REFERENCES
Ahmadieh H, & Azar ST (2014). Liver disease and diabetes: association,
pathophysiology, and management. Diabetes Res Clin Pract 104:53-62.
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et
al. (2006). Resveratrol improves health and survival of mice on a
high-calorie diet. Nature 444: 337-342.
Belfiore A, Frasca F, Pandini G, Sciacca L, & Vigneri R (2009). Insulin
receptor isoforms and insulin receptor/insulin-like growth factor
receptor hybrids in physiology and disease. Endocr Rev 30:586-623.
Blech S, Ludwig-Schwellinger E, Grafe-Mody EU, Withopf B, & Wagner K
(2010). The metabolism and disposition of the oral dipeptidyl
peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos
38: 667-678.
Carbone LJ, Angus PW, & Yeomans ND (2016). Incretin-based therapies for
the treatment of non-alcoholic fatty liver disease: A systematic review
and meta-analysis. J Gastroenterol Hepatol 31: 23-31.
Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, et al.(2009). Foxo1 integrates insulin signaling with mitochondrial function
in the liver. Nat Med 15: 1307-1311.
Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi
Y, et al. (2013). Insulin resistance and cancer: the role of
insulin and IGFs. Endocr Relat Cancer 20: R1-r17.
Garcia-Echeverria C (2006). Medicinal chemistry approaches to target the
kinase activity of IGF-1R. IDrugs 9: 415-419.
Hall AM, Brunt EM, Chen Z, Viswakarma N, Reddy JK, Wolins NE, et
al. (2010). Dynamic and differential regulation of proteins that coat
lipid droplets in fatty liver dystrophic mice. J Lipid Res 51:554-563.
I OS, Zhang W, Wasserman DH, Liew CW, Liu J, Paik J, et al.(2015). FoxO1 integrates direct and indirect effects of insulin on
hepatic glucose production and glucose utilization. Nat Commun
6: 7079.
Kern M, Kloting N, Niessen HG, Thomas L, Stiller D, Mark M, et
al. (2012). Linagliptin improves insulin sensitivity and hepatic
steatosis in diet-induced obesity. PloS one 7: e38744.
Klein T, Fujii M, Sandel J, Shibazaki Y, Wakamatsu K, Mark M, et
al. (2014). Linagliptin alleviates hepatic steatosis and inflammation
in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol
47: 137-149.
Komatsu M, Kanda T, Urai H, Kurokochi A, Kitahama R, Shigaki S, et
al. (2018). NNMT activation can contribute to the development of fatty
liver disease by modulating the NAD (+) metabolism. Sci Rep 8:8637.
Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, et al. (2012).
Exendin-4 improves steatohepatitis by increasing Sirt1 expression in
high-fat diet-induced obese C57BL/6J mice. PloS one 7: e31394.
Libby AE, Bales E, Orlicky DJ, & McManaman JL (2016). Perilipin-2
Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol
Regulatory Element-binding Protein (SREBP) Activation and Altering the
Hepatic Lipidome. J Biol Chem 291: 24231-24246.
Masuda T, Tomita M, & Ishihama Y (2008). Phase transfer
surfactant-aided trypsin digestion for membrane proteome analysis.
Journal of proteome research 7: 731-740.
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson
MA, et al. (2000). Loss of insulin signaling in hepatocytes leads
to severe insulin resistance and progressive hepatic dysfunction. Mol
Cell 6: 87-97.
Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair
D, et al. (2009). Discovery of OSI-906: a selective and orally
efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.
Future Med Chem 1: 1153-1171.
Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock
JR, et al. (2016). Liver-specific loss of Perilipin 2 alleviates
diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol
Gastrointest Liver Physiol 310: G726-738.
Nakashima S, Matsui T, Takeuchi M, & Yamagishi SI (2014). Linagliptin
blocks renal damage in type 1 diabetic rats by suppressing advanced
glycation end products-receptor axis. Horm Metab Res 46:717-721.
Ohno M, Kanayama T, Moore R, Ray M, & Negishi M (2014). The roles of
co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis
development in mouse livers. PloS one 9: e115663.
Pissios P (2017). Nicotinamide N-Methyltransferase: More Than a Vitamin
B3 Clearance Enzyme. Trends Endocrinol Metab 28: 340-353.
Rappsilber J, Mann M, & Ishihama Y (2007). Protocol for
micro-purification, enrichment, pre-fractionation and storage of
peptides for proteomics using StageTips. Nature protocols 2:1896-1906.
Rodon J, DeSantos V, Ferry RJ, Jr., & Kurzrock R (2008). Early drug
development of inhibitors of the insulin-like growth factor-I receptor
pathway: lessons from the first clinical trials. Mol Cancer Ther
7: 2575-2588.
Samson SL, & Bajaj M (2013). Potential of incretin-based therapies for
non-alcoholic fatty liver disease. J Diabetes Complications 27:401-406.
Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al.(2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty
liver disease. J Biol Chem 279: 32345-32353.
Sanyal AJ (2002). AGA technical review on nonalcoholic fatty liver
disease. Gastroenterology 123: 1705-1725.
Shirakawa J, Amo K, Ohminami H, Orime K, Togashi Y, Ito Y, et al.(2011a). Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor
against increased beta cell apoptosis induced by dietary sucrose and
linoleic acid in mice with diabetes. J Biol Chem 286:25467-25476.
Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, et al.(2011b). Diet-induced adipose tissue inflammation and liver steatosis
are prevented by DPP-4 inhibition in diabetic mice. Diabetes
60: 1246-1257.
Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K,
et al. (2016). DPP-4 inhibition improves early mortality, beta cell
function, and adipose tissue inflammation in db/db mice fed a diet
containing sucrose and linoleic acid. Diabetol Metab Syndr 8:16.
Shirakawa J, Okuyama T, Yoshida E, Shimizu M, Horigome Y, Tuno T,
et al. (2014). Effects of the antitumor drug OSI-906, a dual inhibitor
of IGF-1 receptor and insulin receptor, on the glycemic control,
beta-cell functions, and beta-cell proliferation in male mice.
Endocrinology 155: 2102-2111.
Shirakawa J, Tajima K, Okuyama T, Kyohara M, Togashi Y, De Jesus
DF, et al. (2020). Luseogliflozin increases beta cell
proliferation through humoral factors that activate an insulin receptor-
and IGF-1 receptor-independent pathway. Diabetologia 63:577-587.
Softic S, Boucher J, Solheim MH, Fujisaka S, Haering MF, Homan EP,
et al. (2016). Lipodystrophy Due to Adipose Tissue-Specific Insulin
Receptor Knockout Results in Progressive NAFLD. Diabetes 65:2187-2200.
Tajima K, Shirakawa J, Togashi Y, Yamazaki S, Okuyama T, Kyohara
M, et al. (2017). Metabolic recovery of lipodystrophy, liver
steatosis, and pancreatic beta cell proliferation after the withdrawal
of OSI-906. Sci Rep 7: 4119.
Tilg H, & Moschen AR (2010). Evolution of inflammation in nonalcoholic
fatty liver disease: the multiple parallel hits hypothesis. Hepatology
52: 1836-1846.
Titchenell PM, Chu Q, Monks BR, & Birnbaum MJ (2015). Hepatic insulin
signalling is dispensable for suppression of glucose output by insulin
in vivo. Nat Commun 6: 7078.
Zhou Y, Jiang L, & Rui L (2009). Identification of MUP1 as a regulator
for glucose and lipid metabolism in mice. J Biol Chem 284:11152-11159.