References
1. Jeffrey S. Plotkin. The Continuing Quest for Butadiene - American Chemical Society. Cutting-Edge Chemistry. https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/the-continuing-quest-for-butadiene.html. Published 2016. Accessed September 8, 2019.
2. Chemical Economics Handbook (CEH) . IHS Markit https://ihsmarkit.com/products/butadiene-chemical-economics-handbook.html. Accessed April 19, 2019.
3. Doyle M, Sexton KG, Jeffries H, Bridge K, Jaspers I. Effects of 1,3-butadiene, isoprene, and their photochemical degradation products on human lung cells. Environ Health Perspect . 2004;112(15):1488-1495. doi:10.1289/ehp.7022
4. Liu G, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater . 2018;17(3):283-289. doi:10.1038/s41563-017-0013-1
5. Wang J, Fang W, Luo J, et al. Selective separation of CO2 using novel mixed matrix membranes based on Pebax and liquid-like nanoparticle organic hybrid materials. J Memb Sci . 2019;584:79-88. doi:10.1016/j.memsci.2019.04.079
6. Zhao J, Xie K, Liu L, Liu M, Qiu W, Webley PA. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. J Memb Sci . 2019;583:23-30. doi:10.1016/j.memsci.2019.03.073
7. Oh JW, Cho KY, Kan MY, Yu HJ, Kang DY, Lee JS. High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation. J Memb Sci . 2020;596. doi:10.1016/j.memsci.2019.117735
8. Li S, Li P, Cai D, et al. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. J Memb Sci . 2019;579:141-150. doi:10.1016/j.memsci.2019.02.041
9. Hu J, Cai H, Ren H, et al. Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res . 2010;49(24):12605-12612. doi:10.1021/ie1014958
10. Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T. Hybridization of MOFs and polymers. Chem Soc Rev . 2017;46(11):3108-3133. doi:10.1039/c7cs00041c
11. Moore TT, Koros WJ. Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct . 2005;739(1-3):87-98. doi:10.1016/j.molstruc.2004.05.043
12. Venna SR, Lartey M, Li T, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles.J Mater Chem A . 2015;3(9):5014-5022. doi:10.1039/c4ta05225k
13. Mao H, Li SH, Zhang AS, Xu LH, Lu JJ, Zhao ZP. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. J Memb Sci . February 2019. doi:10.1016/j.memsci.2019.117543
14. Xu S, Zhang H, Yu F, Zhao X, Wang Y. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90.Sep Purif Technol . 2018;206:80-89. doi:10.1016/j.seppur.2018.05.056
15. Şahin F, Topuz B, Kalıpçılar H. ZIF filled PDMS mixed matrix membranes for separation of solvent vapors from nitrogen. J Memb Sci . 2020;598:117792. doi:10.1016/j.memsci.2019.117792
16. Meshkat S, Kaliaguine S, Rodrigue D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation.Sep Purif Technol . 2018;200:177-190. doi:10.1016/j.seppur.2018.02.038
17. Prasetya N, Teck AA, Ladewig BP. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation.Sci Rep . 2018;8(1):1-14. doi:10.1038/s41598-018-21263-7
18. Mitra T, Bhavsar RS, Adams DJ, Budd PM, Cooper AI. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chem Commun . 2016;52(32):5581-5584. doi:10.1039/c6cc00261g
19. Cheng J, Wang Y, Hu L, Liu N, Xu J, Zhou J. Using lantern Zn/Co-ZIF nanoparticles to provide channels for CO2 permeation through PEO-based MMMs. J Memb Sci . November 2019:117644. doi:10.1016/j.memsci.2019.117644
20. Zhang H, Wang Y. Poly(vinyl alcohol)/ZIF-8-NH 2mixed matrix membranes for ethanol dehydration via pervaporation.AIChE J . 2016;62(5):1728-1739. doi:10.1002/aic.15140
21. Zhao X, Zhang H, Xu S, Wang Y. ZIF‐8 membrane synthesized via covalent‐assisted seeding on polyimide substrate for pervaporation dehydration. AIChE J . 2019;65(8). doi:10.1002/aic.16620
22. Ge B-S, Wang T, Sun H-X, Gao W, Zhao H-R. Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation. Polym Adv Technol . 2018;29(4):1334-1343. doi:10.1002/pat.4245
23. Kumar R, Zhang C, Itta AK, Koros WJ. Highly permeable carbon molecular sieve membranes for efficient CO2/N2 separation at ambient and subambient temperatures. J Memb Sci . 2019;583:9-15. doi:10.1016/j.memsci.2019.04.033
24. Zornoza B, Téllez C, Coronas J, Esekhile O, Koros WJ. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE J . 2015;61(12):4481-4490. doi:10.1002/aic.15011
25. Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO 2 separation.AIChE J . 2016;62(8):2843-2852. doi:10.1002/aic.15260
26. Shen G, Zhao J, Guan K, Shen J, Jin W. Highly efficient recovery of propane by mixed-matrix membrane via embedding functionalized graphene oxide nanosheets into polydimethylsiloxane. AIChE J . 2017;63(8):3501-3510. doi:10.1002/aic.15720
27. Denny MS, Moreton JC, Benz L, Cohen SM. Metal-organic frameworks for membrane-based separations. Nat Rev Mater . 2016;1(12):1-17. doi:10.1038/natrevmats.2016.78
28. Koros WJ, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nat Mater . 2017;16(3):289-297. doi:10.1038/nmat4805
29. Baker RW, Wijmans JG, Kaschemekat JH. The design of membrane vapor-gas separation systems. J Memb Sci . 1998;151(1):55-62. doi:10.1016/S0376-7388(98)00248-8
30. Choi SH, Kim JH, Lee SB. Sorption and permeation behaviors of a series of olefins and nitrogen through PDMS membranes. J Memb Sci . 2007;299(1-2):54-62. doi:10.1016/j.memsci.2007.04.022
31. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B Polym Phys . 2000;38(3):415-434. doi:10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
32. Lin D, Ding Z, Liu L, Ma R. Experimental study of vapor permeation of C 5C 7 alkane through PDMS membrane. Chem Eng Res Des . 2012;90(11):2023-2033. doi:10.1016/j.cherd.2012.03.007
33. Rebollar-Pérez G, Carretier E, Lesage N, Moulin P. Vapour permeation of VOC emitted from petroleum activities: Application for low concentrations. J Ind Eng Chem . 2012;18(4):1339-1352. doi:10.1016/j.jiec.2012.01.039
34. Gadipelli S, Travis W, Zhou W, Guo Z. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake.Energy Environ Sci . 2014;7(7):2232-2238. doi:10.1039/c4ee01009d
35. Mao H, Zhen HG, Ahmad A, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation. J Memb Sci . 2019;582:307-321. doi:10.1016/j.memsci.2019.04.022
36. Casco ME, Cheng YQ, Daemen LL, et al. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering.Chem Commun . 2016;52(18):3639-3642. doi:10.1039/C5CC10222G
37. Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci . 2018;11(5):1204-1210. doi:10.1039/c8ee00133b
38. Yao J, Wang H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chem Soc Rev . 2014;43(13):4470-4493. doi:10.1039/c3cs60480b
39. Zhu J, Li H, Hou J, Liu J, Zhang Y, Van der Bruggen B. Heteroepitaxial growth of vertically orientated zeolitic imidazolate framework‐L (Co/Zn‐ZIF‐L) molecular sieve membranes. AIChE J . 2020;66(5). doi:10.1002/aic.16935
40. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angew Chemie Int Ed . 2019;58(43):15188-15205. doi:10.1002/anie.201902229
41. Abednatanzi S, Gohari Derakhshandeh P, Depauw H, et al. Mixed-metal metal-organic frameworks. Chem Soc Rev . 2019;48(9):2535-2565. doi:10.1039/c8cs00337h
42. Fang M, Wu C, Yang Z, Wang T, Xia Y, Li J. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation. J Memb Sci . 2015;474:103-113. doi:10.1016/j.memsci.2014.09.040
43. Song Q, Nataraj SK, Roussenova M V., et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci . 2012;5(8):8359-8369. doi:10.1039/c2ee21996d
44. Li R, Ren X, Feng X, Li X, Hu C, Wang B. A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chem Commun . 2014;50(52):6894-6897. doi:10.1039/c4cc01087f
45. Mao H, Zhen HG, Ahmad A, Zhang AS, Zhao ZP. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. J Memb Sci . 2019;573:344-358. doi:10.1016/j.memsci.2018.12.017
46. Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Amino-Functionalized ZIF-7 Nanocrystals: Improved Intrinsic Separation Ability and Interfacial Compatibility in Mixed-Matrix Membranes for CO2/CH4 Separation. Adv Mater . 2017;29(32):1606999. doi:10.1002/adma.201606999
47. Yang H, Nguyen QT, Ding Y, Long Y, Ping Z. Investigation of poly(dimethyl siloxane) (PDMS)-solvent interactions by DSC. J Memb Sci . 2000;164(1-2):37-43. doi:10.1016/S0376-7388(99)00187-8
48. Zhang C, Lively RP, Zhang K, Johnson JR, Karvan O, Koros WJ. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J Phys Chem Lett . 2012;3(16):2130-2134. doi:10.1021/jz300855a
49. Haldoupis E, Watanabe T, Nair S, Sholl DS. Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH 4 and CO 2 in ZIF-8. ChemPhysChem . 2012;13(15):3449-3452. doi:10.1002/cphc.201200529
50. Dewar MJS. A Molecular Orbital Theory of Organic Chemistry. I. General Principles. J Am Chem Soc . 1952;74(13):3341-3345. doi:10.1021/ja01133a038
51. De Angelis MG, Sarti GC. Solubility and diffusivity of gases in mixed matrix membranes containing hydrophobic fumed silica: Correlations and predictions based on the NELF model. Ind Eng Chem Res . 2008;47(15):5214-5226. doi:10.1021/ie0714910
52. Merkel TC, Bondar V, Nagai K, Freeman BD. Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne). J Polym Sci Part B Polym Phys . 2000;38(2):273-296. doi:10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
53. Semenova SI. Polymer membranes for hydrocarbon separation and removal. J Memb Sci . 2004;231(1-2):189-207. doi:10.1016/j.memsci.2003.11.022
54. Okamoto K, Noborio K, Hao J, Tanaka K, Kita H. Permeation and separation properties of polyimide membranes to 1,3-butadiene and n-butane. J Memb Sci . 1997;134(2):171-179. doi:10.1016/S0376-7388(97)00128-2
55. Lin H, Freeman BD. Gas and vapor solubility in cross-linked polyethylene glycol diacrylate. Macromolecules . 2005;38(20):8394-8407. doi:10.1021/ma051218e
56. W. M. Haynes, David R. Lide TJB. CRC Handbook of Chemistry and Physics . 95th ed. Boca Raton, FL: CRC Press Taylor & Francis Group; 2014.
57. Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules . 1999;32(2):375-380. doi:10.1021/ma9814548
58. Barrer RM. Permeability in relation to viscosity and structure of rubber. Trans Faraday Soc . 1942;38(0):322-330. doi:10.1039/tf9423800322