REFERENCES
1. Vincent, J.L. and F.S. Taccone, Understanding pathways to death in patients with COVID-19. Lancet Respir Med, 2020. 8 (5): p. 430-432.
2. Varga, Z., et al., Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020. 395 (10234): p. 1417-1418.
3. Jose, R.J. and A. Manuel, COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med, 2020.
4. Choudhary, R., A.K. Sharma, and R. Choudhary, Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect, 2020: p. 100684.
5. Dong, L., S. Hu, and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther, 2020.14 (1): p. 58-60.
6. Gordon, D.E., et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020.
7. Delcuve, G.P., D.H. Khan, and J.R. Davie, Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics, 2012. 4 (1): p. 5.
8. Gottlicher, M., et al., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J, 2001. 20 (24): p. 6969-78.
9. Kramer, O.H., et al., The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2.EMBO J, 2003. 22 (13): p. 3411-20.
10. Phiel, C.J., et al., Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.J Biol Chem, 2001. 276 (39): p. 36734-41.
11. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.Cell, 2020. 181 (2): p. 271-280 e8.
12. Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020. 181 (2): p. 281-292 e6.
13. Crapo, J.D., et al., Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis, 1982. 126 (2): p. 332-7.
14. Deanfield, J.E., J.P. Halcox, and T.J. Rabelink, Endothelial function and dysfunction: testing and clinical relevance. Circulation, 2007. 115 (10): p. 1285-95.
15. Piera-Velazquez, S., Z. Li, and S.A. Jimenez, Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol, 2011. 179 (3): p. 1074-80.
16. van Meeteren, L.A. and P. ten Dijke, Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res, 2012. 347 (1): p. 177-86.
17. Xu, R., et al., The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2018.97 (46): p. e12912.
18. Singh, K.K., et al., The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem, 2015. 290 (5): p. 2547-59.
19. Murugavel, S., et al., Valproic Acid Induces Endothelial-to-Mesenchymal Transition-Like Phenotypic Switching. Front Pharmacol, 2018. 9 : p. 737.
20. Singh, K.K., et al., BRCA1 is a novel target to improve endothelial dysfunction and retard atherosclerosis. J Thorac Cardiovasc Surg, 2013. 146 (4): p. 949-960 e4.
21. Michaelis, M., et al., Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol, 2004. 65 (3): p. 520-7.
22. Singh, S., et al., Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep, 2020. 10 (1): p. 4466.
23. Hammond, E.J., et al., In vivo uptake of valproic acid into brain. Brain Res, 1982. 240 (1): p. 195-8.
24. Yang, X.H., et al., Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med, 2007. 57 (5): p. 450-9.
25. Li, W., et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003.426 (6965): p. 450-4.
26. Huentelman, M.J., et al., Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 2004.44 (6): p. 903-6.
27. Kuba, K., et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005.11 (8): p. 875-9.
28. Herold, T et al., Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. doi: https://doi.org/10.1101/2020.04.01.20047381
29. Wu, K.K. and P. Thiagarajan, Role of endothelium in thrombosis and hemostasis. Annu Rev Med, 1996. 47 : p. 315-31.
30. Videm, V. and M. Albrigtsen, Soluble ICAM-1 and VCAM-1 as markers of endothelial activation. Scand J Immunol, 2008.67 (5): p. 523-31.
31. Corte, T.J., et al., Elevated brain natriuretic peptide predicts mortality in interstitial lung disease. Eur Respir J, 2010.36 (4): p. 819-25.
32. Hu, G., et al., Anti-inflammatory effect of B-type natriuretic peptide postconditioning during myocardial ischemia-reperfusion: involvement of PI3K/Akt signaling pathway. Inflammation, 2014.37 (5): p. 1669-74.
33. Mezzasoma, L., C. Antognelli, and V.N. Talesa, A Novel Role for Brain Natriuretic Peptide: Inhibition of IL-1beta Secretion via Downregulation of NF-kB/Erk 1/2 and NALP3/ASC/Caspase-1 Activation in Human THP-1 Monocyte. Mediators Inflamm, 2017. 2017 : p. 5858315.
34. Zhang, H., et al., MMP9 protects against LPS-induced inflammation in osteoblasts. Innate Immun, 2020. 26 (4): p. 259-269.
35. Hald, A., et al., MMP9 is protective against lethal inflammatory mass lesions in the mouse colon. Dis Model Mech, 2011.4 (2): p. 212-27.
36. Atkinson, J.J. and R.M. Senior, Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol, 2003. 28 (1): p. 12-24.
37. Auerbach, D.J., et al., Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci U S A, 2012. 109 (24): p. 9569-74.
38. Yue, L., et al., CXCL4 contributes to host defense against acute Pseudomonas aeruginosa lung infection. PLoS One, 2018.13 (10): p. e0205521.
39. Wang, J., et al., Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost, 2020.
40. Causey, M.W., et al., Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury. J Surg Res, 2013. 184 (1): p. 533-40.
41. Huang, L.T., et al., Tissue plasminogen activator attenuates ventilator-induced lung injury in rats. Acta Pharmacol Sin, 2012.33 (8): p. 991-7.
42. Simmons, D.L., D. Wagner, and K. Westover, Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever.Clin Infect Dis, 2000. 31 Suppl 5 : p. S211-8.
43. van der Poll, T., Tissue factor as an initiator of coagulation and inflammation in the lung. Crit Care, 2008. 12 Suppl 6 : p. S3.
44. Fujii, M., et al., Relevance of tissue factor and tissue factor pathway inhibitor for hypercoagulable state in the lungs of patients with idiopathic pulmonary fibrosis. Thromb Res, 2000.99 (2): p. 111-7.
45. Fei, X., et al., Tissue Factor Pathway Inhibitor-1 Is a Valuable Marker for the Prediction of Deep Venous Thrombosis and Tumor Metastasis in Patients with Lung Cancer. Biomed Res Int, 2017.2017 : p. 8983763.
46. Wang, Y., et al., Upregulation of sphingosine kinase 1 contributes to ventilator-associated lung injury in a two-hit model.Int J Mol Med, 2019. 44 (6): p. 2077-2090.
47. Carr, J.M., et al., Sphingosine kinase 1 in viral infections.Rev Med Virol, 2013. 23 (2): p. 73-84.
48. Seo, Y.J., et al., Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS One, 2013. 8 (8): p. e75005.
49. Monaghan, M.G., et al., Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development, 2016. 143 (3): p. 473-82.
50. Piera-Velazquez, S. and S.A. Jimenez, Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev, 2019. 99 (2): p. 1281-1324.
51. Kato, H., et al., Pulmonary vein stenosis and the pathophysiology of ”upstream” pulmonary veins. J Thorac Cardiovasc Surg, 2014. 148 (1): p. 245-53.
52. Hashimoto, N., et al., Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol, 2010.43 (2): p. 161-72.
53. Seizures and COVID-19. https://www.medpagetoday.com/infectiousdisease/covid19/86118.