References
1. Sharma P, Wagner K, Wolchok JD,
Allison JP. Novel cancer immunotherapy agents with survival benefit:
recent successes and next steps. Nature reviews Cancer 2011;
11:805-12.
2. Wherry EJ. T cell
exhaustion. Nature immunology 2011; 12:492-9.
3. Teng MW, Galon J, Fridman WH, Smyth
MJ. From mice to humans: developments in cancer immunoediting.The Journal of clinical investigation 2015; 125:3338-46.
4. De Sousa Linhares A, Leitner J,
Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints
Are Created Equal. Frontiers in immunology 2018; 9:1909.
5. Marin-Acevedo JA, Dholaria B,
Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune
checkpoint therapy in cancer: new developments and challenges.Journal of hematology & oncology 2018; 11:39.
6. Bi J, Tian Z. NK Cell
Exhaustion. Frontiers in immunology 2017; 8:760.
7. Zarour HM. Reversing T-cell
Dysfunction and Exhaustion in Cancer. Clinical cancer research :
an official journal of the American Association for Cancer Research
2016; 22:1856-64.
8. Tindle RW. Immune evasion in human
papillomavirus-associated cervical cancer. Nature reviews Cancer
2002; 2:59-65.
9. Cao Y, Zhou X, Huang X, Li Q, Gao
L, Jiang L, Huang M, Zhou J. Tim-3 expression in cervical cancer
promotes tumor metastasis. PloS one 2013; 8:e53834.
10. Yang W, Song Y, Lu YL, Sun JZ,
Wang HW. Increased expression of programmed death (PD)-1 and its ligand
PD-L1 correlates with impaired cell-mediated immunity in high-risk human
papillomavirus-related cervical intraepithelial neoplasia.Immunology 2013; 139:513-22.
11. Yang W, Lu YP, Yang YZ, Kang JR,
Jin YD, Wang HW. Expressions of programmed death (PD)-1 and PD-1 ligand
(PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell
carcinomas are of prognostic value and associated with human
papillomavirus status. The journal of obstetrics and gynaecology
research 2017; 43:1602-12.
12. Audenet F, Farkas AM, Anastos H,
Galsky MD, Bhardwaj N, Sfakianos JP. Immune phenotype of peripheral
blood mononuclear cells in patients with high-risk non-muscle invasive
bladder cancer. World journal of urology 2018; 36:1741-8.
13. Brummelman J, Mazza EMC, Alvisi
G, Colombo FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, Ferrari F,
Lopci E, Novellis P, Veronesi G, Lugli E. High-dimensional single cell
analysis identifies stem-like cytotoxic CD8(+) T cells infiltrating
human tumors. The Journal of experimental medicine 2018;
215:2520-35.
14. Liao Z, Lv X, Liu S, He Z, Chen
S, Wang L, Li W, Li Y. Different aberrant expression pattern of immune
checkpoint receptors in patients with PTCL and NK/T-CL.Asia-Pacific journal of clinical oncology 2018; 14:e252-e8.
15. Lu X, Liu J, Cui P, Liu T, Piao
C, Xu X, Zhang Q, Xiao M, Liu X, Wang Y, Yang L. Co-inhibition of TIGIT,
PD1, and Tim3 reverses dysfunction of Wilms tumor protein-1
(WT1)-specific CD8+ T lymphocytes after dendritic cell vaccination in
gastric cancer. American journal of cancer research 2018;
8:1564-75.
16. Thommen DS, Koelzer VH, Herzig P,
Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess
C, Savic Prince S, Wiese M, Lardinois D, Ho PC, Klein C, Karanikas V,
Mertz KD, Schumacher TN, Zippelius A. A transcriptionally and
functionally distinct PD-1(+) CD8(+) T cell pool with predictive
potential in non-small-cell lung cancer treated with PD-1
blockade. Nature medicine 2018; 24:994-1004.
17. Sakuishi K, Apetoh L, Sullivan
JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1
pathways to reverse T cell exhaustion and restore anti-tumor
immunity. The Journal of experimental medicine 2010; 207:2187-94.
18. Zhang Q, Bi J, Zheng X, Chen Y,
Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, Sun R, Tian Z. Blockade of
the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits
potent anti-tumor immunity. Nature immunology 2018; 19:723-32.
19. Pesce S, Greppi M, Tabellini G,
Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E.
Identification of a subset of human natural killer cells expressing high
levels of programmed death 1: A phenotypic and functional
characterization. The Journal of allergy and clinical immunology
2017; 139:335-46 e3.
20. Della Chiesa M, Pesce S, Muccio
L, Carlomagno S, Sivori S, Moretta A, Marcenaro E. Features of
Memory-Like and PD-1(+) Human NK Cell Subsets. Frontiers in
immunology 2016; 7:351.
21. Liu Y, Cheng Y, Xu Y, Wang Z, Du
X, Li C, Peng J, Gao L, Liang X, Ma C. Increased expression of
programmed cell death protein 1 on NK cells inhibits NK-cell-mediated
anti-tumor function and indicates poor prognosis in digestive
cancers. Oncogene 2017; 36:6143-53.
22. Ellis TM, Fisher RI. Functional
heterogeneity of Leu 19”bright”+ and Leu 19”dim”+ lymphokine-activated
killer cells. The Journal of Immunology 1989; 142:2949-54.
23. Nagler A, Lanier LL, Cwirla S,
Phillips JH. Comparative studies of human FcRIII-positive and negative
natural killer cells. Journal of immunology 1989; 143:3183-91.
24. Nielsen N, Odum N, Urso B, Lanier
LL, Spee P. Cytotoxicity of CD56(bright) NK cells towards autologous
activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and
dampened via CD94/NKG2A. PloS one 2012; 7:e31959.
25. Wiesmayr S, Webber SA, Macedo C,
Popescu I, Smith L, Luce J, Metes D. Decreased NKp46 and NKG2D and
elevated PD-1 are associated with altered NK-cell function in pediatric
transplant patients with PTLD. European journal of immunology
2012; 42:541-50.
26. Ma J, Zheng B, Goswami S, Meng L,
Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, Zhang S, Duan M, Chen Q, Gao
Q, Zhang X. PD1(Hi) CD8(+) T cells correlate with exhausted signature
and poor clinical outcome in hepatocellular carcinoma. Journal
for immunotherapy of cancer 2019; 7:331.
27. Kim HD, Song GW, Park S, Jung MK,
Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S, Moon DB, Hong SM, Ju YS,
Shin EC, Hwang S, Park SH. Association Between Expression Level of PD1
by Tumor-Infiltrating CD8(+) T Cells and Features of Hepatocellular
Carcinoma. Gastroenterology 2018; 155:1936-50 e17.
28. Grosso JF, Goldberg MV, Getnet D,
Bruno TC, Yen HR, Pyle KJ, Hipkiss E, Vignali DA, Pardoll DM, Drake CG.
Functionally distinct LAG-3 and PD-1 subsets on activated and
chronically stimulated CD8 T cells. Journal of immunology 2009;
182:6659-69.
29. Sanchez-Correa B, Valhondo I,
Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Banas H,
Casas-Aviles I, Duran E, Alonso C, Solana R, Tarazona R. DNAM-1 and the
TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer
Cell-Based Cancer Immunotherapy. Cancers 2019; 11.
30. Cella M, Presti R, Vermi W,
Lavender K, Turnbull E, Ochsenbauer-Jambor C, Kappes JC, Ferrari G,
Kessels L, Williams I, B CCC, McMichael AJ, Haynes BF, Borrow P, Colonna
M, Immunology NCfHAV. Loss of DNAM-1 contributes to CD8+ T-cell
exhaustion in chronic HIV-1 infection. European journal of
immunology 2010; 40:949-54.
31. Topalian SL, Drake CG, Pardoll
DM. Immune checkpoint blockade: a common denominator approach to cancer
therapy. Cancer cell 2015; 27:450-61.
32. Li X, Wang R, Fan P, Yao X, Qin
L, Peng Y, Ma M, Asley N, Chang X, Feng Y, Hu Y, Zhang Y, Li C, Fanning
G, Jones S, Verrill C, Maldonado-Perez D, Sopp P, Waugh C, Taylor S,
McGowan S, Cerundolo V, Conlon C, McMichael A, Lu S, Wang X, Li N, Dong
T. A Comprehensive Analysis of Key Immune Checkpoint Receptors on
Tumor-Infiltrating T Cells From Multiple Types of Cancer.Frontiers in oncology 2019; 9:1066.
33. Gong B, Kiyotani K, Sakata S,
Nagano S, Kumehara S, Baba S, Besse B, Yanagitani N, Friboulet L, Nishio
M, Takeuchi K, Kawamoto H, Fujita N, Katayama R. Secreted PD-L1 variants
mediate resistance to PD-L1 blockade therapy in non-small cell lung
cancer. The Journal of experimental medicine 2019; 216:982-1000.