References
1. WHO. Section on congenital anomalies. Available from:http://wwwwhoint/mediacentre/factsheets/fs370/en/ 2012.
2. Darmstadt GL, Howson CP, Walraven G, Armstrong RW, Blencowe HK, Christianson AL, et al. Prevention of Congenital Disorders and Care of Affected Children: A Consensus Statement. JAMA pediatrics. 2016; 170:790-3.
3. Sitkin NA, Ozgediz D, Donkor P, Farmer DL. Congenital anomalies in low- and middle-income countries: the unborn child of global surgery. World journal of surgery. 2015; 39:36-40.
4. Hospital Costs for Birth Defects Reach Tens of Billions. Jama. 2017; 317:799.
5. Morris JK, Wellesley DG, Barisic I, Addor MC, Bergman JEH, Braz P, et al. Epidemiology of congenital cerebral anomalies in Europe: a multicentre, population-based EUROCAT study. Archives of disease in childhood. 2019; 104:1181-7.
6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542:115-8.
7. Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. The British journal of radiology. 2018; 91:20170576.
8. Chi J WE, Babyn P, Wang J, Groot G, Eramian M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J Digit Imaging. 2017; 30:477-86.
9. Yap MH PG, Marti J, Ganau S, Sentis M, Zwiggelaar R, Davison AK, Marti R. Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE J Biomed Health Inform. 2018; 22:1218-26.
10. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. Jama. 2017; 318:2199-210.
11. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Jama. 2016; 316:2402-10.
12. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. The Lancet Oncology. 2019; 20:1645-54.
13. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018; 172:1122-31 e9.
14. Yaqub M, Kelly B, Papageorghiou AT, Noble JA. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints. Ultrasound in medicine & biology. 2017; 43:2925-33.
15. Yu Z TE, Ni D, Qin J, Chen S, Li S, Lei B, Wang T. A Deep Convolutional Neural Network-Based Framework for Automatic Fetal Facial Standard Plane Recognition. IEEE J Biomed Health Inform. 2018; 22:874-5.
16. L. W, JZ. C, S. L, B. L, T. W, FUIQA ND. Fetal Ultrasound Image Quality Assessment With Deep Convolutional Networks. IEEE Trans Cybern. 2017; 47:1336-49.
17. Chen H WL, Dou Q, Qin J, Li S, Cheng JZ, Ni D, Heng PA. Ultrasound Standard Plane Detection Using a Composite Neural Network Framework. IEEE Trans Cybern. 2017; 47:1576-86.
18. Baumgartner CF, Kamnitsas K, Matthew J, Fletcher TP, Smith S, Koch LM, et al. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound. IEEE transactions on medical imaging. 2017; 36:2204-15.
19. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized Controlled Trial. EClinicalMedicine. 2019; 9:52-9.
20. Azad N, Amos S, Milne K, Power B. Telemedicine in a rural memory disorder clinic-remote management of patients with dementia. Canadian geriatrics journal : CGJ. 2012; 15:96-100.
21. Xie H, Wang N, He M, Zhang L, Cai H, Xian J, et al. Using deep learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2020;7.
22. International Society of Ultrasound in O, Gynecology Education C. Sonographic examination of the fetal central nervous system: guidelines for performing the ’basic examination’ and the ’fetal neurosonogram’. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2007; 29:109-16.
23. Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL, et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2011;37:116-26.
24. Redmon J DS, Girshick R , et al. You Only Look Once: Unified, Real-Time Object Detection. arXiv. 2015.
25. Redmon J FA. YOLO9000: Better, Faster, Stronger. arXiv. 2016.
26. Redmon J FA. YOLOv3: An Incremental Improvement. arXiv. 2018.
27. Paladini D, Quarantelli M, Sglavo G, Pastore G, Cavallaro A, D’Armiento MR, et al. Accuracy of neurosonography and MRI in clinical management of fetuses referred with central nervous system abnormalities. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2014; 44:188-96.
28. Edwards L, Hui L. First and second trimester screening for fetal structural anomalies. Seminars in fetal & neonatal medicine. 2018; 23:102-11.