References
- Woo PC, Huang Y, Lau SK, Yuen K.Y. Coronavirus Genomics and
Bioinformatics Analysis. Viruses . 2010;2:1804-1820.
- Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, Bai R, Teng JL,
Tsang CC, Wang M, Zheng BJ, Chan KH, Yuen KY. Discovery of seven novel
Mammalian and avian coronaviruses in the genus deltacoronavirus
supports bat coronaviruses as the gene source of alphacoronavirus and
betacoronavirus and avian coronaviruses as the gene source of
gammacoronavirus and deltacoronavirus. J Virol .
2012;86:3995-4008.
- Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G,
van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan
PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N,
Manuguerra JC, Stöhr K, Peiris JS, Osterhaus AD. Newly discovered
coronavirus as the primary cause of severe acute respiratory syndrome.Lancet . 2003;362:263-270.
- Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH, Li PH, Tan SY, Chang
Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Peiris, Guan Y. Epidemiology
and cause of severe acute respiratory syndrome (SARS) in Guangdong,
People’s Republic of China, in February, 2003. Lancet.2003;362:1353-1358.
- Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome.Lancet . 2015; 386:995–1007.
- Aleanizy FS, Mohmed N, Alqahtani FY, El Hadi Mohamed RA. Outbreak of
Middle East respiratory syndrome coronavirus in Saudi Arabia: a
retrospective study. BMC Infect Dis . 2017;17, 23.
- Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of
global health concern. Lancet . 2020;395:470-473.
- Huang
C, Wang
Y, Li
X, Ren
L, Zhao
J, Hu
Y, Zhang
L, Fan
G, Xu
J, Gu
X, Cheng
Z, Yu
T, Xia
J, Wei
Y, Wu
W, Xie
X, Yin
W, Li
H, Liu
M, Xiao
Y, Gao
H, Guo
L, Xie
J, Wang
G, Jiang
R, Gao
Z, Jin
Q, Wang
J,
Cao
B. Clinical features of patients infected with 2019 novel coronavirus
in Wuhan, China. Lancet. 2020;395: 497–506.
- Zhou
P, Yang
XL, Wang
XG, Hu
B, Zhang
L, Zhang
W, Si
HR, Zhu
Y, Li
B, Huang
CL, Chen
HD, Chen
J, Luo
Y, Guo
H, Jiang
RD, Liu
MQ, Chen
Y, Shen
XR, Wang
X, Zheng
XS, Zhao
K, Chen
QJ, Deng
F, Liu
LL, Yan
B, Zhan
FX, Wang
YY, Xiao
GF,
Shi
ZL. A pneumonia outbreak associated with a new coronavirus of
probable bat origin. Nature. 2020;579:270–273.
- Lu
R, Zhao
X, Li
J, Niu
P, Yang
B, Wu
H, Wang
W, Song
H, Huang
B, Zhu
N, Bi
Y, Ma
X, Zhan
F, Wang
L, Hu
T, Zhou
H, Hu
Z, Zhou
W, Zhao
L, Chen
J, Meng
Y, Wang
J, Lin
Y, Yuan
J, Xie
Z, Ma
J, Liu
WJ, Wang
D, Xu
W, Holmes
EC, Gao
GF, Wu
G, Chen
W, Shi
W,
Tan
W. Genomic characterisation and epidemiology of 2019 novel
coronavirus: implications for virus origins and receptor binding.Lancet. 2020;395:565–74.
- Neuman
BW, Adair
BD, Yoshioka
C, Quispe
JD, Orca
G, Kuhn
P, Milligan
RA, Yeager
M,
Buchmeier
MJ. Supramolecular Architecture of Severe Acute Respiratory Syndrome
Coronavirus Revealed by Electron Cryomicroscopy. J Virol. 2006;
80:7918–7928.
- Bárcena
M, Oostergetel
GT, Bartelink
W, Faas
FG, Verkleij
A, Rottier
PJ, Koster
AJ,
Bosch
BJ. Cryo-electron tomography of mouse hepatitis virus: Insights into
the structure of the coronavirion. PNAS. 2009;106:582-587.
- Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S.
The novel coronavirus 2019 (COVID-19) uses the SARS-1 coronavirus
receptor ACE2 and the cellular protease TMPRSS2 for entry into target
cells. BioRxiv. (2020)Preprintdoi: https://doi.org/10.1101/2020.01.31.929042
- Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S,
Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H,
Drosten C, Pöhlmann S. Evidence that TMPRSS2 activates the severe
acute respiratory syndrome coronavirus Spike protein for membrane
fusion and reduces viral control by the humoral immune response.J Virol. 2011;85:4122–4134.
- Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata
N (2019) TMPRSS2 contributes to virus spread and immunopathology in
the airways of murine models after coronavirus infection. J
Virol 2019;93(6):pii: e01815-18.
- Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S.
Simultaneous treatment of human bronchial epithelial cells with serine
and cysteine protease inhibitors prevents severe acute respiratory
syndrome coronavirus entry. J Virol. 2012; 86:6537–6654.
- Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW,
Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G. Protease
inhibitors targeting coronavirus and filovirus entry. Antiviral
Res . 2015;116:76–84.
- https://clinicaltrials.gov/ct2/show/NCT04353284
- Bittmann S, Luchter E, Weissenstein A, Villalon G, Moschüring-Alieva
E. TMPRSS2-Inhibitors Play a role in Cell Entry Mechanism of COVID-19:
An Insight into Camostat and Nafamostat. Regen Biol Med .
2020;2(2):1-3.
- Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C and
Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: New
treatment option for COVID-19. Antimicrob. Agents Chemother .
2020 (In press).
DOI: 10.1128/AAC.00754-20
- Sonawane KD, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble
SA, Mohammed AA, Makandar AM, Fandilolu PM, Dound AS, Naik NM.
Homology modeling and docking studies of TMPRSS2 with experimentally
known
inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride
to control
SARS-Coronavirus-2.ChemRxiv .(2020)Preprint.
https://doi:org/10.26434/chemrxiv.12162360.v1
- Appleyard G, Tisdale M. Inhibition of the Growth of Human Coronavirus
229E by Leupeptin. J Gen Virol. 1985;66:363-366.
- Schrödinger Release 2020-1: Prime, Schrödinger, LLC, New York, NY,
2020.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol . 1990;215:403-410.
- Schrödinger Suite 2012 Protein Preparation Wizard; Epik version 2.3,
Schrödinger, LLC, New York, NY, 2012; Impact version 5.8, Schrödinger,
LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New
York, NY, 2012.
- Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of
polypeptide chain configurations. J Mol Biol. 1963;7:95–9.
- Schrödinger Release 2020-1: LigPrep , Schrödinger, LLC, New
York, NY, 2020.
- The PyMOL Molecular Graphics System, (2002). Version 2.0
Schrödinger, LLC.
- Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D,
Dahlgren MK, Knight JL, Kaus JW, Cerutti D, Krilov G, Jorgensen WL,
Abel R, Friesner RA. OPLS3: a force field providing broad coverage of
drug-like small molecules and proteins. J Chem Theory Comput.2016;12:281-296.
- Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY,
2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York,
NY, 2020.
- Evans DJ, Holian BL. The Nose–Hoover thermostat. J Chem Phys.1985;83:4069.
- Li
J, Abel
R, Zhu
K, Cao
Y, Zhao
S,
Friesner
RA. The VSGB 2.0 model: a next generation energy model for high
resolution protein structure modelling.Proteins. 2011;79:4-812.