Conflict of interest
The authors declare that they have no competing interests.
References
Blais, J., Lavoie, S. B., Giroux, S., Bussières, J., Lindsay, C.,
Dionne, J., . . . Rousseau, F. (2015). Risk of misdiagnosis due to
allele dropout and false-positive PCR artifacts in molecular
diagnostics: analysis of 30,769 genotypes. J Mol Diagn ,17 (5), 505-514. doi:10.1016/j.jmoldx.2015.04.004
Bohnert, S., Heck, L., Gruber, C., Neumann, H., Distler, U., Tenzer, S.,
. . . Jacob, S. (2019). Fungicide resistance toward fludioxonil
conferred by overexpression of the phosphatase gene MoPTP2 inMagnaporthe oryzae . Mol Microbiol, 111 (3), 662-677.
doi:10.1111/mmi.14179
Bolger, A. M., Lohse, M., & Usadel,
B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics, 30 (15), 2114-2120.
doi:10.1093/bioinformatics/btu170
Bonizzoni, M., Ochomo, E., Dunn, W.
A., Britton, M., Afrane, Y., Zhou, G., . . . Yan, G. (2015). RNA-seq
analyses of changes in the Anopheles gambiae transcriptome
associated with resistance to pyrethroids in Kenya: identification of
candidate-resistance genes and candidate-resistance SNPs. Parasit
Vectors, 8 , 474. doi:10.1186/s13071-015-1083-z
Consortium, T. A. g. G. (2017).
Genetic diversity of the African malaria vector Anopheles
gambiae . Nature, 552 (7683), 96-100. doi:10.1038/nature24995
Costa, V., Angelini, C., De Feis, I.,
& Ciccodicola, A. (2010). Uncovering the complexity of transcriptomes
with RNA-Seq. J Biomed Biotechnol, 2010 , 853916.
doi:10.1155/2010/853916
David, J. P., Faucon, F.,
Chandor-Proust, A., Poupardin, R., Riaz, M. A., Bonin, A., . . .
Reynaud, S. (2014). Comparative analysis of response to selection with
three insecticides in the dengue mosquito Aedes aegypti using
mRNA sequencing. BMC Genomics, 15 , 174.
doi:10.1186/1471-2164-15-174
De Wit, P., Pespeni, M. H., &
Palumbi, S. R. (2015). SNP genotyping and population genomics from
expressed sequences - current advances and future possibilities.Mol Ecol, 24 (10), 2310-2323. doi:10.1111/mec.13165
Després, L., Stalinski, R., Tetreau, G., Paris, M., Bonin, A., Navratil,
V., . . . David, J. P. (2014). Gene expression patterns and sequence
polymorphisms associated with mosquito resistance to Bacillus
thuringiensis israelensis toxins. BMC Genomics , 15 , 926.
doi:10.1186/1471-2164-15-926
Faucon, F., Gaude, T., Dusfour, I., Navratil, V., Corbel, V.,
Juntarajumnong, W., . . . David, J. P. (2017). In the hunt for genomic
markers of metabolic resistance to pyrethroids in the mosquitoAedes aegypti : An integrated next-generation sequencing approach.PLoS Negl Trop Dis, 11 (4), e0005526.
doi:10.1371/journal.pntd.0005526
Ferguson, S., & Pineda, O. (2010).
Putative polymerase chain reaction markers for insecticide resistance in
the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to
cyromazine and abamectin. J Econ Entomol, 103 (6), 2197-2203.
doi:10.1603/ec10073
Ffrench-Constant, R. H. (2013). The
molecular genetics of insecticide resistance. Genetics, 194 (4),
807-815. doi:10.1534/genetics.112.141895
Gould, F., Brown, Z. S., & Kuzma, J.
(2018). Wicked evolution: Can we address the sociobiological dilemma of
pesticide resistance? Science, 360 (6390), 728-732.
doi:10.1126/science.aar3780
Guo, D., Luo, J., Zhou, Y., Xiao, H., He, K., Yin, C., . . . Li, F.
(2017). ACE: an efficient and sensitive tool to detect insecticide
resistance-associated mutations in insect acetylcholinesterase from
RNA-Seq data. BMC Bioinformatics , 18 (1), 330.
doi:10.1186/s12859-017-1741-6
Guo, L., Liang, P., Zhou, X., & Gao,
X. (2014). Novel mutations and mutation combinations of ryanodine
receptor in a chlorantraniliprole resistant population of Plutella
xylostella (L.). Sci Rep, 4 , 6924. doi:10.1038/srep06924
Hirata, K., Jouraku, A., Kuwazaki,
S., Shimomura, H., & Iwasa, T. (2017). Studies on Aphis gossypiicytochrome P450s CYP6CY22 and CYP6CY13 using an in vitro system. J
Pestic Sci, 42 (3), 97-104. doi:10.1584/jpestics.D17-006
Hirata, K., Kiyota, R., Matsuura, A.,
Toda, S., Yamamoto, A., & Iwasa, T. (2015). Association between the
R81T mutation in the nicotinic acetylcholine receptor β1 subunit
of Aphis gossypiiand the differential resistance to acetamiprid
and imidacloprid. J Pestic Sci, 40 (1), 25-31.
doi:10.1584/jpestics.D14-092
Hirayama, H., Kageyama, S., Moriyasu, S., Sawai, K., Onoe, S., &
Minamihashi, A. (2010). The possibility of a false positive arising from
sperm DNA in genetic diagnosis of bovine embryos. J Reprod Dev ,56 (1), 182-186. doi:10.1262/jrd.09-095n
Kim, K. H., Kabir, E., & Jahan, S.
A. (2017). Exposure to pesticides and the associated human health
effects. Sci Total Environ, 575 , 525-535.
doi:10.1016/j.scitotenv.2016.09.009
Kogenaru, S., Qing, Y., Guo, Y., & Wang, N. (2012). RNA-seq and
microarray complement each other in transcriptome profiling. BMC
Genomics , 13 , 629. doi:10.1186/1471-2164-13-629
Langdon, W. B. (2015). Performance of
genetic programming optimised Bowtie2 on genome comparison and analytic
testing (GCAT) benchmarks. BioData Min, 8 (1), 1.
doi:10.1186/s13040-014-0034-0
Li, H., Handsaker, B., Wysoker, A.,
Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data Processing,
S. (2009). The Sequence Alignment/Map format and SAMtools.Bioinformatics, 25 (16), 2078-2079.
doi:10.1093/bioinformatics/btp352
Li, Q., Fang, Y., Li, X., Zhang, H.,
Liu, M., Yang, H., . . . Wang, Y. (2013). Mechanism of the plant
cytochrome P450 for herbicide resistance: a modelling study. J
Enzyme Inhib Med Chem, 28 (6), 1182-1191.
doi:10.3109/14756366.2012.719505
Li, X., Li, R., Zhu, B., Gao, X., &
Liang, P. (2018). Overexpression of cytochrome P450 CYP6BG1 may
contribute to chlorantraniliprole resistance in Plutella
xylostella (L.). Pest Manag Sci, 74 (6), 1386-1393.
doi:10.1002/ps.4816
Love, M. I., Huber, W., & Anders, S.
(2014). Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biol, 15 (12), 550.
doi:10.1186/s13059-014-0550-8
Mackenzie-Impoinvil, L., Weedall, G. D., Lol, J. C., Pinto, J.,
Vizcaino, L., Dzuris, N., . . . Lenhart, A. (2019). Contrasting patterns
of gene expression indicate differing pyrethroid resistance mechanisms
across the range of the New World malaria vector Anopheles
albimanus . PLoS One , 14 (1), e0210586.
doi:10.1371/journal.pone.0210586
Mamidala, P., Wijeratne, A. J.,
Wijeratne, S., Kornacker, K., Sudhamalla, B., Rivera-Vega, L. J., . . .
Mittapalli, O. (2012). RNA-Seq and molecular docking reveal multi-level
pesticide resistance in the bed bug. BMC Genomics, 13 , 6.
doi:10.1186/1471-2164-13-6
Mantione, K. J., Kream, R. M., Kuzelova, H., Ptacek, R., Raboch, J.,
Samuel, J. M., & Stefano, G. B. (2014). Comparing bioinformatic gene
expression profiling methods: microarray and RNA-Seq. Med Sci
Monit Basic Res , 20 , 138-142. doi:10.12659/MSMBR.892101
Mavridis, K., Wipf, N., Medves, S.,
Erquiaga, I., Muller, P., & Vontas, J. (2019). Rapid multiplex gene
expression assays for monitoring metabolic resistance in the major
malaria vector Anopheles gambiae . Parasit Vectors, 12 (1),
9. doi:10.1186/s13071-018-3253-2
Network, R. P. (2016). Trends and
challenges in pesticide resistance detection. Trends Plant Sci,
21 (10), 834-853. doi:10.1016/j.tplants.2016.06.006
Oerke, E. C. (2005). Crop losses to
pests. J Agric Sci, 144 (1), 31-43. doi:10.1017/s0021859605005708
Thomas, C. P., Ralf N. (2015). IRAC: Mode of action classification and
insecticide resistance management. Pestic Biochem Physiol, 121,
122-128. doi:10.1016/j.pestbp.2014.11.014
Sonoda, S. (2010). Molecular analysis
of pyrethroid resistance conferred by target insensitivity and increased
metabolic detoxification in Plutella xylostella . Pest Manag
Sci, 66 (5), 572-575. doi:10.1002/ps.1918
Tang, W., Wang, D., Wang, J., Wu, Z.,
Li, L., Huang, M., . . . Yan, D. (2018). Pyrethroid pesticide residues
in the global environment: An overview. Chemosphere, 191 ,
990-1007. doi:10.1016/j.chemosphere.2017.10.115
Wagih, O. (2017). ggseqlogo: a
versatile R package for drawing sequence logos. Bioinformatics,
33 (22), 3645-3647. doi:10.1093/bioinformatics/btx469
Yan, H. H., Xue, C. B., Li, G. Y.,
Zhao, X. L., Che, X. Z., & Wang, L. L. (2014). Flubendiamide resistance
and Bi-PASA detection of ryanodine receptor G4946E mutation in the
diamondback moth (Plutella xylostella L.). Pestic Biochem
Physiol, 115 , 73-77. doi:10.1016/j.pestbp.2014.09.003
Yan, L., Yang, P., Jiang, F., Cui,
N., Ma, E., Qiao, C., & Cui, F. (2012). Transcriptomic and phylogenetic
analysis of Culex pipiens quinquefasciatus for three
detoxification gene families. BMC Genomics, 13 , 609.
doi:10.1186/1471-2164-13-609
Yin, C., Shen, G., Guo, D., Wang, S.,
Ma, X., Xiao, H., . . . Li, F. (2016). InsectBase: a resource for insect
genomes and transcriptomes. Nucleic Acids Res, 44 (D1), D801-807.
doi:10.1093/nar/gkv1204
Zhu, B., Xu, M., Shi, H., Gao, X., &
Liang, P. (2017). Genome-wide identification of lncRNAs associated with
chlorantraniliprole resistance in diamondback moth Plutella
xylostella (L.). BMC Genomics, 18 (1), 380.
doi:10.1186/s12864-017-3748-9