References
[1] Chen A, Zhang WF, Dong DK, Gong YZ (2020). Fatigue Behavior of Friction Stir Welded Lap Joints for Dissimilar AA7150-AA2524 Aluminum Alloy. IOP Conf. Series: Materials Science and Engineering 751: 1-7.
[2] Li Y, Murr L E, McClure J C (1999). Solid-state Flow Visualization in the Friction-stir Welding of 2024 Al to 6061 Al.Scripta Materialia , 40(9):1041–1046.
[3] Sarsilmaza F, Caydas U, Hascalik A, Tanriover L (2010). The joint properties of dissimilar aluminum plates joined by friction stir welding. International journal of materials research, 101 (5): 692–699.
[4] Msomi V, Mbana N (2020). Mechanical properties of friction stir welded AA1050-H14 and AA5083-H111 joint: sampling aspect. Metals 10(214):1-17
[5] Chaudhari R, Parekh R, Ingle A (2014). Reliability of Dissimilar Metal Joints using Fusion Welding: A Review. International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME’2014) Jan. 8-9, 2014 Dubai (UAE) : 98–104.
[6] Rambabu G, Naik DB, Rao CHV, Rao KS, Reddy GM (2015). Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defence Technology. 11: 330–337.
[7] Mofid MA, Abdollah-Zadeh A, Gürza CH (2014). Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen. International Journal of Advanced Manufacturing Technology 71: 1493–1499.
[8] Mishra RS, Ma ZY, Charit I (2003). Friction stir processing: a novel technique for fabrication of surface composite. Materials science and engineering A 34: 307-310.
[9] Senthilkumar R, Prakash M, Arun N, Jeyakumar AA (2019). The effect of the number of passes in friction stir processing of aluminum alloy (AA6082) and its failure analysis. Applied Surface Science 491:420–431.
[10] Abraham R, Mikhail J, Fasihi P (2019). Effect of friction stir process parameters on the mechanical properties of 5005-H34 and 7075-T651 aluminium alloys. Materials Science and Engineering: A 751:363–373.
[11] Mehdi H, R.S. Mishra. Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Defence Technology. Inpress.https://doi.org/10.1016/j.dt.2020.04.014
[12] Palani K, Elanchezhian C, Avinash K, Karthik C, Chaitanya K, Sivanur K, Reddy KY (2018). Influence of friction stir processing parameters on tensile properties and microstructure of dissimilar AA 8011-H24 and AA 6061-T6 aluminum alloy joints in nugget zone. IOP Conference Series: Materials Science and Engineering 390: 012108. doi:10.1088/1757-899X/390/1/012108
[13] Silva J, Costa JM, Loureiro A, Ferreira JM (2013). Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing, Materials Design. 51: 315–322.
[14] El-Morsy AW, Ghanem M, Bahaitham H (2018). Effect of Friction StirWelding Parameters on the Microstructure and Mechanical Properties of AA2024-T4 Aluminum Alloy. Engineering, Technology and Applied Science Research 8: 2493–2498.
[15] Susmel L, Hattingh DG, James MN, Tovo R(2017). Multiaxial fatigue assessment of friction stir welded tubular joints of Al 6082-T6. International Journal of Fatigue 101: 282–296.
[16] Sun Y, Voyiadjis GZ, Hu W, Shen F, Meng Q (2017). Fatigue and fretting fatigue life prediction of double-lap bolted joints using continuum damage mechanics-based approach. International Journal of Damage Mechanics 6: 162–188.
[17] Eslami S, Farahani BV, Tavares PJ, Moreira PMGP (2018). Fatigue behaviour evaluation of dissimilar polymer joints: Friction stir welded, single and double-rivets. International Journal of Fatigue 113: 351–358.
[18] Hussein W , Al-Shammari MA (2018). Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy. IOP Conference Series: Materials Science and Engineering 454 012055. doi:10.1088/1757-899X/454/1/012055.
[19] Uematsu Y, Tokaji K (2010). Fatigue Behaviour of Friction Stir Processed Cast Aluminium and Magnesium Alloys, Materials Science Forum 638-642: 3727-3732.
[20] Park JU, An G, Kim H, Choi J (2014). Development of Fatigue Life Improvement Technology of Butt Joints Using Friction Stir Processing, Advances in Mechanical Engineering 2014( 943476): 1-14
21. Yamamoto H, Ito K (2018). Effects of Microstructural Modification Using Friction Stir Processing on Fatigue Strength of Butt-Welded Joints for High-Strength Steels. Materials Sciences and Applications 9: 625-636.
[22] Bharti A, Tripathi H (2019). Enhancement of Fatigue Life of TIG-Welded Joint by Friction Stir Processing. In: Chattopadhyay J., Singh R., Prakash O. (eds) Renewable Energy and its Innovative Technologies. Springer, Singapore
[23] Selvaraj G, Karthikeyan T, Mohanadass R, Indhumath S (2015). Investigation on mechanical properties of welded aluminium joints of aa 8011 using friction stir welding. International Journal of Applied Engineering Research 10(13): 11095-11100.
[24] Braga DFO, de Sousa LMC, Infante V, da Silva LFM, Moreira PMG (2016). Aluminium Friction Stir Weld-bonded Joints. The Journal of Adhesion 92(7-9): 665-678.
[25] Mabuwa S, Msomi V (2019). The effect of friction stir processing on the friction stir welded AA1050-H14 and AA6082-T6 joints.Materials Today: Proceedings. Inpress.https://doi.org/10.1016/j.matpr.2019.10.039.
[26] Gandra J, Miranda R, Vilaça P, Velhinho A, Teixeira JP (2011). Functionally graded materials produced by friction stir processing. Journal of Materials Processing Technology 211(11): 1659–1668.
[27] Scialpi A, de Giorgi M, de Filippis LAC, Nobile R, Panella FW (2008). Mechanical analysis of ultra-thin FSW joined sheets with dissimilar and similar materials. Materials and Design 29: 928−36.
[28] Moreira PMGP, Santos T, Tavares SMO, Richter- Trummer V, Vilaça P, DE Castro PMST (2009). Mechanical and metallurgical characterization of friction stir welding joints of AA6061−T6 with AA6082−T6. Materials and Design 30: 180−187.
[29] Ilangovan M, Boopathy SR, Balasubramanian V (2015). Microstructure and tensile properties of friction stir welded dissimilar AA6061-AA5086 aluminium alloy joints. Transactions on Nonferrous Meterial Society China 25:1080-1090.
[30] Cavaliere P, Panella F (2008). Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding. Journal of Material Processing Technology 206:249–255.
[31] Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014).Microstructural and mechanical properties of dissimilar friction stir welds between AA6082-T6 and AA7075-T651. Material Design 56 185–192.
[32] Sadeesh P, Kannan V M, Rajkumar V, Avinash P, Arivazhagan N, Ramkumar K, Narayanan S (2014). Studies on Friction Stir Welding of AA 2024 and AA 6061 Dissimilar Metals. Procedia Engineering 75: 145–149.
[33] Simar A, Jonckheere C, Deplus K, Pardoen T, de Meester B (2010). Comparing similar and dissimilar friction stir welds of 2017-6005 aluminium alloys. Science and Technology of Welding & Joining 15(3):254-259
[34] Robe H, Zedan Y, Chen J, Feulvarch E, Bocher P (2015). Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3. Material Characterization 110:242-251.
[35] Murr LE (2010). A review of FSW research on dissimilar metal and alloy systems. Journal Materials Engineering and Performance 19: 1071–1089.
[36] Devireddy K, Devuri V, Cheepu MM, Kumar BK (2018). Analysis of the Influence of Friction Stir Processing on Gas Tungsten Arc Welding of 2024 Auminum Alloy Weld Zone. International Journal of Mechanical and Production Engineering Research and Development 8(1):243-252.
[37] Kumar G, Kumar R (2020). Optimization of process parameters of friction stir welded AA5082-AA7075 butt joints using resonance fatigue properties. Bulletin Of The Polish Academy OF Sciences Technical Sciences 68(1): 99-108.
[38] Li H, Gao J, Li Q (2018). Fatigue of friction stirwelded aluminum alloy joints: a review. Applied Science 8(2626):1-19.
[39] Infante V, Braga DFO, Duarte F, Moreira PMG, de Freitas M, de Castro PMST (2015). Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding. International Journal Fatigue 82(2):310-316.
[40] Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L (2016). Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Materials Science and Engineering: A 654: 236–248.
[41] Song SW, Kim BC, Yoon TJ, Kim NK, Kim IB, Kang CY (2010). Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW. Materials Transactions 51 (7): 1319–1325.
[42] Abbasi S, Esmailian M, Ahangarani S (2018). Investigation of the microstructure, micro-texture and mechanical properties of the HSLA steel, hot-rolled and quenched at different cooling rates. Metallography, Microstructure, and Analysis (7):596–607.
[43] Theocaris PS (1986). Yield criteria based on void coalescence mechanisms. International Journal of Solids and Structures 22(4) 445-466.