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Abstract 10 

Coral reefs are losing coral cover across the globe largely as a result of a rise in seawater 11 

temperatures that trigger coral bleaching and induce coral mortality. How coral reefs will respond 12 

to climate change will be a function of genetic variation and how it is partitioned among species. 13 

A critical initial step is to accurately delineate species and quantify their physiological potential 14 

to cope with heat stress. Cryptic species, morphologically indistinguishable but genetically 15 

different ones, typically harbor distinct physiological variation and respond differently to climatic 16 

changes. A dominant Caribbean reef builder severely affected by climate change is the 17 

mountainous star coral, Orbicella faveolata. Recently, Dziedzic et al. (2019) reported genetic 18 

variation in the physiological response to thermal stress in a single population of this species, 19 

suggesting that variation within populations will allow these corals to adapt to rising ocean 20 

temperatures. We reanalyzed their data and found multiple cryptic lineages rather than a single 21 

panmictic population, with only one of the lineages being heat-tolerant. Our finding of hidden 22 

lineages within a threatened species highlights the varying extinction risks faced by these 23 

independently evolving groups, especially when the prospects of survival under warmer oceans 24 

seem favorable for a few of them only. 25 
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Introduction 28 

Rising seawater temperatures are bleaching corals and decimating reefs world-wide 29 

(Hughes et al., 2018; Smale et al., 2019). How reef ecosystems will respond to warmer oceans 30 

will be a function of genetic variation and how it is segregated among populations and 31 

communities. A critical priority is to understand differences in physiological tolerance among 32 

populations to identify the functional diversity within and among species available to cope with 33 

warmer oceans (Edmunds et al., 2014; van Woesik, Sakai, Ganase, & Loya, 2011). To understand 34 

how reef species will fare under warmer oceans and design successful management strategies, it 35 

is critical to accurately delineate species (or independently evolving lineages) as it will allow us 36 

to 1) study the physiological significance of genetically distinct but morphologically similar 37 

groups within species complexes, 2) properly estimate the relative abundance of each cryptic 38 

species, and 3) accurately quantify population sizes, genetic connectivity among populations, and 39 

establish whether many cryptic lineages drive ecosystem-level changes with narrow distributions 40 

or a few species with independent demographics. 41 

The potential for cryptic species, morphologically indistinguishable yet genetically 42 

distinct groups (Bickford et al., 2007; Knowlton, 1993), remains an overlooked aspect of coral 43 

reef biology, even within common reef dwellers (Prada et al. 2008; Prada & Hellberg 2013; Prada 44 

et al., 2014; Rosser, 2015; Warner, van Oppen, & Willis, 2015). Such hidden taxonomic diversity 45 

frequently harbors distinct physiological variation and allows cryptic lineages to occupy different 46 

habitats and respond differently to climatic variations (Struck et al., 2018). Failure to recognize 47 

the different susceptibilities of cryptic species to climate change stressors can underestimate 48 

threats to local populations, and ultimately to entire ecosystems (Fišer, Robinson, & Malard, 49 
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2018). Therefore, uncovering cryptic diversity stands as a major research priority to account for 50 

ecosystem dynamics and forecasting future states (Bálint et al., 2011). The advent of genome-51 

wide data has facilitated the detection of such diversity, a task thus far not always achievable with 52 

traditional molecular markers alone (Leaché & Oaks, 2017). 53 

 54 

A key Caribbean reef builder severely affected by climate change is the mountainous star 55 

coral, Orbicella faveolata. Currently placed under threatened status (NOAA & NMFS, 2014), 56 

this massive coral has served as a model species for numerous physiological studies across the 57 

Caribbean (Colombo-Pallotta, Rodríguez-Román, & Iglesias-Prieto, 2010; DeSalvo et al., 2010) 58 

as well as for understanding the genetic basis of adaptation to warmer temperatures and bleaching 59 

(Manzello et al., 2018; Wright, Correa, Quigley, & Davies, 2019). A recent study (Dziedzic, 60 

Elder, Tavalire, & Meyer, 2019) found variation in the physiological response to thermal stress 61 

among individuals of O. faveolata across reefs in Bocas del Toro, Panama, which the authors 62 

interpreted as indicative of genetic variation within species to adapt to rising ocean temperatures. 63 

Here, we reanalyzed their data and find that their study is more consistent with the presence of 64 

multiple cryptic lineages (only one of which is heat-tolerant) rather than as a result of diversity 65 

within a single species.  66 

 67 

Materials and Methods 68 

To test whether genetic variation in O. faveolata from Bocas del Toro represents multiple 69 

cryptic lineages (rather than a single species), we carried out six analyses using the original data 70 

from (Dziedzic et al., 2019): 1) a Discriminant Analysis of Principal Components (DAPC), 2) a 71 
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Bayesian clustering method, 3) a neighbor joining (NJ) distance tree based on the UPGMA 72 

algorithm, 4) a species tree under the Bayesian multispecies coalescent framework of SNAPP, 5) 73 

a phylogenomic tree using the coalescent method SVDquartets, and 6) a Bayes factor 74 

contingency table to associate lineage assignment and bleaching tolerance scores.  75 

 76 

Multi-locus raw sequence data (SRA: BioProject PRJNA413258) from 39 samples was 77 

downloaded from the National Center for Biotechnology and Information (NCBI) server.  We 78 

mapped the data to a reference genome (Prada et al., 2016) and scored 383,160 Single Nucleotide 79 

Polymorphysms (SNP) following the dDocent pipeline (Puritz, Hollenbeck, & Gold, 2014).  We 80 

removed all indels, retaining only biallelic SNPs that were genotyped in at least 70% of 81 

individuals, had a minor allele frequency of 0.05, and a minimum coverage of 5x. To reduce 82 

linkage disequlibrium, we kept only SNPs at least 1,000 bp apart.  Remaining loci were screened 83 

for statistical outliers potentially under strong selection using BayeScan (Foll, 2012). Our final 84 

dataset consisted of 3,560 high-confidence SNPs. All filtering steps were done using VCFtools 85 

(Danecek et al., 2011). 86 

 87 

Initially we examined genome-wide variation through a DAPC using the R package 88 

ADEGENET (Jombart, 2008; Jombart, Devillard, & Balloux, 2010).  We estimated the number 89 

of clusters (from 1 to 8) using find.clusters in ADEGENET and selected the optimal number of 90 

groups along using a Bayesian Information Criterion (BIC) approach. To avoid overfitting, we 91 

used the optim.a.score function to determine the number of PC axes to be retained. We then used 92 

a Bayesian clustering method as implemented in STRUCTURE 2.3.4 (Pritchard, Stephens, & 93 
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Donnelly, 2000) to infer the number of genetic clusters (from 1 to 8) and potential admixture. 94 

Structure was performed on unlinked SNP datasets and run in parallel using StrAutoParallel v 1.0 95 

(Chhatre & Emerson, 2017) using an admixture model with correlated allele frequencies. Burnin 96 

was set to 250,000 followed by 500,000 MCMC generations.  We evaluated the optimal K in 97 

STRUCTURE HARVESTER (Earl, 2012) following Evanno, Regnaut, and Goudet (2005). 98 

Structure results were plotted in Structure Plot (Ramasamy, Ramasamy, Bindroo, & Naik, 2014).   99 

 100 

To further test for the presence of multiple cryptic lineages, we used a NJ tree based on 101 

the UPGMA algorithm using the pairwise genetic distance matrix of genotypes with the R 102 

package APE (Paradis & Schliep, 2019), with 1,000 bootstrap replicates to assess branch support. 103 

We then built a species tree under the Bayesian multispecies coalescent framework of SNAPP 104 

v1.3 (Bryant, Bouckaert, Felsenstein, Rosenberg, & Roy Choudhury, 2012) implemented in 105 

BEAST2 v2.5 (Bouckaert et al., 2018), with a path sampling of 24 steps (MCMC length = 106 

1.000,000, pre-burnin = 1,000). We excluded individuals with missing data and a dataset of 107 

unlinked biallelic SNPs, no outgroup, and the genetic-clustering results used for cluster 108 

assignments (Kornilios et al., 2019). Because SNAPP is computationally intensive (our analysis 109 

took one month), each group included only 3 individuals, for a total of 12 individuals. Marginal 110 

likelihood estimates were obtained for each different model run. Each species delimitation model 111 

was ranked by their marginal likelihood estimate following Leaché, Fujita, Minin, and Bouckaert 112 

(2014). Log files were combined using Log Combiner v 1.1 and input into Tracer v1.6 (Rambaut, 113 

Drummond, Xie, Baele, & Suchard, 2018). Convergence and ESS > 200 were assessed using 114 

Tracer after a 10% burnin. A maximum clade credibility tree was generated with Tree Annotator 115 
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v 2.3 (R. Bouckaert et al., 2018). Both the consensus tree and all tree topologies were drawn in 116 

DensiTree v2.2 (R. R. Bouckaert, 2010). Additionally, phylogenomic relationships among 117 

individuals were inferred under the coalescent method SVDquartets 1.0  (Chifman & Kubatko, 118 

2014) implemented in PAUP*  4.0b10 (Swofford, 2003). All possible quartets were evaluated 119 

with prior assignment, using all individuals, and non-parametric bootstrapping with 1,000 120 

replicates for branch support. iTOL was used for tree visualization and edition (Letunic & Bork, 121 

2016).  122 

 123 

Lastly, to test the null hypothesis of no difference in tolerance or susceptibility across 124 

cryptic lineages, we performed a contingency table Bayes factor test (Morey & Rouder, 2015) 125 

using the R package BayesFactor under an independent multinomial distribution, and estimated 126 

the difference in probability of colonies being tolerant or susceptible given their cryptic lineage. 127 

 128 

Results 129 

Our genetic clustering analyses based on bi-allelic and unlinked SNPs suggest the 130 

presence of three (STRUCTURE) or four (DAPC) genetic clusters (Figs. 1, 2, S1 and S2), 131 

henceforth referred to as PAN_1, PAN_2, PAN_3, and PAN_4. The NJ tree with all individual 132 

colonies recovered the same three divergent clades identified with Structure (PAN_1, PAN_3 and 133 

Pan_4), plus an extra well-supported clade within PAN_1 that corresponded to the individuals 134 

grouped as PAN_2 (Fig. 2).  135 

 136 
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The maximum clade credibility tree from SNAPP support four clades (Fig. 3A) according 137 

to the marginal likelihood estimate (Table S1). The SVDquartets tree with individuals as terminal 138 

branches was similar to the NJ tree (Fig. 2), favoring the relationships between PAN_1 with 139 

PAN_3, and PAN_2 with PAN_4, with the latter being highly supported by bootstrap iteration 140 

(Fig. 3B). 141 

 142 

Finally, to see whether cryptic variation correlates with variation in bleaching response, 143 

we used Bayes factors. We found that bleaching susceptibility, as reported in the original study 144 

(Fig 4), and genotypic group are 42.7 times (Fig S3.A and Table S2) more likely to be associated 145 

than not associated given the observed data. For instance, the difference in probability of PAN_2 146 

being more tolerant to bleaching than PAN_3 is greater than 0.8 (Fig S3.B). Moreover, algal 147 

symbiont genera partitioned differentially among the lineages (Fig S4). PAN_1 seems highly 148 

promiscuous associating with species from four genera:  Symbiodinium, Brevolium, 149 

Cladocopium, and Durusdinium, while the other lineages are mostly restricted to Durusdinium 150 

species.  151 

 152 
Discussion 153 

Our reanalysis of Dziedzic et al.’s data suggests that O. faveolata from Bocas del Toro 154 

Reefs is not a single cosmopolitan species but rather is composed of multiple cryptic lineages 155 

with independent evolutionary trajectories. Congruence among species delimitation methods 156 

suggests that four cryptic lineages coexist under the nominal species O. faveolata in this 157 

Caribbean region. Furthermore, thermal tolerance occurs in three of these lineages (PAN_1, 158 

PAN_2, and PAN_4), with one of them (PAN_2) being exclusively composed of heat-tolerant 159 
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colonies, while PAN_3 composed only of heat-sensitive ones. Remarkably, symbiont affinity in 160 

these four lineages exhibits dominance of the genus Durusdinium in three of them (PAN_2, 161 

PAN_3, and PAN_4). In contrast, only one lineage (PAN_1) presents a promiscuous association 162 

pattern of symbiosis and associates with species from four genera. 163 

 164 

Cryptic lineages and thermal tolerance 165 

The prevalence of heat-tolerant colonies within the PAN_1 and_PAN_2 lineages implies that, 166 

under recurrent or stronger bleaching events, the survival of less tolerant lineages will be severely 167 

compromised. Given the dramatic pace of the Caribbean reef decline, without a thorough 168 

appreciation of the cryptic species composing this pivotal ecosystem, silent diversity losses will 169 

take place as we grapple to capture and protect the true existing biological diversity (Richards, 170 

Berry, & van Oppen, 2016). Consequently, a deeper understanding of how cryptic coral lineages 171 

vary physiologically is critical to forecasting reef ecosystem composition and resilience. 172 

Ecosystem resilience to disturbances hinges not only on individual species trajectories but on the 173 

standing community composition under regional conditions and their temporal variability 174 

(Edmunds et al., 2014). Therefore, the disappearance of cryptic evolutionary lineages decreases 175 

evolutionary potential by disrupting current diversification processes that will impact future 176 

biodiversity (Bálint et al., 2011).  177 

As we increase our ability to delineate species using genomic data, we need to 178 

accommodate for the ensuing ecological implications this broader recognition of diversity will 179 

bring to our understating of species interactions, symbiotic relationships, physiological 180 

thresholds, and ecosystem integrity. Coral reefs’ future largely lies in their physiological response 181 
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to heat, which depends directly on their symbiotic algal counterpart. Therefore,  a potentially 182 

more restricted specificity among coral-algal symbioses, as it may be occurring in cryptic coral 183 

species, challenges our notions of the thermal tolerance corals can withstand under increasing 184 

warming sea surface temperatures (Thornhill, Lewis, Wham, & LaJeunesse, 2014). Although this 185 

poses an even bleaker scenario for coral reefs, it opens up an opportunity for more integrative 186 

studies that take into account cryptic diversity to define whether coral thermal tolerance is more 187 

or less widely distributed among the most common reef-builder species. Importantly, this would 188 

better inform conservation and management decisions because those species we thought of being 189 

cosmopolitan might be local or environmentally confined. Coral endangered species, such as O. 190 

faveolata, would be in even at greater peril as their population sizes must have been 191 

overestimated. 192 

 193 

The importance of delineating cryptic lineages to identify the genomic architecture to bleaching 194 

In O. faveolata, microsatellite loci suggest population connectivity at large spatial (> 195 

1,000 km) scales over its entire distribution ( Severance & Karl, 2006). A more recent study, 196 

however, found population structure among close reefs to be at odds with the predominant ocean 197 

circulation patterns in the area (Rippe et al., 2017).  This discrepancy might not only reflect 198 

inherently difficulties associated with the interpretation of these markers (Fukami, 2008) but may 199 

also suggest the presence of unrecognized diversity, as we have uncovered here. It remains to be 200 

seen whether the four lineages that we delineated here occur across the Caribbean and the Gulf of 201 

Mexico, or if they occur under specific habitats at smaller geographical scales (Prada et al. 2008). 202 

Similarly, other scleractinian corals exhibit fine genetic structuring along with restricted 203 
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geographic areas that are more consistent with the existence of cryptic lineages than within-204 

species genetic diversity (McFadden et al., 2017; Ohki, Kowalski, Kitanobo, & Morita, 2015; 205 

Richards et al., 2016; Warner et al., 2015). Therefore, accurate delimitation of species boundaries 206 

is crucial to quantify species diversity and elucidate biologically meaningful patterns of gene 207 

flow and dispersal among populations  (Prada & Hellberg, 2013; Wham & LaJeunesse, 2016). 208 

 209 

Likewise, genome-wide association studies (GWAS) when there is underlying cryptic 210 

diversity (stratification), fail to account for the non-independent distribution of the genetic 211 

variation,  which is constrained by the particular evolutionary history of each lineage (Sul, 212 

Martin, & Eskin, 2018). In this case, genetic variants found to be associated with thermal 213 

tolerance might have been unwarily conflated with cryptic lineages. We did not pursue a GWAS 214 

reanalysis because the small number of individuals composing each cryptic lineage would have 215 

further underpowered the inferences made from an already small sample size. 216 

 217 

Cryptic lineages and symbiotic relationships  218 

Highly specialized symbiotic relationships between genetically distinct hosts and their 219 

counterparts can underlie tight and long-lasting patterns of coevolution, reflecting unique 220 

prospects to withstand environmental fluctuations under particular environments, such as those 221 

projected under a climate change scenario (Voolstra et al., 2011). For hard corals, such specificity 222 

to engage in particular physiological and ecological interaction with their endosymbiotic algae 223 

translates directly into specific environmental thresholds given their dependence on symbiosis for 224 

energy acquisition (Ziegler, Eguíluz, Duarte, & Voolstra, 2018). Taxonomic revision of 225 
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symbiotic microalgae (Symbidinaceae) found in corals and other invertebrates has revealed that 226 

what it was once assumed to be a single panmictic species, it encompasses multiple genera and 227 

species with a more restricted suit of hosts (LaJeunesse et al., 2018). Whether what we 228 

considered as coral's potential for harboring diverse endosymbiotic communities might have 229 

reflected not only the taxonomic uncertainty on symbionts but also the existence of cryptic 230 

diversity among host coral species. Under this view and in light of our reanalysis, the original 231 

conclusion that O. faveolata could naturally harbor genetic variation to adapt to rising ocean 232 

temperatures (Dziedzic et al., 2019) could be a case in point of this richer diversity both on the 233 

coral host as well as its symbionts.  234 

 235 

Conclusions 236 

Accurately delineating species, even cryptic ones, is key for reef conservation and 237 

management because it allows us to accurately estimate the relative abundance and population 238 

sizes of these biological units. This, in turn, helps us understand patterns of gene flow to 239 

determine genetic connectivity among populations. Moreover, accurate detection and description 240 

of cryptic species enhance our ability to establish if ecosystem-level changes are driven by 241 

various cryptic lineages narrowly distributed, or instead by few species with overlapping or 242 

distinct demographics. 243 

 244 

Ultimately, whether coral populations can survive to the rapid increase in water 245 

temperature while maintaining ecosystem resilience, is still under heavy scrutiny. Given the 246 

current degradation experienced by coral reefs worldwide, the projected increases in 247 
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environmental variability, and regardless of the predominant mechanism that corals may have to 248 

cope with future changes, identifying evolutionary units of biological diversity is critical to 249 

consolidate conservation efforts. Failure to do so in either host or symbiont leads to an 250 

overestimation of the ecological and physiological ranges of individual species, undermining our 251 

view of how reefs will respond to rapidly changing conditions. 252 

  253 
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Tables and Figures  472 
 473 

 474 
Figure 1. Discriminant analysis of principal components (DAPC) (Optimal k = 4 and number of PCA = 475 
6). Note the full segregation of the data, suggestive of non-randomly reproducing groups. 476 
 477 

 478 
Figure 2. Neighbor Joining (NJ) tree using the pairwise genetic distance matrix (node numbers are 479 
bootstrap support values), depicting the groups inferred from the genetic clustering methods (dashed 480 
branches represent heat-tolerant samples). Hierarchical Bayesian population clustering with 481 
STRUCTURE depicting k = 3 (optimal) and k = 4. 482 
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 483 

 484 
Figure 3. A) Trees inferred from the Bayesian coalescence analysis of SNAPP (the congruent tree is in 485 
thick blue), B) SVDquartets tree from analysis in PAUP*. 486 
 487 

 488 
Figure 4.  Log-fold change (2−ddCt) algal symbiont abundance per colony using qPCR after four weeks of 489 
experimental conditions (Modified from Dziedzic et al., 2019). Colors denote the cryptic lineages 490 
uncovered in this study. 491 
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Supplementary material 493 
 494 

 495 
Figure S1. Value of Bayes information criterion versus number of clusters found in DAPC. 496 
 497 

 498 
Figure S2. Most probable number of clusters according to the value of Delta K in Structure. 499 
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 503 
 504 

No. 
Groups 

Marginal 
Likelihood Estimate 

Rank 

2 7292164.4623 3 
3 11303237.4275 2 
4 14163377.8363 1 

 505 
Table S1. Path sampling results for the four clusters delimitation models. 506 
 507 
 508 

Bleaching Genotypic group 

PAN_1 PAN_2 PAN_3 PAN_4 
Tolerant 3 4 0 1 

Susceptible 20 0 6 4 
 509 
Table S2. Frequencies for tolerant and susceptible colonies to bleaching according to their 510 
genotype group 511 
 512 
 513 
 514 

 515 
Figure S3. A) Bayes factor plot of contrasting hypothesis of non-association (H0) vs association 516 
(H1) between genotypic group and bleaching tolerance. B) Increase in probability of bleaching 517 
tolerance of genotypic group PAN_2 when compared to PAN_3. 518 
 519 
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 521 
 522 
Figure S4. Discriminant analysis of principal components (DAPC) as in Fig.1 but colored by 523 
symbiont genera, previously known as clades. 524 
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