhanced in an emulsion microreactor. Bioresource Technol . 2018;264:382-386.
  19. Marino DD, Aniko V, Stocco A, Kriescher S, Wessling M. Emulsion electro-oxidation of kraft lignin. Green Chem . 2017;19:4778-4784.
  20. Xu J, Yin AL, Zhao JK, Li DX, Hou WG. Surfactant-free microemulsion composed of oleic acid, n -propanol and H2O.J Phys Chem B . 2013;117:450-456.
  21. Vitale SA, Katz JL. Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: “ The Ouzo effect ”. Langmuir . 2003;19:4105-4110.
  22. Lund G, Holt SL. Detergentless water/oil microemulsions: IV. the ternary pseudo-phase diagram for and properties of the system toluene/2-propanol/water. JAOCS . 1980;57:264-267.
  23. Klossek ML, Touraud D, Zemb T, Kunz W. Structure and solubility in surfactant-free microemulsions. Chem Phys Chem . 2012;13:4116-4125.
  24. Hou WG, Xu J. Surfactant-free microemulsions.Curr Opin Colloid In . 2016;25:67-74.
  25. Zoumpanioti M, Karali M, Xenakis A, Stamatis H. Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels. Enzyme Microb Tech . 2006;39:531-539.
  26. Long JX, Li XH, Guo B, Wang LF, Zhang N. Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids. Catal Today . 2013;200:99-105.
  27. Zhang YM, Chen XL, Liu XF. Temperature-induced reversible-phase transition in a surfactant-free microemulsion. Langmuir . 2019;35:14358-14363.
  28. Song F, Xu J, Hou WG. Surfactant-free oil/water and bicontinuous microemulsion composed of benzene, ethanol and water. Chinese Chem Lett . 2010;21:880-883.
  29. Gao YN, Wang SQ, Zheng LQ, Han SB, Zhang X, Lu DM, Yu L, Ji YQ, Zhang GY. Microregion detection of ionic liquid microemulsions. J Colloid Interf Sci . 2006;301:612-616.
  30. Song MM, Liu WJ, Wang Q, Wang J, Chai JL. A surfactant-free microemulsion containing diethyl malonate, ethanol, and water: microstructure, micropolarity and solubilizations. J Ind Eng Chem . 2020;83:81-89.
  31. Sun B, Chai JL, Chai ZQ, Zhang XY, Cui XC, Lu JJ. A surfactant-free microemulsion consisting of water, ethanol, and dichloromethane and its template effect for silica synthesis. J Colloid Interf Sci . 2018;526:9-17.
  32. Xu J, Deng HH, Fu YL, Chen YQ, Zhang J, Hou WG. Surfactant-free microemulsions of 1-butyl-3-methylimidazolium hexafluorophosphate, propylamine nitrate, and water. Soft Matter . 2017;13:2067-2074.
  33. Clarke MJ, Harrison KL, Johnston KP, Howdle SM. Water in supercritical carbon dioxide microemulsions: spectroscopic investigation of a new environment for aqueous inorganic chemistry. J Am Chem Soc . 1997;119:6399-6406.
  34. Luo T, Zhang JL, Tan XN, Liu CC, Wu TB, Li W, Sang XX, Han BX, Li ZH, Mo G, Xing XQ, Wu ZH. Water-in-supercritical CO2microemulsion stabilized by a metal complex. Angew Chem Int Ed . 2016;55:13533-13537.
  35. Gao YA, Li N, Zheng LQ, Bai XT, Yu Li, Zhao XY, Zhang J, Zhao MW, Li Z. Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene. J Phys Chem B . 2007;111:2506-2513.
  36. Zhou GW, Li GZ, Chen WJ. Fourier transform infrared investigation on water states and the conformations of aerosol-OT in reverse microemulsions. Langmuir . 2002;18:4566-4571.
  37. Hart WES, Harper JB, Aldous L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem . 2015;17:214-218.
  38. Glas D, Doorslaer CV, Depuydt D, Liebner F, Rosenau T, Binnemans K, Vos DED. Lignin solubility in non-imidazolium ionic liquids. J Chem Technol Biotechnol . 2015;90:1821-1826.
  39. Ben-Barak I, Talmon Y. Direct-imaging cryo-SEM of nanostructure evolution in didodecyldimethylammonium bromide-based microemulsions.Z Phys Chem . 2012;226:665-674.
  40. Davidovich I, Issman L, Paula CD, Ben-Barak I, Talmon Y. A cryogenic-electron microscopy study of the one-phase corridor in the phase diagram of a nonionic surfactant-based microemulsion system.Colloid Polym Sci . 2015;293:3189-3197.
  41. Ma HW, Li HW, Zhao WJ, Li LX, Liu SJ, Long JX, Li XH. Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem . 2019;21:658-668.
  42. Long JX, Lou WY, Wang LF, Yin BL, Li XH. [C4H8SO3Hmim]HSO4as an efficient catalyst for direct liquefaction of bagasse lignin: decomposition properties of the inner structural units. Chem Eng Sci . 2015;122:24-33.
  43. Imai T, Yokoyama T, Matsumoto Y. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin IV: dependence of acidolysis reaction on the type of acid. J Wood Sci . 2011;57:219-225.
  44. Werhan H, Mir JM, Voitl T, Rohr PRV. Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts.Holzforschung . 2011;65(5):703-709.
  45. Partenheimer W. The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal . 2009;351(3):456-466.
  46. Voitl T, Rohr PRV. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.ChemSusChem . 2008;1:763-769.