Data Accessibility Statement
The sequences information used in this manuscript can be found in Barcode of Life Data System (BOLD) athttp://www.boldsystems.org. BOLD Process IDs as follows: XJDQD001-18-XJDQD1275-18. We will upload the relevant data to Dryad after the manuscript is accepted.
References
  1. Barco, A., Raupach, M. J., Laakmann, S., Neumann, H., & Knebelsberger, T. (2016). Identification of North Sea molluscs with DNA barcoding. Molecular Ecology Resources , 16 (1), 288-297.https://doi.org/10.1111/1755-0998.12440
  2. Barnett R , Larson G . A Phenol–Chloroform Protocol for Extracting DNA from Ancient Samples[J]. Methods in molecular biology (Clifton, N.J.), 2012, 840:13.
  3. Ball, S. L., Hebert, P. D. N., Burian, S. K., & Webb, J. M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes.Journal of the North American Benthological Society ,24 (3), 508-524.https://doi.org/10.1899/04-142.1
  4. Blagoev, G.A., Dewaard, J.R., Ratnasingham, S., Dewaard, S.L., Lu, L., Robertson, J., Telfer, A.C., Hebert, P.D. (2016). Untangling taxonomy a DNA barcode reference library for Canadian spiders.Molecular Ecology Resources, 16 (1), 325-341. https://doi.org/10.1111/1755-0998.12440
  5. Brodin, Y., Ejdung, G. & Lyrholm, T. (2012). Improving environmental and biodiversity monitoring in the Baltic Sea using DNA barcoding of Chironomidae (Diptera). Molecular Ecology Resources .13 (6), 996–1004. https://doi.org/10.1111/1755-0998.12053
  6. Bucklin, A. , Hopcroft, R. R. , Kosobokova, K. N. , Nigro, L. M. , Ortman, B. D. , & Jennings, R. M. , et al. (2010). DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Research Part II Topical Studies in Oceanography . 57(1-2), 40-48. https://doi.org/10.1016/j.dsr2.2009.08.005
  7. Candek, K. & Klemen, M. (2015). DNA barcoding gap: reliable species identification over morphological and geographical scales.Molecular Ecology Resources . 15 : 268-277. https://doi.org/ https://doi.org/10.1111/1755-0998.12304
  8. Casiraghi, M., Labra, M., Ferri, E., Galimberti, A. & Mattia, F.D. (2010). DNA barcoding: theoretical aspects and practical applications. Tools for Identifying Biodiversity: Progress and Problems . 269-273. https://doi.org/10.1002/jps.22820
  9. Chandler, J.R. (1970). A biological approach to water quality management. Water Pollution Control . 69: 415-422.
  10. Che, J., Chen, H.-M., Yang, J.-X., Jin, J.-Q., Jiang, K., Yuan, Z.-Y., . . . Zhang, Y.-P. (2012). Universal COI primers for DNA barcoding amphibians. Molecular ecology resources, 12 (2), 247-258. https://doi.org/doi:10.1111/j.1755-0998.2011.03090.x
  11. Chutter, F.M. (1972). An empirical biotic index of the quality of the water in south African streams and rivers. Water Res .6 (1), 19-30. https://doi.org/10.1016/0043-1354(72)90170-4
  12. Curt, L,E,, Lynda, D.C., Claudia, B., Erica, L.C. & David, J.B. (2012). DNA barcoding to confirm morphological traits and determine relative abundance of burrowing mayfly species in western Lake Erie.Journal of Great Lakes Researchs . 38 (1), 180-186.https://doi.org/10.1016/j.jglr.2011.11.010
  13. Danks, & H., V. (2007). How aquatic insects live in cold climates.The Canadian Entomologist, 139 (4), 443-471. https://doi.org/10.4039/n06-100
  14. Dinca, V., Montagud, S., Talavera, G., Hernandez-Roldan, J., Munguira, M. L., Garcia-Barros, E., . . . Vila, R. (2015). DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Scientific Reports ,5 :12395. https://doi.org/10.1038/srep12395
  15. Erik, M. et al . (2011). Bagley Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls.Journal of the North American Benthological Society .30 (1), 217-231. https://doi.org/10.1899/10-012.1
  16. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Veijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome coxidase subumit I from diverse metazoan invertebrates.Molecular Marine Biology and Biotechnology . 3 (5), 294-299. https://doi.org/10.4028/www.scientific.net/DDF.7.460
  17. Frézal, L. & Leblois, R. (2008). Four years of DNA barcoding: current advances and prospects.Infection, Genetics and Evolution . 8 (5), 727-736. https://doi.org/10.1016/j.meegid.2008.05.005
  18. Gill, B. A., Harrington, R. A., Kondratieff, B. C., Zamudio, K. R., Poff, L. R., & Funk, W. C.. (2014). Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science . 33 (1), 288–301. https://doi.org/10.1086/674526
  19. Gregory, J.P. et al . (2013). Calibration and validation of a regionally and seasonally tratified macroinvertebrates index for West Virginia adeable streams. Environmental Monitoring and Assessment. 185 (2), 1515-1540. https://doi.org/10.1007/s10661-012-2648-3
  20. Hajibabaei, M., Shhokralla, S., Zhou, X., Singer, G.A.C. & Baird, D.J. (2011). Environmental barcoding: A next-Generation sequencing approach for biomonitoring applications using river benthos.PLoS ONE . 4 (6),1-7.https://doi.org/10.1371/journal.pone.0017497
  21. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics ,23 (4), 167-172. https://doi.org/10.1016/j.tig.2007.02.001
  22. Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003). Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species.Proceedings of the Royal Society B:Biological Sciences . 270, Suppl 1: S96-S99. https://doi.org/10.1098/rsbl.2003.0025
  23. Helson, J.E. & Willians, D.D. (2013). Development of a macroinvertebrates multimetric index for the assessment of low-land streams in the neotropics. Ecological Indicators . 29 , 167-178. https://doi.org/10.1016/j.ecolind.2012.12.030
  24. Hernandez-Triana, L. M., Prosser, S. W., Rodriguez-Perez, M. A., Chaverri, L. G., Hebert, P. D. N., & Gregory, T. R. (2014). Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths.Molecular ecology resources, 14 (3), 508-518. https://doi.org/10.1111/1755-0998.12208
  25. Hao, J. , Zhang, X. , Wang, Y. , Liu, J. , Zhi, Y. , & Li, X.(2017). Diversity investigation and application of DNA barcoding of Acridoidea from Baiyangdian Wetland, Biodiversity Science, 25 (4), 409-417. https://doi.org/10.17520/biods.2016331
  26. Hawlitschek, O. , J. Morinière, Lehmann, G. U. C. , Lehmann, A. W. , & Haszprunar, G. (2017). DNA barcoding of crickets, katydids, and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany, and Switzerland. Molecular Ecology Resources, 17 (5), 1037-1053. https://doi.org/10.1111/1755-0998.12638
  27. (17) (PDF) The importance of validated alpha taxonomy for phylogenetic and DNA barcoding studies: a comment on species identification of pygmy grasshoppers (Orthoptera, Tetrigidae). Available from: https://www.researchgate.net/publication/317550152_The_importance_of_validated_alpha_taxonomy_for_phylogenetic_and_DNA_barcoding_studies_a_comment_on_species_identification_of_pygmy_grasshoppers_Orthoptera_Tetrigidae [accessed Jan 03 2019].
  28. Huang, Z.H. & Ke, D.H. (2015). DNA barcoding and phylogenetic relationships in Timaliidae. Genetics & Molecular Research Gmr , 14 (2), 5943-5949. https://doi.org/10.4238/2015.June.1.11
  29. Huang, L., Que, H., Chen, C., Kuang, X., & Xue, F. (2012). Variation of mtDNA COI sequences in different geographic populations of the Asian corn borer, Ostrinia furnacalis. Chinese Journal of Applied Entomology , 49 (6), 1508-1512.
  30. Hunter, S.J., Goodall, T.I., Walsh, K.A., Owen, R. & Day, J.C. (2008). Nondestructive DNA extraction from blackflies (Diptera: Simuliidae): retaining voucher specimens for DNA barcoding projects,Molecular Ecology Resources ,8 (1), 56-61. https://doi.org/10.1111/j.1471-8286.2007.01879.x
  31. Jun, Y. C., Won, D. H., Lee, S. H., Kong, D. S., & Hwang, S. J.. (2012). A Multimetric Benthic Macroinvertebrates Index for the Assessment of Stream Biotic Integrity in Korea. International Journal of Environmental Research and Public Health , 9 (10), 3599-3628. https://doi.org/10.3390/ijerph9103599
  32. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution . 1 6(2), 111-120. https://doi.org/10.1007/BF01731581
  33. Sekine, K., Bayartogtokh, B., & Bae, Y. J. (2017). Post-glacial distribution of a Mongolian mayfly inferred from population genetic analysis. Freshwater Biology . 62 (1), 102-110. https://doi.org/10.1111/fwb.12853
  34. Kjaerstad, et al. (2012). A review of the Ephemeroptera of Finnmark - DNA barcodes identify Holarctic relations. Norwegian Journal of Entomology.59 (2), 182-195.
  35. Kress, W.J. & Erickson, D.L. DNA Barcodes. (Humana, 2012)
  36. Liu, K.H., Pan, X., Xie L.X. (2002). Present condition of water quality about Irtysh river. Northwest Water Resources & Water Engineer . 13 (1), 46-49.
  37. Macher, J. N., Salis, R. K., Blakemore, K. S., Tollrian, R., Matthaei, C. D., & Leese, F. (2016). Multiple-stressor effects on stream invertebrates: DNA barcoding reveals contrasting responses of cryptic mayfly species. Ecological Indicators . 61 , 159–169. https://doi.org/0.1016/j.scitotenv.2018.05.052
  38. Pfenninger, M., Nowak, C., Kley, C., Steinke, D. & Streit, B. (2007). Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology . 16 , 1957–1968. https://doi.org/10.1111/j.1365-294X.2006.03136.x
  39. Ratnasingham, S. & Hebert P.D.N. (2007). BOLD: the Barcode of Life Data System (www.barcodinglife.org).Molecular Ecology Notes . 7 (3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678
  40. Raupach, M. J. , Hendrich, L. , Küchler, Stefan M., Deister, F. , Morinière, Jérome, & Gossner, M. M. (2014). Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises. PLoS ONE . 9 (9). https://doi.org/10.1371/journal.pone.0106940
  41. Ren, M.L., et al . Fisheries resources and fishery of the ertixhe river in China. (Xinjiang Science and Health Press, 2002).
  42. Resh, V. (1995). Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebratess. Austral Ecology. . 20 , 108-112. https://doi.org/10.1111/j.1442-9993.1995.tb00525.x
  43. Morse, J.C., Yang, L.F., Tian, L.X. (1994). Aquatic Insects of China Useful For Monitoring Water Quality. 92-102.
  44. Satiou, N. & Nei, M.(1987). The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 , 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  45. Schmid-Egger, C., et al. (2017). vision of the West Palaearctic Polistes Latreille, with the descriptions of two species - an integrative approach using morphology and DNA barcodes (Hymenoptera, Vespidae). Zookeys. 713, 53-112. https://doi.org/10.3897/zookeys.713.11335
  46. Sivaramakrishnan, K.G., Janarthanan, S, Selvakumar C & Arumugam, M. (2014). Aquatic insect conservation: a molecular genetic approach.Conservation Genetics Resources . 6 (4), 849-855. https://doi.org/10.1007/s12686-014-0250-4
  47. Ivanov, V., Lee, K. M., & Mutanen, M. (2018). Mitonuclear discordance in wolf spiders: genomic evidence for species integrity and introgression. Molecular Ecology , 27 (7), 1681-1695. https://doi.org/ 10.1111/mec.14564
  48. Stahls, G. & Savolainen, E. (2008). MtDNA COI barcodes reveal cryptic diversity in the Baetis vernus group (Ephemeroptera, Baetidae).Molecular Phylogenetics & Evolution. 46 (1), 82-87. https://doi.org/10.1016/j.ympev.2007.09.009
  49. Stein, E.D., et al .(2014). Does DNA barcoding improve performance of traditional stream bioassessment metrics?Freshwater Science. 33 (1):302-311. https://doi.org/10.1086/674782
  50. Sweeney, B. W. , Battle, J. M. , Jackson, J. K. , & Dapkey, T. (2011). Can DNA barcodes of stream macroinvertebratess improve descriptions of community structure and water quality? Journal of the North American Benthological Society , 30 (1), 195-216. https://doi.org/10.1899/10-016.1
  51. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Molecular Biology and Evolution . 30 (12): 2725-2729. https://doi.org/10.1093/molbev/mst197
  52. Tan, Y.L. (2011). Study on Benthic ecology in the e-er-qi-si river basin and the adjacen inland river basin. Shanghai ocean university.
  53. Wang, B.X. (2003). Water quality bioassessment using benthic macroinvertebratess. Nanjing Agriculture University.
  54. Wang, B.X., Yang, L.F. & Liu, Z.W. (2006). Index of biological integrity and its application in health assessment of aquatic ecosystem. Chinese Journal of Ecology. 25(6), 707-710.
  55. Wang, J., Zhou, Q., Xie C.X., Li, J. & Wei, L.L. (2014). The community structure of macroinvertebrates and biological assessment of water quality inthe Irtysh River of Xinjiang. Chinese Journal of Ecology . 33(9), 2420-2428.
  56. Wang,S. J . (2010). A complete book of rivers and lakes in Xinjiang, China . Beijing, WaterPower Press.
  57. Wong, W. H. , Tay, Y. C. , Puniamoorthy, J. , Balke, M. , Cranston, P. S. , & Meier, R. (2014). Direct PCR’ optimization yields a rapid, cost-effective, nondestructive and efficient method for obtaining DNA barcodes without DNA extraction. Molecular Ecology Resources ,14 (6), 1271-1280. https://doi.org/10.1111/1755-0998.12275
  58. Yang, F., Shi, Z.Y., Bai, S., Ward, R.D. & Zhang, A.B. (2014). Comparative studies on species identification of Noctuoidea moths in two nature reserve conservation zones (Beijing, China) using DNA barcodes and thin-film biosensor chips, Molecular Ecology Resources , 14 (1), 50-59. https://doi.org/10.1111/1755-0998.12165
  59. Zhou, C.F. (2002). A Taxonomic study on Mayflies from Mainland China (Insecta: Ephemeroptera). Naikai University. 44-45.
  60. Zhang, F., Zhang, M., Liu, Z., Chen, H., & Qi, S. (2011). A health assessment using a benthic-index of integrity in Ganjiang River basin.Acta hydroiologica sinica . 35(6), 963-971.
  61. Zhou, X., Jacobus, L.M., DeWalt, R.E., Adamowicz, S.J. & Hebert, P.D.N. (2010). Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): insights into biodiversity patterns from DNA barcoding, Journal of the North American Benthological Society. 29 (3), 814-837. https://doi.org/10.1899/09-121.1
  62. Zhou, X., Kjer, K.M. & Morse, J.C. (2007). Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta:Trichoptera) using DNA sequences, Journal of the North American Benthological Society. 26 (4), 719–742. https://doi.org/10.1899/06-089.1
  63. Zhou, X., Adamowicz, A.J., Jacobus, L.M., DeWalt, R.E. & Hebert, P.D.N. (2009a). Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Frontiers in Zoology . 6 (1), 30-30. https://doi.org/10.1186/1742-9994-6-30
  64. Zhou, X., Robinson, J. L., Geraci, C. J., Parker, C. R., Flint, O. S., Jr., Etnier, D. A., . . . Hebert, P. D. N. (2011). Accelerated construction of a regional DNA-barcode reference library: caddisflies (Trichoptera) in the Great Smoky Mountains National Park.Journal of the North American Benthological Society , 30(1):131–162. https://doi.org/10.1899/10-010.1
  65. Zhou, X. (2009b). The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part I: Arctopsyche shimianensis ,Parapsyche sp. A and Diplectrona obscura . Zootaxa. 2174 (2174), 1–17. https://doi.org/10.1002/cne.22076
  66. Zou, S.M., Li, Q., Kong, L.F., Yu, H. & Zheng, X.D. (2011). Comparing the Usefulness of Distance, Monophyly and Character-Based DNA Barcoding Methods in Species Identification: A Case Study of Neogastropoda. PLOS ONE . 6 (10). https://doi.org/10.1371/journal.pone.0026619
Figure captions
Fig. 1 Sketch map showing the sampling locations of benthic macroinvertebrates in the four transboundary rivers of northwest China. Solid black circles and solid black line represent the sampling sites of benthic macroinvertebrates and the border among different countries, respectively. The blue line in the middle of the map represents the rivers and their main branches (a: Irtysh River, b: Emin River, c: Bortala River and d: Ili River). Grey areas represent the lakes that link these transboundary rivers.
Fig. 2 The distribution histograms of mean intra-specific distance and the distance to nearest neighbor based on Kimura 2-parameter distance.
Fig. 3 Barcode gap plot showing the distance to the nearest neighbor (NN) vs. the maximum intraspecific distance Kimura 2-parameter (K2P) for 189 species. Dots above the 1:1 line indicate the presence of a barcode gap.
Fig. 4 The neighbor-joining trees of 189 macroinvertebrate species (A), Ephemeroptera (B), Plecoptera (C), Trichoptera (D), Hemiptera (E), Annelida (F), Coleoptera (G), Odonata (H), Mollusca (I) and Diptera (J) based on K2P distance.
Fig. 5 Box diagram of phylogenetic diversity (PD) at the reference and disturbance sites.