Reference
Abbaszadeh, P., Moradkhani, H., Zhan, X. Downscaling SMAP radiometer
soil moisture over the CONUS using an ensemble learning method.Water Resour. Res. 2019, 55 , pp.324-344.
Babaeian, E., Sadeghi, M., Franz, T.E., et al. Mapping soil moisture
with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS
observations. Remote Sens. Environ. 2018, 211 , pp.425-440.
Bateni, S.M., Entekhabi, D. Relative efficiency of land surface energy
balance components. Water Resour. Res. 2012, 48 ,
pp.W04510.
Chauhan, N.S., Miller, S., Ardanuy, P. Spaceborne soil moisture
estimation at high resolution: a microwave-optical/IR synergistic
approach. Int. J. Remote Sens. 2003, 24 , pp.4599-4622.
Chen, S., She, D., Zhang, L., et al. Spatial Downscaling Methods of Soil
Moisture Based on Multisource Remote Sensing Data and Its Application.Water 2019, 11 , pp.1401.
Djamai, N., Magagi, R., Goïta, K., et al. A combination of DISPATCH
downscaling algorithm with CLASS land surface scheme for soil moisture
estimation at fine scale during cloudy days. Remote Sens.
Environ. 2016, 184 , pp.1-14.
Dobriyal, P., Qureshi, A., Badola, R., Hussain, S.A. A review of the
methods available for estimating soil moisture and its implications for
water resource management. J. Hydrol. 2012, 458-459 ,
pp.110-117.
Dorigo, W., Wagner, W., Albergel, C., et al. ESA CCI soil moisture for
improved earth system understanding: state-of-the art and future
directions. Remote Sens. Environ. 2017, 203 , pp.185-213.
Duan, S.B., Li, Z.L. Spatial downscaling of MODIS land surface
temperatures using geographically weighted regression: Case study in
northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54 ,
pp.6458-6469.
Ge, Y., Jin, Y., Stein, A., et al. Principles and methods of scaling
geospatial Earth science data. Earth Sci. Rev. 2019, 197 ,
pp.102897.
Gerber, F., De Jong, R., Schaepman, M.E., et al. Predicting missing
values in spatio-temporal remote sensing data. IEEE Trans. Geosci.
Remote Sens. 2018, 56 , pp.2841-2853.
Goovaerts, P. Kriging and semivariogram deconvolution in the presence of
irregular geographical units. Math. Geosci. 2008, 40 ,
pp.101-128.
Im, J., Park, S., Rhee, J., et al. Downscaling of AMSR-E soil moisture
with MODIS products using machine learning approaches. Environ.
Earth Sci. 2016, 75 , pp.1120.
Jin, Y., Ge, Y., Wang, J.H., et al. Downscaling AMSR-2 soil moisture
data with geographically weighted area-to-area regression kriging.IEEE Trans. Geosci. Remote Sens. 2018, 56 , pp.2362-2376.
Kaheil, Y.H., Gill, M.K., McKee, M., et al. Downscaling and assimilation
of surface soil moisture using ground truth measurements. IEEE
Trans. Geosci. Remote Sens. 2008, 46 , pp.1375-1384.
Kerkez, B., Glaser, S.D., Bales, R.C., Meadows, M.W. Design and
performance of a wireless sensor network for catchment‐scale snow and
soil moisture measurements. Water Resour. Res. 2012, 48 ,
pp.W09515.
Knipper, K.R., Hogue, T.S., Franz, K.J., Scott, R.L. Downscaling SMAP
and SMOS soil moisture with moderate-resolution imaging
spectroradiometer visible and infrared products over southern Arizona.Int. J. Remote Sens. 2017, 11 , pp.026021.
Krishnan, P., Black, T.A., Grant, N.J., et al. Impact of changing soil
moisture distribution on net ecosystem productivity of a boreal aspen
forest during and following drought. Agric. For. Meteorol. 2006,139 , pp.208-223.
Kyriakidis, P.C. A geostatistical framework for area-to-point spatial
interpolation. Geogr. Anal. 2004, 36 , pp.259-289.
Liu, Y., Yang, Y., Jing, W., Yue, X. Comparison of different machine
learning approaches for monthly satellite-based soil moisture
downscaling over Northeast China. Remote Sens. 2018, 10 ,
pp.31.
Malbéteau, Y., Merlin, O., Molero, B., et al. DisPATCh as a tool to
evaluate coarse-scale remotely sensed soil moisture using localized in
situ measurements: Application to SMOS and AMSR-E data in Southeastern
Australia. Int. J. Appl. Earth Obs. Geoinf. 2016, 45 ,
pp.221-234.
Meissner, T., Wentz, F.J., Vine, D.M.L. The salinity retrieval
algorithms for the NASA Aquarius version 5 and SMAP version 3 releases.Remote Sens. 2018, 10, pp.1121.
Merlin, O., Malbéteau, Y., Notfi, Y., et al. Performance metrics for
soil moisture downscaling methods: Application to DISPATCH data in
central Morocco. Remote Sens. 2015, 7 , pp.3783-3807.
Meyer, D., Dimitriadou, E., Hornik, K., et al. e1071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly:
E1071). TU Wien. R package version 1.7-3, 2015.
Mukherjee, S., Joshi, P.K., Garg, R.D. Regression-Kriging technique to
downscale satellite-derived land surface temperature in heterogeneous
agricultural landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2015, 8 , pp.1245-1250.
Njoku, E.G., Jackson, T.J., Lakshmi, V., et al. Soil moisture retrieval
from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41 ,
pp.215-229.
Parinussa, R.M., Wang, G., Holmes, T.R.H., et al. Global surface soil
moisture from the microwave radiation imager onboard the Fengyun-3b
satellite. Int. J. Remote Sens. 2014, 35 , pp.7007-7029.
Peng, J., Loew, A., Merlin, O., et al. A review of spatial downscaling
of satellite remotely sensed soil moisture. Rev. Geophys. 2017,55 , pp.341-366.
Petropoulos, G.P., Ireland, G., Barrett, B. Surface soil moisture
retrievals from remote sensing: current status, products & future
trends. Phys. Chem. Earth 2015, 83-84 , pp.36-56.
Piles, M., Entekhabi, D., Camps, A. A change detection algorithm for
retrieving high-resolution soil moisture from SMAP radar and radiometer
observations. IEEE Trans. Geosci. Remote Sens. 2009, 47 ,
pp.4125-4131.
Piles, M., Sánchez, N., Vall-llossera, M., et al. A downscaling approach
for SMOS land observations: Evaluation of high-resolution soil moisture
maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7 , pp.3845-3857.
Seneviratne, S.I., Corti, T., Davin, E. L., et al. Investigating soil
moisture–climate interactions in a changing climate: a review.Earth Sci. Rev. 2010, 99 , pp.125-161.
Smola A.J., Schölkopf, B. A tutorial on support vector regression.Stat. Comput. 2004, 14 , pp.199-222.
Song C., Jia L. A method for downscaling Fengyun-3b soil moisture based
on apparent thermal inertia. Remote Sens. 2016, 8 , pp.703.
Song, P., Huang, J., Mansaray, L.R. An improved surface soil moisture
downscaling approach over cloudy areas based on geographically weighted
regression. Agric. For. Meteorol. 2019, 275 , pp.146-158.
Srivastava, P.K., Han, D., Ramirez, M.R., Islam, T. Machine learning
techniques for downscaling SMOS satellite soil moisture using MODIS land
surface temperature for hydrological application. Water Resour.
Manag. 2013, 27 , pp.3127-3144.
Sujay, R.N., Deka, P.C. Support vector machine applications in the field
of hydrology: a review. Appl. Soft Comput. 2014, 19 ,
pp.372-386.
van der Velde, R., Salama, M.S., Eweys, O.A., et al. Soil moisture
mapping using combined active/passive microwave observations over the
east of the Netherlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2015, 8 , pp.4355-4372.
Vapnik, V., Golowich, S.E., Smola, A.J.
Support
vector method for function approximation, regression estimation and
signal processing. In Advances in neural information processing
systems 1997, pp.281-287.
Wagner, W., Dorigo, W., de Jeu, R., et al. Fusion of active and passive
microwave observations to create an essential climate variable data
record on soil moisture. ISPRS Ann. Photogramm. Remote. Sens.
Spat. Inform. Sci. 2012, 7 , pp.315-321.
Wang, H., Vicente-Serrano, S.M., Tao, F., et al. Monitoring winter wheat
drought threat in northern china using multiple climate-based drought
indices and soil moisture during 2000–2013. Agric. For.
Meteorol. 2016, 228-229 , pp.1-12.
Wei, Z.S., Meng, Y.Z, Zhang, W., et al. Downscaling SMAP soil moisture
estimation with gradient boosting decision tree regression over the
Tibetan Plateau. Remote Sens. Environ. 2019, 225 ,
pp.30-44.
Wu, X., Walker, J.P., Rüdiger, C., et al. Medium-Resolution Soil
Moisture Retrieval Using the Bayesian Merging Method. IEEE Trans.
Geosci. Remote Sens. 2017, 55 , pp.6482-6493.
Yang, K., Qin, J., Zhao, L., et al. A multiscale soil moisture and
freeze–thaw monitoring network on the third pole. Bull. Amer.
Meteorol. Soc. 2013, 94 , pp.1907-1916.
Yang, Y., Guan, H., Long, D., et al. Estimation of surface soil moisture
from thermal infrared remote sensing using an improved trapezoid method.Remote Sens. 2015, 7 , pp.8250-8270.
Zhan, X., Houser, P.R., Walker, J.P., Crow, W.T. A method for retrieving
high-resolution surface soil moisture from hydros L-band radiometer and
radar observations. IEEE Trans. Geosci. Remote Sens. 2006,44 , pp.1534-1544.
Zhao, W., Sánchez, N., Lu, H., Li, A. A spatial downscaling approach for
the SMAP passive surface soil moisture product using random forest
regression. J. Hydrol. 2018, 563 , pp.1009-1024.
Zhu, X.C., Shao, M.A., Zeng, C., et al. Application of cosmic-ray
neutron sensing to monitor soil water content in an alpine meadow
ecosystem on the northern Tibetan plateau. J. Hydrol. 2016,536 , pp.247-254.
Zreda, M., Shuttleworth, W.J., Zeng, X., et al. COSMOS: the COsmic-ray
Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012,16 , pp.1-21.