References:
- Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140
patients infected with SARS-CoV-2 in Wuhan, China [published online
ahead of print, 2020 Feb 19]. Allergy. 2020;10.1111/all.14238.
doi:10.1111/all.14238.
- Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in
adult COVID-19 inpatients in Wuhan [published online ahead of print,
2020 Apr 12]. J Allergy Clin Immunol. 2020;S0091-6749(20)30495-4.
doi:10.1016/j.jaci.2020.04.006
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell. 2020;181(2):271‐280.e8.
doi:10.1016/j.cell.2020.02.052.
- Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link
between ACE2 deficiency and SARS-CoV-2 infection [published online
ahead of print, 2020 Apr 20]. Eur J Intern Med.
2020;S0953-6205(20)30151-5. doi:10.1016/j.ejim.2020.04.037.
- Peters MC, Sajuthi S, Deford P, et al. COVID-19 Related Genes in
Sputum Cells in Asthma: Relationship to Demographic Features and
Corticosteroids [published online ahead of print, 2020 Apr 29]. Am
J Respir Crit Care Med. 2020;10.1164/rccm.202003-0821OC.
doi:10.1164/rccm.202003-0821OC.
- Jia H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and
Inflammatory Lung Disease. Shock. 2016;46(3):239‐248.
doi:10.1097/SHK.0000000000000633.
- Sajuthi SP, DeFord P, Jackson ND, et al. Type 2 and interferon
inflammation strongly regulate SARS-CoV-2 related gene expression in
the airway epithelium. bioRxiv. 2020 doi: 10.1101/2020.04.09.034454