References
  1. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. Covid-19 Does Not Lead to a ”Typical” Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med, 201(10)(2020), pp. 1299-1300, 10.1164/rccm.202003-0817LE
  2. Reynolds AS, Lee AG, Renz J, DeSantis K, Liang J, Powell CA, et al. Pulmonary Vascular Dilatation Detected by Automated Transcranial Doppler in COVID-19 Pneumonia. Am J Respir Crit Care Med, 202(7)(2020), pp. 1037-1039, 10.1164/rccm.202006-2219LE
  3. Brito-Azevedo A, Pinto EC, Corrêa GAdCP, Bouskela E. SARS-CoV-2 infection causes pulmonary shunt by vasodilatation. J Med Virol, (2020), 10.1002/jmv.26342
  4. Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 2020; 9: e59177. Published 2020 Jul 7. doi:10.7554/eLife.59177
  5. Golias Ch, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system–bradykinin: biological effects and clinical implications. Multiple role of the kinin system–bradykinin. Hippokratia, 11(3)(2007), pp. 124-128.
  6. Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect Dis, 5(11)(2005), pp. 718-725, doi: 10.1016/S1473-3099(05)70270-X
  7. Wang Y, Chen J, Chen W, Liu L, Dong M, Ji J, Hu D, Zhang N. Does Asthma Increase the Mortality of Patients with COVID-19?: A Systematic Review and Meta-Analysis. Int Arch Allergy Immunol, 182(1)(2021), pp. 76-82, doi: 10.1159/000510953
  8. El-Anwar MW, Elzayat S, Fouad YA. ENT manifestation in COVID-19 patients. Auris Nasus Larynx, 47(4)(2020), pp. 559-564, doi: 10.1016/j.anl.2020.06.003
  9. Chiumello, D., Busana, M., Coppola, S. et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med, 46(2020), pp. 2187-2196, https://doi.org/10.1007/s00134-020-06281-2
  10. Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med, 46(7)(2020), pp. 1494-1495, doi: 10.1007/s00134-020-06083-6
  11. Jain A, Doyle DJ, Mangal R. “Mosaic Perfusion Pattern” on Dual-Energy CT in COVID-19 Pneumonia: Pulmonary Vasoplegia or Vasoconstriction?. Radiol Cardiothorac Imaging, 2(5)(2020), e200433, doi:10.1148/ryct.2020200433
  12. Lovering AT, Riemer RK, Thébaud B. Intrapulmonary arteriovenous anastomoses. Physiological, pathophysiological, or both?. Ann Am Thorac Soc, 10(5)(2013), pp. 504-508, doi:10.1513/AnnalsATS.201308-265ED
  13. Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med, 174(10)(2006), pp. 1132-1138, doi: 10.1164/rccm.200606-780OC
  14. Krowka MJ, Dickson ER, Cortese DA. Hepatopulmonary syndrome. Clinical observations and lack of therapeutic response to somatostatin analogue. Chest, 104(4)(1993), pp. 515-521, doi: 10.1378/chest.104.2.515
  15. Das A, Saffaran S, Chikhani M, Scott TE, Laviola M, Yehya N, et al. In Silico Modeling of Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: Pathophysiologic Insights and Potential Management Implications. Critical Care Explorations, 2(9)(2020), p. e0202, https://doi.org/10.1097/CCE.0000000000000202
  16. Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun, 11(2020), p. 4883, https://doi.org/10.1038/s41467-020-18672-6
  17. Searles CD, Harrison DG. The interaction of nitric oxide, bradykinin, and the angiotensin II type 2 receptor: lessons learned from transgenic mice. J Clin Invest, 104(8)(1999), pp. 1013-1014.
  18. Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P, Catravas JD, Dafni UG, Langleben D, Roussos C. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation, 102(16)(2000), pp. 2011-2018, doi: 10.1161/01.cir.102.16.2011
  19. Idell S, Kueppers F, Lippmann M, Rosen H, Niederman M, Fein A. Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest, 91(1)(1987), pp. 52-56, doi: 10.1378/chest.91.1.52
  20. Zhu, Z., Cai, T., Fan, L. et al. The potential role of serum angiotensin-converting enzyme in coronavirus disease 2019. BMC Infect Dis, 20(2020), p. 883, https://doi.org/10.1186/s12879-020-05619-x
  21. Yilin Z, Yandong N, Faguang J. Role of angiotensin-converting enzyme (ACE) and ACE2 in a rat model of smoke inhalation induced acute respiratory distress syndrome. Burns, 41(7)(2015). pp. 1468-77, doi.org/10.1016/j.burns.2015.04.010.
  22. Ohkubo K, Lee CH, Baraniuk JN, Merida M, Hausfeld JN, Kaliner MA. Angiotensin-converting enzyme in the human nasal mucosa. Am J Respir Cell Mol Biol, 11(2)(1994), pp. 173-80, 10.1165/ajrcmb.11.2.8049077
  23. Bodro M, Compta Y, Llansó L, Esteller D, Doncel-Moriano A, Mesa A, et al. Increased CSF levels of IL-1β, IL-6, and ACE in SARS-CoV-2-associated encephalitis. Neurol Neuroimmunol Neuroinflamm, 7(2020), e821. doi:10.1212/NXI.0000000000000821
  24. Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, et al. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol 2001; 115: 1171124. https://doi.org/10.1007/s004180000235
  25. Mandel MJ, Sapirstein LA. Effect of angiotensin infusion on regional blood flow and regional vascular resistance in the rat. Circ Res, 10(1962), pp. 807-16, doi: 10.1161/01.res.10.5.807
  26. Iwamoto HS, Rudolph AM. Effects of angiotensin II on the blood flow and its distribution in fetal lambs. Circ Res, 48(2)(1981), pp. 183-189, doi: 10.1161/01.res.48.2.183
  27. Zhao X, Li X, Trusa S, Olson SC. Angiotensin type 1 receptor is linked to inhibition of nitric oxide production in pulmonary endothelial cells. Regul Pept 2005; 132: 113-122.
  28. Hansen TN, Le Blanc AL, Gest AL. Hypoxia and angiotensin II infusion redistribute lung blood flow in lambs. J Appl Physiol, 58(3)(1985), pp. 812-818, https://doi.org/10.1152/jappl.1985.58.3.812
  29. Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, et al. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39: BSR20181994. Published 2019 Sep 3. doi:10.1042/BSR20181994
  30. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 63(3)(2020), pp. 364-374, doi: 10.1007/s11427-020-1643-8
  31. Zoufaly A, Poglitsch M, Aberle JH, Hoepler W, Seitz T, Traugott M, et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir Med, 8(11)(2020), pp. 1154-1158, doi: 10.1016/S2213-2600(20)30418-5
  32. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease. Crit Care Med 2020. https://doi.org/10.1097/CCM.0000000000004386
  33. Vodoz JF, Cottin V, Glérant JC, Derumeaux G, Khouatra C, Blanchet AS et al. Right-to-left shunt with hypoxemia in pulmonary hypertension. BMC Cardiovasc Disord, 9(2009), p.15, doi: 10.1186/1471-2261-9-15
  34. Szekely Y, Lichter Y, Taieb P, Bani A, Hochstadt A, Merdler I. The Spectrum of Cardiac Manifestations in Coronavirus Disease 2019 (COVID-19) - A Systematic Echocardiographic Study. Circulation, 142(4)(2020), pp. 342-353, doi: 10.1161/CIRCULATIONAHA.120.047971
  35. Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M, Beddings I. COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit Care, 24(1)(2020), pp. 395-399, doi.org/10.1186/s13054-020-03125-9
  36. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA, 324(13)(2020), pp. 1330-1341, doi: 10.1001/jama.2020.17023
  37. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost, 18(5)(2020), pp. 1094-1099, doi: 10.1111/jth.14817
  38. Longobardo A, Montanari C, Shulman R, Benhalim S, Singer M, Arulkumaran N. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome. Br J Anaesth, 126(1)(2021), e44-e46, doi: 10.1016/j.bja.2020.10.011
  39. Garfield B, McFadyen C, Briar C, Bleakley C, Vlachou A, Baldwin M, et al. Potential for personalised application of inhaled nitric oxide in COVID-19 pneumonia. Br J Anaesth, 126(2)(2021), e72-e75, doi: 10.1016/j.bja.2020.11.006
  40. Yan F, Huang F, Xu J, Yang P, Qin Y, Lv J, et al. Antihypertensive drugs are associated with reduced fatal outcomes and improved clinical characteristics in elderly COVID-19 patients. Cell Discov, 6(2020), p. 77, doi: 10.1038/s41421-020-00221-6