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Abstract

We have developed a new model for compressible clathrates that extends the well-known van der Waals and Platteeuw
model. The new model is derived by dispensing with the assumption of constant cages radii in the partition function level, resulting
in new thermodynamically consistent expressions relating thermodynamic properties of the hydrate phase and the empty lattice
isochoric reference. One set of additional parameters to the clathrate modeling framework is introduced, consisting of a scaling
factor for each cage radius relative to the edge length of the unit cell. No additional guest-dependent empirical parameters are
required. The model exhibits two features not previously reported in the literature: (i) a pressure shift between the clathrate being
described and the empty lattice isochoric reference, and (ii) differences in the edge length of the unit cell and in the cages radii
for different guest species at the same temperature and pressure, as a consequence of the sorption of guests. We also propose a
test for thermodynamic consistency at high pressure, based on the multicomponent and multiphase Clapeyron equation. Using
this test, we show that the proposed model solves an inconsistency issue observed in phase equilibrium calculations with some of
the compressible clathrate models currently in use. We have performed parameter optimization for methane, ethane, and xenon in
sI hydrates. Two sets of results are presented: 3-phase equilibrium conditions; and lattice size versus temperature or pressure for
each of these substances, along with available experimental data.
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For high-pressure conditions, additional chal-
lenges become noticeable in producing natural gas from
hydrate layers on deep seafloor or flow assurance in
deepwater oil fields. It has been observed that the accu-
racy of the standard van der Waals and Platteeuw model
is not satisfactory in these scenarios. In the standard van
der Waals and Platteeuw model, the specific volume of
the lattice and cage radii are assumed constant. Since
then, more recent experimental data show (i) variations
of hydrate volume with temperature and pressure for a
given guest type [1, 2, 3, 4], (ii) variation of cage radii
with changing hydrate volume [5, 3], and (iii) different
hydrate volume at a given temperature and pressure for
different types of guests [6, 7, 8]. These phenomena are
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commonly labeled compressibility of clathrates and dis-
tortion of cages [9].

Volumetric information is of great importance for
phase equilibrium and energy balances at high pressure.
This is made evident by considering how the isothermal
derivatives of the chemical potential (µ) and of the molar
enthalpy H of pure substances relate to the molar volume
state function V(T, P) of that substance:(

∂µ

∂P

)
T
= V (1)(

∂H
∂P

)
T
= V − T

(
∂V
∂T

)
P

(2)

In fact, such information is also important for the mod-
eling of mixtures even at low pressure, as the Langmuir
coefficients are strongly dependent on the cages radii,
which in turn can vary with the specific volume, which
can vary with temperature and with guest species.
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Volumetric information for hydrates with assumed
negligible distortion has been incorporated into correla-
tions for the specific volume of the lattice as a function
of temperature and pressure [10, 11]. This information
ultimately affects Poynting integrals of the empty lattice
in phase equilibrium calculations.

Furthermore, the unit cell volume for a hydrate
varies for different kinds of guests, according to both ex-
periment [8] and molecular dynamics [12]. This infor-
mation has usually been considered through the use of
discrete guest dependent standard volume and forma-
tion properties [13, 14] or ad hoc non-ideality corrections
to the expressions from the standard van der Waals and
Platteeuw model to compensate for deviations from the
model premises [5].

According to the Cell theory of Lennard-Jones and
Devonshire [15], the Langmuir coefficients depend on
the cage radii according to a free volume integral. Con-
sidering that changes in the specific volume of the hy-
drate might affect these dimensions, the inclusion of this
dependency empirically propagates variations in lattice
volume into the calculation of Langmuir coefficients and
strongly affecting the calculation of occupancy [5, 16].
By using parameters regressed from hydrate phase equi-
librium data, this method allowed improved data repre-
sentation at high pressure. However, this was achieved
at the expense of having additional parameters for each
guest component and each type of cage of each structure.

We have analyzed this approach of modifications
of the vdW&P model and noticed that it results in a ther-
modynamic inconsistency in phase equilibrium calcula-
tions. The inconsistency is made evident in this work
by using a test for thermodynamic consistency based on
the Clapeyron equation that we proposed. This incon-
sistency happens because these modifications invalidate
the premise of constant cage radii, a premise on which
all expressions for derived properties in the original van
der Waals and Platteeuw model are based, and current
modifications use those same expressions.

Here, we propose an improved model for hydrates
by considering the compressibility of lattices and consec-
utive distortion of cages. We revise the fundamentals of
statistical thermodynamics needed to derive a thermo-
dynamic model for a clathrate solution and the assump-
tions made in the original van der Waals and Platteeuw
model at the partition function level. Then we carry out
the mathematical procedure for obtaining expressions for
derived properties considering this dependency.

The development of this model was started by Seg-
tovich [17] and was named the Pressure Shift model; it
has been noted in the review by Medeiros et al. [9]. Here,
we present the complete equations for the model, an it-
erative algorithm required for the calculation of pressure
of the lattice, and quantitative results for phase equilib-
rium and volumetric properties after parameter estima-
tion for methane, ethane and xenon hydrates in sI struc-
ture. As far as we know from current literature, no other

thermodynamic model in this scale can explain or pre-
dict the observations regarding lattice volume changes
for hydrates of different guests relative to the empty lat-
tice.

1. The Pressure Shift model

1.1. Motivation for a new compressible model
From the aforementioned experimental observa-

tions, we see that the molar volume of the lattice (VEL)
depends on the composition of guest components in the
hydrate associated with occupancy Θij. We can also rec-
ognize a relation between the cages radii and the mo-
lar volume of the lattice. Consequently, this affects the
Langmuir coefficients Cij, which dictates the occupancy.
These relations show interdependence between the vari-
ables that describe the hydrate. Finally, the occupancy
directly affects the chemical potential of water in the hy-
drate, influencing phase equilibrium conditions even at
low pressure as represented in Eq. (3).

VEL
(Θ)→ R

(
VEL

)
→ C(R)→ Θ(C)︸ ︷︷ ︸

interdependent

→ ∆µH−EL
w (3)

where the molar volume of the lattice (VEL) corresponds
to the ratio between the hydrate volume (VH) and the
number of water molecules Nw in the lattice (Eq. 4):

VEL
=

VH

Nw
(4)

The pressure shift model proposed here is a rigor-
ous extension of the vdW&P model to contemplate com-
pressible hydrate with cage distortion. By having vary-
ing cages radii with lattice volume, and varying lattice
volume with temperature and pressure, we calculate a
pressure shift between the hydrate and the empty lat-
tice isochoric reference at the same temperature. That
pressure shift is responsible for varying actual hydrate
volume for standard temperature and pressure for dif-
ferent guest types. Our calculations of pressure shift and
volume can be understood in the steps presented in Fig.
1).

In Fig. 1, the hydrate is represented by a blue
square for the lattice with gray circles for the cages. From
one sole standard empty lattice having volume V0 at
pressure P0 (d), consider first the enclathration of guest
molecules of species 1 (green ellipsis), which has a big
molecular dimension (a large guest) such that they will fit
tightly in the larger cages (d→ e). In that process, the hy-
drate has volume equal to that of the isochoric reference
lattice (V0), by definition in the vdW&P model. However,
we can calculate a pressure difference ∆P, which for a
large guest turns out to be positive (∆P > 0 ∴ P > P0).
Now, in order to calculate the volume that this hydrate
would show at pressure P0 (b) we would need to consider
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Figure 1: Schematic representation of how the pressure shift is respon-
sible for volume differences for hydrates of different guests at the same
pressure: (→) blue arrows show the relation between Volume and Pres-
sure due to the intrinsic compressibility of the empty lattice ; (→, →)
green and orange arrows show the pressure shift that occurs with ad-
sorption at constant volume from the isochoric empty lattice reference;
(•) green ellipsis are guest species with relatively large molecular size,
causing lattice expansion, (•) orange ellipsis are guest species with rel-
atively small molecular size, causing lattice contraction.

the process of enclathration from an isochoric empty lat-
tice reference at PEL < P0 (a), so that PEL + ∆P(+) = P0
(a → b). Because of the intrinsic compressibility of the
empty lattice (blue left-right arrows), the volume of the
empty lattice at pressure slightly lower than P0 should be
slightly larger than V0 (d → a). Based on this pressure
shift reasoning, we can conclude that the volume of a hy-
drate of a large guest at P0 (b) is larger than the volume
of the reference lattice at that same P0 (d), V > V0. Anal-
ogously, for a guest component of species 2, which has a
lower molecular dimension such that it fits loosely in the
cages (a small guest), calculations show that the pressure
difference is negative ∆P < 0 ∴ P < P0 (d → c). Then,
in order to calculate the volume that this hydrate would
show at pressure P0 (f) we would need to consider the
process of enclathration from an isochoric empty lattice
reference at PEL > P0 (g), so that PEL + ∆P(−) = P0 (g
→ f). We conclude that the hydrate volume at P0 (f) is
smaller than that of the reference lattice at that same P0
(d), V < V0. These two cases show how the pressure
shift contribution can result in the volume of a hydrate
of large guests being greater than that of small guests,
due to expansion and contraction of the lattice. Note that
there are competing effects between tightness and loose-
ness of each species in each cage that add up to the over-
all pressure shift (∆P = PH − PEL). Also, the pressure
shift contribution at a given P depends on the unknown

occupancy Θij and reference lattice volume VEL(PEL), so
the actual implementation requires an iterative scheme
detailed in Section 1.9.

It is worth mentioning that the deformation of
porous matrix by adsorption is a topic that has long
driven the attention of the scientific community. Van-
damme [18] identifies a surge in those studies in re-
cent years due to the popularity of materials that exhibit
deformations upon adsorption, such as metal-organic
frameworks. Works trying to establish a link between
thermodynamic properties and adsorption stress have
also focused on applications with biopolymers [19] and
gas adsorption on coal [20, 21], for example. One of
the most pertinent studies to the one we develop here
is the one by Ravikovitch and Neimark [22]. Using den-
sity functional theory (DFT), the authors showed natu-
ral elastic stress and volumetric strain from a thermody-
namic potential (Ω) whose independent variables were
T, V and µ of the adsorbates. The stress produced by
adsorption is proportional to the marginal change of Ω
with the radius of the pores. Therefore, the compressible
clathrate model presented here belongs to some extent
to this class of models, whose goal is to quantify the me-
chanical changes (pressure and volume interplay) in a
given matrix due to adsorption.

1.2. The partition function

The original van der Waals and Platteeuw [23]
model is constructed using a partition function that de-
scribes the clathrate phase as a solid mixture, which is
a function of the number of water molecules (Nw) and
the number of the so-called guest components molecules
(Ng

i ) of a few types (ng), temperature T and volume VH

of the phase. The final formulation of the model is ob-
tained from the following assumptions:

1. There is an a priori description of a lattice of wa-
ter molecules at the same temperature T, having an
equal volume (VEL = VH) and an equal number of
water molecules (Nw), containing Nc

j identical cages
of a few types (nc);

2. A guest molecule is always located inside some cage,
and one individual cage can never hold more than
one guest molecules simultaneously; and

3. Interactions between guest molecules are negligible.

With these premises, they devised a partition function
in the canonical ensemble and transformed that into a
semi-grand canonical partition function for convenience
in dealing with phase equilibrium calculations [23, 9].

The semi-grand canonical partition function (Ξ)
represents an ensemble contemplating varying number
(Nij) of particles of each guest component (i) in each cage
type (j) for a given chemical potential for each guest com-
ponent (µij), a given number of water molecules (Nw) a
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given temperature (T) and a given phase volume (VH). It
is expressed as

ln Ξ = ln QEL + ∑
j

(
νjNw ln

(
1 + ∑

i

(
qijλij

)))
(5)

where (ν) are proportionality factors that relate the
number of cages of each type to the number of water
molecules in the hydrate phase and depends solely on
the a priori described lattice geometry, and (λij) are the
so-called absolute activity, conjugated to Nij, defined for
each guest component in each cage type in the hydrate
phase from its chemical potential (µij), temperature (T)
and Boltzmann constant kB by

µij = kBT ln
(
λij
)

(6)

Here, QEL is the canonical partition function describing
the pure water empty lattice by its temperature, volume,
and the number of water molecules (Section 1.3), and qij
is the single-molecule canonical partition function under
the mean-field cage potential (Section 1.4).

The semi-grand-canonical partition function is as-
sociated with the thermodynamic potential we denote
by Ψ, resulting from the Legendre transform of the
Helmholtz energy (A) switching each Nij for the corre-
sponding µij as done in the transformation of the parti-
tion function from the canonical to semi-grand-canonical
ensemble under its formalism [9]. Therefore, these ther-
modynamic potentials are related to each other and with
the partition function by

Ψ = A−∑
i

∑
j

(
Nijµij

)
= −kBT ln Ξ (7)

1.3. The empty lattice reference
The canonical partition function of the empty lat-

tice is related to the Helmholtz energy by

AEL = −kBT ln QEL (8)

where its differentials, from classical thermodynamics
are

dAEL = −SdT − PdVEL + µEL
w dNw (9)

d
(

AEL

kBT

)
= − UEL

kBT2 dT − PEL

kBT
dVEL +

µEL
w

kBT
dNw (10)

From these, derived properties as chemical potential, in-
ternal energy and pressure can be calculated from the
partition function by

µEL
w = kBT

(
∂AEL/kBT

∂Nw

)
T,VEL

(11)

UEL = −kBT2
(

∂AEL/kBT
∂T

)
VEL,Nw

(12)

PEL = −kBT
(

∂AEL/kBT
∂VEL

)
T,Nw

(13)

These expressions are crucial for the symbolic deriva-
tions conducted here, as the canonical partition function
for the empty lattice has precisely T, VEL, and Nw as
independent variables.

1.4. Cell theory and the Langmuir coefficients

In order to describe the partition function for a sin-
gle enclathrated molecule under the mean field cage po-
tential (qij), additional considerations are necessary [23].

4. Internal degrees of freedom of that guest molecule
are equivalent to those of that molecule in the ideal
gas state,

5. Translation inside the cage is subject to a mean-field
water-guest potential based on the approximation of
Lennard-Jones and Devonshire.

From those assumptions, qij is given by a product
of a term for internal degrees of freedom (Φi) and an
integral for the free volume:

qij = Φi

∫ Rj

0

[
exp

(−wij

kBT

)
4πr2

]
dr (14)

The factor Φi represents the configurational integral
for internal degrees of freedom (as rotation and vibra-
tion) and particle momentum (thermal de Broglie wave-
length), which is component specific and solely a func-
tion of temperature. The configurational integral for the
free volume is evaluated for the mean-field cage poten-
tial wij along with radial coordinate r in the domain of a
cell with radius Rj.

In addition, it is helpful to relate absolute activity
(λ) to fugacity ( f̂ ) using the ideal gas partition function
as a reference [24]:

f̂ij = λijkBTΦi (15)

This expression carries that same factor (Φi), in accor-
dance to assumption 4.

Using these, Langmuir coefficients (Cij) are de-
fined from the following relation:

qijλij = Cij f̂ij (16)

so that derived properties expressions can be rewritten
in terms of finite Cij and f̂ij for practical calculations.

We can express Langmuir coefficients from the free
volume integral as

Cij =

∫ Rj
0
[
exp

(
−wij/kBT

)
4πr2]dr

kBT
(17)
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where the factor (Φi) from Eq. (14) and Eq. (15) can-
cels out, and we can express qij from Cij, for convenient
symbolic calculations as in

qij = kBTΦiCij (18)

We have used the cage potential wij derived from the
Kihara pair interaction potential. This cage potential for-
bids the particle from being closer to the cage boundary
by less than a hard-core interaction parameter ai; thus,
the implementation of Eq. 17 has this information built
into its upper limit of integration as (Rj − ai) [25]. The
resulting expression for wij is given by [23, 26, 27, 9]; see
Appendix A.

The Langmuir coefficients depend on cages radii,
as calculated from the cell theory for hydrates; this is
illustrated in Fig. 2.

The cage potential wij depends on the radial co-
ordinate of a guest inside an assumed spherical cage
(r), in addition to the structural parameters such as the
coordination number of water molecules per cage (Zj)
and the cage radius (Rj), as well as the effective inter-
action parameters between guest and host molecules (ai,
σi, εi ). Langmuir coefficients, coming from the config-
urational integral over the radial coordinate, are depen-
dent on temperature and those structural and interac-
tion parameters. The Langmuir coefficient at constant
temperature shows a maximum with respect to cage ra-
dius (Fig. 2a). For a cage whose radius is large relative
to the molecule size, the molecule fits loosely into the
cage; consequently, attractive interaction predominates.
Thus, the cage potential energy decreases for a slightly
smaller cage radius, and Langmuir coefficients increase.
This may happen up to a point where the cage is small
enough so that the molecule fits tightly. Then, for an
even smaller cage radius, repulsive interaction predomi-
nates, cage potential energy increases, and Langmuir co-
efficients decrease.

Plotting Langmuir coefficients as a function of
temperature for small perturbations of the cage radius
(Figures 2b) shows that decreasing the radius for a cage
in which the guest molecule fits tightly will make it
too tight and increase the predominance of repulsive
force, and the curve of Langmuir coefficient versus tem-
perature is shifted down, (blue curves). On the other
hand, decreasing the radius for a cage in which the guest
component molecule fits loosely will make it less loose
and increase the predominance of attractive force, and
the curve of Langmuir coefficient versus temperature is
shifted up (orange curves).

Note that, by considering varying cage radius un-
der the approximation of Lennard-Jones and Devonshire,
we intend to represent isotropic cage deformations, i.e.,
keeping the radial symmetry.

Figure 2: Langmuir coefficients depend on cages radii, as calculated
from the cell theory for hydrates. (a) (•, •) bullets show the Langmuir
coefficients for a hypothetical molecule in the small (blue) and large
(orange) cages of a sI hydrate given for a lattice with specified molar
volume, where a given guest is tightly or loosely fit, respectively; (—,
—) lines show the Langmuir coefficients given as a function of that
cage radius at fixed molecular radius σ; (b) Langmuir coefficients for
a hypothetical molecule versus T in the small and large cages of a sI

hydrate given for a lattice with specified molar volume (Small0, Large0),
and given for small positive (+) and negative (-) perturbations of the
cage radius.

1.5. Geometry relation between cages radii and lattice molar
volume

We can relate the cages radii to the lattice molar
volume, showing that Rj depends on both the exten-
sive volume of the lattice and on the number of water
molecules as independent variables in the semi-grand-
canonical partition function. This will be crucial for the
reasoning and mathematical derivations that follow.
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Consider a cubic unit cell with N0 molecules and
edge length a0, therefore with volume a3

0. Fig. 3 shows
that a is a function of the lattice molar volume and, there-
fore, in the calculations to be performed, it is a function
of both extensive lattice volume at constant mole number
and function of mole number at constant extensive lattice
volume.

Figure 3: Geometric relation between the edge length of the unit cell
with number of molecules, extensive volume and molar volume of the
lattice: (→) blue arrows show increase in volume at constant number
of molecules, resulting in unit cell expansion, (→) purple arrows show
increase of number of molecules at constant volume, resulting in unit
cell contraction.

Increasing the extensive volume from V0 to 23V0
while holding constant Nw at N0, which is done by ex-
panding existing unit cells (paths a or d), results in a
larger molar lattice volume and larger edge length. Al-
ternatively increasing the number of water molecules Nw
from N0 to 23N0 holding constant the extensive lattice
volume (paths b or c), which is obtained by increasing
the number of unit cells scaled down to fit in the same
volume, results in a smaller molar lattice volume and
smaller edge length. When changing both extensive and
number of molecules simultaneously, one keeps constant
the molar lattice volume and thus edge length (paths a+c
or b+d).

Furthermore, there is evidence of variation of the
radius of each cage type with the unit cell lattice parame-
ters from molecular simulations [5] and from experimen-
tal data [3]. In this spirit, we shall proceed to relate the
lattice molar volume with the edge length of the unit cell

and with cages radii according to the following geomet-
rical relations:

1. The unit cell is a basic unit from which the macro-
scopic phase is described by means of simple repli-
cation. The unit cell has constant number of
molecules (Nuc

w ) and its specific volume (Vuc/Nuc
w ) is

equal to the macroscopic lattice molar volume VEL.

VEL
=

VH

Nw
=

Vuc

Nuc
w

(19)

dVEL
= d

(
VH

Nw

)
=

1
Nuc

w
dVuc (20)

2. The unit cell is cubic, with variable edge length auc

Vuc = auc
3 (21)

dVuc = 3auc
2dauc (22)

3. The shells radii for the water molecules coordinating
a cage are empirically correlated to the edge length.
Therefore we have considered, for the mean radii
in the Lennard-Jones-Devonshire approximation, the
following expression with a scaling parameter kRj:

Rj = Rj,0

(
auc

auc,0

) kRj
k

(23)

∂Rj

∂auc
=

Rj,0kRj

auc,0k

(
auc

auc,0

) kRj
k −1

(24)

where kRj is a scaling factor for each cage radius
with respect to the edge length of the unit cell.

In the trivial case, where kRj = 0, the radii are constant
and the derivative is null. In the simplest case, apart
from that, where kRj = k, for each cage type j, cages radii
are proportional to the edge length, and the derivative is
the Rj,0/auc,0 constant factor. These parameters (kRj) are
included in the optimization scheme performed here to
better represent phase equilibrium and volumetric data
of the selected components (Section 3.1).

As the Langmuir coefficients depend on the cage
radius, this variable dependence scheme finally leads to
the following effective relation of Langmuir coefficients
and lattice molar volume, which will be useful in subse-
quent symbolic calculations:

∂Cij

∂VEL =
∂Cij

∂Rj

∂Rj

∂auc

∂auc

∂Vuc

∂Vuc

∂VEL (25)

Since ∂Rj/∂auc, ∂auc/∂Vuc, ∂Vuc/∂VEL are all positive, it

is worthwhile to notice that the sign of ∂Cij/∂VEL is de-
termined by the slope of Cij with respect to Rj (Fig. 2a).
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Note also that the relation presented in Fig. 3 and Eqs. 19
to 25 support attaining to any empirical relation between
Rj and auc suggested from measurements or molecular
simulations by means of changing Eq. 23 and 24 accord-
ingly. For detailed steps regarding the determination of
each of these terms in this work, see Appendix A.

1.6. Volumetric properties for the empty lattice

Although the literature has shown possible the-
oretical models for an empty lattice volume [28], we
have chosen to work with a simple correlation. We use
an empirical expression to relate pressure and temper-
ature to the volume of the empty lattice, as a pure wa-
ter crystalline phase, based on the assumptions of con-
stant isothermal compressibility and a polynomial iso-
baric edge length behavior, in a per mol basis:

VEL

m3mol−1 =

(
auc,0

Å
+ α1

(
T
K
− Tuc,0

K

)
+ α2

(
T
K
− Tuc,0

K

)2 )3

× 10−30NA

Nw,uc
exp

(
− k

Pa−1

(
P

Pa
− Puc,0

Pa

))
(26)

where NA is the Avogadro number, auc,0 is the edge
length of the unit cell at P = Puc,0 and T = Tuc,0.

This expression allows one to relate the pressure
and volume of the empty lattice. However, experimental
data is only available for actual clathrates. Recalling that
the hydrate modeled with the vdW&P model has volume
VH equal to the empty lattice reference VEL but not the
same pressure, the parameters in the correlation for VEL

were regressed from crystallography measurements for
the hydrate volume VH by considering the pressure shift
calculation. We also used results from theoretical Lattice
Dynamics (LD) calculations for volumetric properties of
the empty lattice performed by Belosludov and collabo-
rators [28] in the regression; we achieved a compromise
between representing LD data for the empty lattice and
hydrate experimental data for different guests.

1.7. Thermodynamic properties for compressible hydrates

We have obtained thermodynamic properties for
compressible hydrates via symbolic calculations taking
the dependence of each qij with VH/Nw into consider-
ation. The expressions for Nij and Θij, are the same as
before, however the expression for pressure and chemi-
cal potential, which are based on partial derivatives with
respect to VH and Nw, respectively, will both get an ex-
tra contribution when considering each Rj dependent on
VH/Nw [9].

The hydrate thermodynamic potential is related to
the Helmholtz energy by Eq. (7), and therefore it can be

shown that its differential form, from classical thermo-
dynamics, is

d
(

Ψ
kBT

)
= − U

kBT2 dT − P
kBT

dVH

+
µw

kBT
dNw −∑

ij

[
Nijdln

(
λij
)]

(27)

1.7.1. Occupancy
Inspecting Eq. (27), one can relate the number of

guest molecules with the partition function by

Nij = −
(

∂Ψ/kBT
∂ ln λij

)
T,VH,Nw,λ 6=ij

(28)

from which it is convenient to define the occupancy frac-
tion (Θij) of type j cages by molecules of type i as

Θij =
Nij

νjNw
(29)

The occupancy fraction (Θij) of type j cages by
molecules of type i is, as a result of that derivative of
the clathrate potential, given by:

Θij =
qijλij

∑k

[
qkjλkj

]
+ 1

=
Cij f̂ij

∑k

[
Ckj f̂kj

]
+ 1

(30)

From this, the partition function can be rewritten,
for use in subsequent derivations, as

− Ψ
kBT

= ln Ξ = ln QEL

−∑
j

(
νjNw ln

(
1−∑

i

(
Θij
)))

(31)

using the algebraic identity that

∑
i

(
qijλij + 1

)
= 1/

(
1−∑

i

(
Θij
))

(32)

1.7.2. Hydrate pressure
We can calculate the hydrate pressure in the ther-

modynamic state described by T, VH, Nw and λ. Inspect-
ing Eq. (27), pressure is related to the partition function
according to

PH = −kBT
(

∂Ψ/kBT
∂VH

)
T,Nw,λ

(33)

Applying this operation and using Eqs. 31 and 27 we
obtain

PH = −∂AEL

∂VEL − kBT ∑
j

[
νjNw

∂ln
(
1−∑i

[
Θij
])

∂VH

]
(34)
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where the empty lattice term corresponds to the pure
water empty lattice phase pressure in the condition of
VEL = VH, Nw and T (Eq. 13). We then define the dif-
ference in pressure between hydrate having λ activity of
guests and the empty lattice at that condition by ∆PH−EL,
which we refer to as the pressure shift.

Applying the product and chain rules for deriva-
tives of the partition function with respect to extensive
volume at constant water mole number, and recalling Eq.
(4) and Fig. 3 we obtain the final expression for the pres-
sure shift, with all properties in per mol basis, as

∆PH−EL = PH − PEL =

RT

(
∑

j

[
νj ∑

i

[
Θij

Cij

(
∂Cij

∂VEL

)
T

]])
(35)

The applicable form of this expression depends on either
a partition function for the enclathrated molecules (Eq.
14) or an empirical expression for Langmuir coefficients
with explicit dependence on the lattice molar volume fit-
ted to either rigorous model results [26] or to phase equi-
librium data.

One can draw interesting conclusions by compar-
ing Equation 35 to Equation 25. Since all terms multiply-
ing ∂Cij/∂VEL in Equation 35 are positive, the sign of the
pressure shift will result from a combination of the signs
of the slopes of Cij with respect to Rj for all cage types.
From Fig. 2b, one can see that there are equal values of
Cij for different values of Rj. Thus, the pressure shift can
help distinguish between the values of cage radius that
yield the same Cij and, consequently, the same Θij.

Note that in the case of considering that the Lang-
muir coefficient itself does not vary with the lattice mo-
lar volume, as in the case where the Rj was not re-
lated to VH/Nw through our geometry considerations,
the ∆PH−EL would vanish naturally: the pressure in the
empty lattice would be equal to the actual hydrate pres-
sure. This is a common simplification in current litera-
ture, but would be the case of a hydrate capable of inter-
stitial compressibility while keeping cages size constant,
which is at best a rough approximation for small com-
pressibility. This case is referred to in the results and
discussion section as the Interstitial model.

In the general case, one can say that the lattice does
"see" the guest component molecules, so much that (a)
the pressure of the phase significantly increases or de-
creases with the adsorption extent at constant volume or
alternatively (b) the volume does vary in function of oc-
cupancy at a constant pressure analysis.

For phase equilibrium calculations, it should be
clear that the hydrate pressure is equal to each of the
other bulk phases pressure, as it is the thermodynamic
property conjugated to the volume of the actual hydrate
phase, while the lattice pressure PEL gives the hydrate
phase volume according to the intrinsic volumetric rela-
tion of the empty lattice.

For details on the determination of
(

∂ ln(Cij)
∂VEL

)
T

,

see Appendix A.

1.7.3. Chemical potential of the host component
The chemical potential of water, by inspection of

27 is related to the partition function according to

µH
w = kBT

(
∂Ψ/kBT

∂Nw

)
T,VH,λ

(36)

In the pressure shift model, Langmuir coefficients de-
pend on the lattice molar volume, and we take that into
account via the product and chain rules in accordance
with Eq. (4) and Fig. 3.

µH
w =

∂AEL

∂Nw
+ kBT

(
∑

j

[
νj ln

(
1−∑

i

[
Θij
])])

+ kBT

(
∑

j

[
Nwνj

∂ln
(
1−∑i

[
Θij
])

∂Nw

])
(37)

Then, a contribution arises, which is equivalent to
the pressure shift contribution ∆PH−EL; in a per mol basis:

∆µH−EL
w = µH

w − µEL
w =

RT

(
∑

j

[
νj ln

(
1−∑

i

[
Θij
])])

+ ∆PH−ELVEL (38)

This expression allows us to calculate the chemical po-
tential of water in the hydrate relative to the empty lattice
condition. In order to perform phase equilibrium calcu-
lations we need to model the chemical potential of the
empty lattice relative to a practical reference state: pure
liquid water, conventional ice, or pure ideal gas.

Now, consider the case where Cij and Rj were con-

sidered depending on VEL through our geometry con-
sideration, while the actual lattice volume was consid-
ered independent of pressure (k ≈ 0). In this case, we
are in a consistent limit case where our model, despite
the pressure shift, yields the same results for chemi-
cal potential of hydrate with respect to pure water as
the standard model with constant volume. This hap-
pens because the new contribution in the ∆µH−EL ex-
pression (VEL∆PH−EL) cancels out with the new contri-
bution arising in ∆µEL−PW: the difference between the
Poynting integral in the standard model and the pressure
shift model lies in the upper limit of integration; in the
former case, the upper limit was PEL = PH and, now it
is PEL = PH − ∆PH−EL; therefore the difference between
the Poynting integral of a constant V from one case to
the other is the same (VEL∆PH−EL) factor.
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1.7.4. Internal energy and enthalpy
We note that our modification influence the en-

thalpy calculations previously presented by a few works
[29, 30, 11]. This property appears in the numerator for
the Clapeyron equation, therefore it is related to the slope
of the equilibrium curve, besides being fundamental for
energy balances in general.

The derivation for enthalpy begins with the rela-
tion between internal energy and the partition function,
according to:

UH = −kBT2
(

∂Ψ/kBT
∂T

)
VH,Nw,λ

(39)

where, as in the pressure calculation, a contribution from
the empty lattice partition (QEL) function arises, and it
leads to the internal energy of the empty lattice (UEL) at
given T, V, Nw, whereas, from qij, Φi leads to the inten-
sive internal energy of an ideal gas at that temperature
U IG

The internal energy of the hydrate can be ex-
pressed relatively to the internal energy of the empty
lattice at a same T, V, Nw by

UH −UEL −∑i Ng
i UIG

NwkBT2 = ∑
i

∑
j

[
νjΘij

(
∂ ln

(
TCij

)
∂T

)]
(40)

From that, we can derive enthalpy using

HH = UH + PHVH (41)

HEL = UEL + PELVEL (42)

HIG
= UIG

+ kBT (43)

where V = VH = VEL but PH = PEL + ∆PH−EL, there-
fore

∆HH−EL−IG

Nw
=

HH − HEL −∑ Ni H
IG

Nw
=

+VEL∆PH−EL − kBT ∑i Ni
Nw

+ kBT2 ∑
i

∑
j

[
νjΘij

(
∂ ln

(
TCij

)
∂T

)]
(44)

This expression represents the enthalpy of adsorption of
molecules of guest component on an empty lattice, from
an ideal gas phase, per molecule of water.

1.8. Summary of modeling
In this paper, we propose a new model called the

Pressure Shift (PShift) model and compare its assump-
tions with three other models which we call Standard,
Interstitial and Inconsistent. In this section, we try to sum-
marize the differences discussed; these four classes of the

van der Waals and Platteeuw model differ from one to
another by combining assumptions in different manners,
thus considering some phenomena and neglecting oth-
ers, the consequences are illustrated in Fig. 4:

Figure 4: Comparison of different lattice behavior modeled in literature
(Standard, Interstitial and Inconsistent) and proposed here (Pressure
shift).

The standard modeling approach is the van der
Waals and Platteeuw model assuming constant cages
radii and constant molar volume; e.g. [23, 26, 27].

The modeling approach we call interstitial as-
sumes possible variations of volume with temperature
and lattice pressure but neglects variations of cage ra-
dius and this affects the Poynting integrals. However,
because cages radii remains constant, this does not af-
fecting Langmuir coefficients and does not result in a
pressure shift contribution; e.g. [10, 11].

The modeling approach we labeled as inconsistent
refers to a family of models that use Langmuir coeffi-
cients dependent on molar volume, without revising the
expressions for derived properties; e.g. [5, 16]. Molar
volume and cages radii vary with temperature and pres-
sure, but the ∆PH−EL contribution is not acknowledged,
and consequently, the hydrate pressure PH is assumed
to be equal to the reference lattice pressure PEL. They
are labeled inconsistent for failing to pass the Clapeyron
equation test, as illustrated in Fig 7.

The pressure shift model is the approach proposed
here, in which revising the expressions for derived prop-
erties, we showed a difference between the pressure of
the actual clathrate and that of the empty lattice having
the same volume, and this yielded new contributions in
the expressions for several thermodynamic properties, as
shown.
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1.9. Pressure shift solution algorithm

We have stated that our model has, intrinsi-
cally, an interdependence in the variables Θij, VEL Rj,
∆PH−EL, PH, and PEL (Equation 3). In a simplest case,
given a value for the empty lattice pressure and fu-
gacities of all guest components, the calculation of the
pressure shift ∆PH−EL + PEL is straightforward, using
calcPShift(T, PEL, f̂ [:]) (Fig. 5).

Function calcPShift(T, PEL, f̂ [:]):
/* Calculate lattice molar volume: */

VEL
= f_VEL

(
T, PEL) // (Eq. 26)

/* Calculate cages radii: */

R[:] = f_R
(

VEL
)
// (Eq. 23,21,19)

/* Calculate Langmuir coefficients: */
C[:, :] = f_CLang (T, R) // (Eq. 17)
/* Calculate occupancies: */

Θ[:, :] = f_Occ
(

C, f̂
)
// (Eq. 30)

/* Calculate CLang derivatives: */
dCdV [:, :] = f_dCdVEL (T, R) // (Eq. 25)
/* Calculate the pressure shift: */
∆PH−EL = f_DPHEL (T, Θ, dCdV) // (Eq. 35)
return ∆PH−EL

Figure 5: Pressure shift calculation

Then the hydrate pressure is calculated from
PH = ∆PH−EL + PEL. However, for direct specifica-
tion of PH, an iterative solution method is required.
We developed the successive substitution algorithm

convergePEL
(

T, PH, f̂ [:]
)

(Fig. 6) to converge the pres-
sure shift and obtain thermodynamic properties of the
hydrate.

Function convergePEL(T, PH, f̂ [:]):
/* Guess a null pressure shift: */

∆PH−EL = 0
do

/* Calculate the lattice pressure:
*/

PEL = PH − ∆PH−EL

/* Update the pressure shift: */
∆PH−EL = calcPShift(T, PEL, f̂ [:])
/* Calculate the residue: */

RES =
([

∆PH−EL]k+1 −
[
∆PH−EL]k

)
/PH

loop while abs (RES) > 1× 10−9;
/* Calculate the lattice pressure: */
PEL = PH −

[
∆PH−EL]∗

return PEL

Figure 6: Lattice pressure convergence algorithm

1.10. The Clapeyron equation as a consistency check

Previous works have considered the dependence
of Rj with V in the Langmuir coefficients calculations
while not considering the pressure shift in ∆µH−EL or
∆µEL−PW expressions. Here, we show this leads to an in-
consistency noticeable in phase equilibrium calculations.
According to the multicomponent and multiphase ex-
pression for the Clapeyron equation for univariant equi-
librium [31, 9],

dP
dT

=
|∆Huni|

T|∆Vuni|
=

∣∣∣∣∣∣∣∣
−HH/T2 xH

w xH
g

−HPw/T2 xPw
w xPw

g

−HG/T2 xG
w xG

g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−VH/T xH

w xH
g

−VPw/T xPw
w xPw

g

−VG/T xG
w xG

g

∣∣∣∣∣∣∣∣
(45)

where G means the guest component fluid phase, either
as Vapor or Liquid. Considering the common approxi-
mation of xG

w = 0 and xPw
g = 0, it simplifies to

∆Vuni
= VH −VPwxH

w −VGxH
g (46)

∆Huni
= HH − HPwxH

w − HGxH
g (47)

which are the variations in volume and enthalpy, respec-
tively, on the dissociation of 1 mol of hydrate into Pw
and G; VH

= VH/(Nw + ∑i Ng
i ) and HH

= HH/(Nw +

∑i Ng
i ).

As the slope (dP/dT) is equal to the ratio between
|∆Huni| and T|∆Vuni|, when |∆Vuni| vanishes, the phase
equilibrium curve has vertical slope.

Here, we show the application of this test to the
phase equilibrium diagram of hydrate of an arbitrary
pseudo component as illustrated in Fig. 7.

The continuous curves are the Pressure × Tem-
perature phase equilibrium locus. The dotted curves are
the contour level for the relation |∆Vuni| = 0. The black
curves and dark gray curves represent the standard and
the interstitial models, respectively, both of which meet
this Clapeyron equation criterion. While, as shown in
light gray, a model Langmuir coefficients dependent on
lattice volume lacks this consistency if the derived prop-
erties equations are not revised. Finally, the red curve
results from the Pressure-shift model proposed here.

In summary, the inclusion of volume-dependent
Langmuir coefficients achieves a sensitivity of the phase
equilibrium behavior regarding the model parameters
at high pressure, as previously noted. The revision of
expressions, in turn, ensures that the model passes the
Clapeyron equation consistency test and achieves a sen-
sitivity of the phase equilibrium behavior regarding the
model parameters also at low pressure, this last feature
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Figure 7: Consistency test with the Clapeyron equation: solid curves
are phase equilibrium loci for each model, dashed curves are the loci
of null molar volume determinant. (—) the black curves represent
the Standard model, (—) the dark gray curves represent the Intersti-
tial model, (—) the light gray curves represent the Inconsistent model,
(—) the red curves represent the Pressure Shift (PShift) model. If a given
model has thermodynamic consistency, the null molar volume determi-
nant curve intercepts the point of the phase equilibrium loci where the
slope is vertical.

mainly being a consequence of the volume and cages
radii changes due to the guest-host interaction at low
bulk pressure.

2. Phase Equilibrium Framework

2.1. Phase equilibrium calculations

We have performed phase equilibrium calculations
for the 3-phase curve: hydrate sI+ liquid water + gas or
liquid guests. For these phase equilibrium calculations
we have solved the criterion given by

∆µH−EL
w + ∆µEL−Pw

w = 0 (48)

where ∆µEL−Pw is the difference in chemical potential of
the empty lattice at pressure PEL and stable pure water
at system pressure P (ice or liquid).

The chemical potential of the empty lattice in
∆µEL−Pw is expressed not from an actual empty lattice
partition function model but rather as four contributions:
∆µEL−Pw

0 , a chemical potential difference taken at T0 and

P0; VEL, a correlation for the molar volume of the empty
lattice as a function of T and PEL; VPw, a correlation for
the molar volume of the stable pure water as a function
of T and P; and ∆HEL−Pw

0 , the molar enthalpy difference
between the empty lattice and the stable pure water at
P0, as a function of T. The resulting expression, with all
properties in per mol basis, is

∆µEL−Pw

RT
=

∆µEL−Pw
0
RT0

−
∫ T

T0

∆H̄EL−Pw
0
RT2 dT

+
∫ PEL

P0

V̄EL

RT
dP−

∫ P

P0

V̄Pw

RT
dP (49)

We note that our equation expresses the difference
in chemical potential for the host molecule at given T,
PEL, and Nw in empty lattice condition to a stable pure
water condition at system pressure P. We deal separately
with expressions for molar volume of the empty lattice
and the stable pure water.

We also emphasize that the upper limit pressure in
the Poynting integral of the empty lattice (second to the
last term in Eq. 49) must consistently match PEL from
Eq. 13 throughout derivation and implementation. It
is important to point this out because our model shows
that the pressure associated with the empty lattice PEL

in thermodynamic properties and phase equilibrium cal-
culations is different from the actual hydrate pressure,
which is the system pressure. While current literature
relies on PH = PEL.

For phase equilibrium calculations with either a
gas or liquid phase rich in guest components, we used
the Peng and Robinson equation of state [32] to calculate
guest fluid phase fugacities: in the chemical equilibrium
criterion of guests species, the fugacity for each guest
type i in the fluid phase is equal to the fugacity of that
guest type i associated with any cage type j in the hy-
drate phase.

f̂ G
i = f̂ H

ij (50)
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The liquid water molar volume was calculated
from a correlation based on experimental data of [33] and
[34].

2.2. Enthalpy of dissociation

In order to obtain a practical application for the
hydrate enthalpy expression derived here, we combine
it with residual gas enthalpy at T, P, Ni, (∆HG−IG) and
enthalpy of transformation for the lattice at T, PEL, Nw
into stable pure liquid water at T, P, Nw (∆HEL−Pw), re-
sulting in an expression for the enthalpy of dissociation
(∆HG+Pw−H). This combination is done weighting the
terms with the composition into

∆HG+Pw−H

Nw
= −∆HH−EL−IG

Nw
+ ∑

i

[
Ni
Nw

∆HG−IG
]

+ ∆HEL−Pw (51)

This is analogous to the expression presented in [11], but
noting, now, that ∆HEL−Pw represents a difference in en-
thalpy of an empty lattice at PEL and a stable pure liquid
water at P, and that ∆HH−EL−IG includes a pressure shift
contribution (VEL∆PH−EL).

The contribution of ∆HEL−PW can be expressed
relative to a standard condition at T0 and P0 as

∆HEL−Pw
= ∆HEL−Pw

0 +
∫ T

T0

∆cP,0
EL−PwdT

+
∫ PEL

P0

[
VEL − T

(
∂VEL

∂T

)
P,Nw

]
dP

−
∫ P

P0

[
VPw − T

(
∂VPw

∂T

)
P,Nw

]
dP (52)

As we noted in the expression for the chemical po-
tential of water, in the limit case of constant lattice vol-
ume, the PShift model also yields the same results as the
standard model for enthalpy calculations. If VEL was con-
stant with respect to T and P, then the pressure shift
contribution in the expression for ∆HH−EL−IG would be
equal to the factor removed from the volume integral for
enthalpy in the expression for the ∆HEL−PW.

3. Results and discussion

We have applied our model to single hydrates of
three components: methane, ethane, and xenon. We dis-
cuss the behavior captured by the model and the varia-
tion of that behavior from guest to guest (different inter-
action parameters). We compare the model results with
available experimental data for phase equilibrium condi-
tions and for volumetric information given as unit cell
edge length.

All calculations of thermodynamic properties and
phase equilibrium presented in this work were per-
formed in the IPython environment for interactive com-
puting [35], using the SciPy ecosystem of open-source
software for mathematics, science, and engineering to
handle data arrays [NumPy: 36], established numeri-
cal methods [SciPy: 37], and plots for both interactive
data visualization and publication [Matplotlib: 38].

3.1. Parameterization of hydrate properties

We have tuned the hydrate framework parameters
(unit cell, empty lattice formation, and guest enclathra-
tion), starting from tabulated values [39]. We used data
for Pressure × Temperature of phase equilibrium from
the NIST hydrate database and volumetric data from sev-
eral references [7, 2, 8, 3, 4, 6], including empty lattice
simulations from Belosludov et al. [28]. The optimal pa-
rameters, as reported here, provided a good representa-
tion of P× T phase equilibrium data in the pshift frame-
work and a qualitative representation of volumetric data
for the three single guest hydrates studied here.

We have use an adaptation of the approach pre-
sented in Medeiros et al. [11] for the parameter tun-
ing. We have used an objective function with a contri-
bution for phase equilibrium data added for datasets of
single hydrates of each guest into a joint minimization
and a contribution for volumetric data of single hydrates
of each guest, by means of the edge length of the unit
cell, with empirically chosen weights.

Table 1 lists all regression parameters related to
the unit cell volume dependence on pressure and tem-
perature, all regression parameters related to the scaling
of the cage radius with the edge length, and some struc-
tural constants (Z, ν, and Nuc

w ). We emphasize that these
parameters are associated directly to the empty lattice
and applies to hydrates of all three tested components,
where different edge lengths and cages radii and differ-
ent apparent compressibility and expansivity are calcu-
lated due to the effects of the pressure shift.

Table 1: Empty lattice structure parameters

Unit Cell sI

auc,0/Å 11.78
α1 1.494× 10−4

α2 1.415× 10−6

k/Pa−1 1.967× 10−10

Nuc
w 46

Cages Small Large

Rj,0/Å 3.904 4.038
kRj/Pa−1 1.453× 10−10 3.483× 10−11

Zj 20 24
νj 2/46 6/46

with Tuc,0 = 0 K and Puc,0 = 0 Pa.
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Table 2 lists all regression parameters related to
the formation properties of the empty lattice, i.e., related
to its chemical potential with respect to pure liquid wa-
ter. We emphasize that these parameters are associated
directly to the empty lattice at PEL = P0, and are con-
sistently used to model hydrates of all three tested com-
ponents. They will, in practice, have different chemical
potential relative to liquid water at bulk P = P0 as a re-
sult of the different (shifted) lattice pressure associated
with each of them at a given temperature and bulk pres-
sure.

Table 2: Empty lattice formation parameters

sI

∆µEL−Lw
0 / J mol−1 742.9

∆H̄EL−Lw
0 / J mol−1 −4089.5

∆cP,0
EL−Lw/ J mol−1 K −12.39

with T0 = 273 K and P0 = 1 bar.

Table 3 lists all regression parameters related to the
enclathration of guest molecules. These parameters work
together with the fact that the cages radii change because
of the pressure shift, so at any given temperature and
pressure, a guest with effective size σi is interacting with
a cage with radius Rj(T, PEL), where PEL = P−∆PH−EL.

Table 3: Kihara / Lennard-Jones and Devonshire guest parameters

σi/Å (εi/kB)/K

CH4 3.595 127.4
C2H6 3.863 234.6
Xe 3.688 174.8

with all ai = 0 Å.

In Table 3, σi and εi are combination parameters
for the effective interaction between each guest i and wa-
ter in the Lennard-Jones-Devonshire spherical approxi-
mation. The hard-core parameters a of the Kihara po-
tential were set to zero, i.e., despite all equations having
been derived for the kihara potential general case, the
potential effectively used here was the Lennard-Jones po-
tential.

3.2. Empty lattice volume and guest dependent lattice volume

According to the correlation used, the lattice vol-
ume VEL decreases as the lattice pressure PEL increases
and it increases as the temperature increases. The behav-
ior for the empty lattice as a function of temperature and
of lattice pressure is shown in Fig. 8a and Fig. 8b, respec-
tively. The lines are temperature isopleths calculated at
ambient pressure and zero pressure (indistinguishable)
or pressure isopleths at two temperature levels: 20 K and
200 K. The markers are simulated data from references in
these conditions, as noted in the legend [28]. Our curves

agree moderately, but not quite well, to the empty lattice
data because the tuning of parameters was done priori-
tizing actual hydrate volume and phase equilibrium data
and the model in its current state was not able to quan-
titatively correlate all the available empty lattice and hy-
drate data simultaneously.

As the volume changes, also do the cages radii ac-
cording to the proportionality criteria used. The behav-
ior of radii with respect to the edge length as dictated by
our proportionality criteria is given by the lines in Fig.
8c, while the round markers show the optimized mean-
spherical-approximation radius and the associated edge
length at Tuc,0 = 0 K and Puc,0 = 0 Pa; in that figure, the
square markers show the radius of each layer k of oxygen
atoms that constitute each cage and the associated edge
length, as measured for a hydrate of ethylene oxide by
McMullan and Jeffrey (see the layers characterization in
Ballard et al. [5] and atomistic coordinates in Takeuchi et
al. [40]).

The behavior of Langmuir coefficients with respect
to changes in radii depends on the relative size of the
guest molecule and the cage. Therefore, each the guest
molecule, having a different size, is subject to a different
pressure shift and a different resulting volume of its sin-
gle hydrate. The behavior of edge length for each of the
guest molecules studied here is given as function of tem-
perature in Fig. 8d at ambient pressure, and as a function
of bulk pressure in Fig. 8e and Fig. 8f for T = 271 K and
T = 298 K, respectively. Lines in blue, yellow, and green
are calculated values for methane, ethane, and xenon, re-
spectively. Markers in the same colors are experimental
data from references noted in the legends [2, 7, 8, 4, 6, 3],
dashed black lines are empty lattice edge length at given
T and PEL as calculated with the optimized parameters.

The calculations of edge length versus tempera-
ture at atmospheric pressure were performed at constant
occupation Θij, as given by the condition (T, P, y) under
which the hydrate sample was formed. That strategy was
taken with the intention to represent the conditions un-
der which these experiments were carried, as reported in
the literature: the hydrate is first synthesized at a given
temperature and pressure, from ice powder and in equi-
librium with a pressurized guest fluid phase; then the
samples are quenched, ground and sieved. Finally, the
samples are brought to the experimental apparatus at at-
mospheric pressure where temperature is set to desired
levels and measurements are taken [7, 8]. At this point,
the samples are not anymore in contact with the guest
fluid phases, but for a short duration presumably allow-
ing negligible guest exchange with the environment.

In a plot of lattice size versus pressure for a given
hydrates the pressure shift can be seen roughly as the
horizontal difference between the lattice size curve for
this hydrate and that for the empty lattice with the same
volume - this observation has been discussed as the hy-
drate "effective pressure" in the lattice dynamics calcu-
lations of Belosludov et al. [28]. In the plots presented
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here, all hydrate calculations yield edge lengths higher
than that of the empty lattice at given T and PEL. There-
fore, all of these guests are causing expansion of the lat-
tice in these conditions.

3.3. Phase equilibrium
We have compared the hydrate - liquid water -

gas/liquid guest univariant phase equilibrium as calcu-
lated with the pressure shift model with experimental
data, and with the other three modeling strategies de-
scribed in Fig. 4.

In Figs. 9a, 9c, and 9e we show the phase equilib-
rium curve with optimal parameters compared to exper-
imental data from several references obtained through
the NIST hydrate viewer [41]. The parameter tuning pro-
vided good agreement with experimental data for phase
equilibrium with liquid water - above 273 K. We have
represented data ranging from around 10 bar up to 10 000
bar, including the retrograde dissociation region shown
experimentally for methane and xenon single hydrates.
The model predicts retrograde dissociation for ethane
hydrates slightly above the highest pressure available in
the data set. Experiments in that condition range should
help validate the current state of the model, either by
confirming the predictions or by helping improve the pa-
rameter set.

In Figs. 9b, 9d and 9f we show the phase equilib-
rium curve

(
PH,G,Lw × T

)
and the curve (locus) of null

molar volume determinant
(

∆Vuni
= 0

)
in phase equi-

librium diagrams for all 4 models for each of methane,
ethane, and xenon, respectively. The comparison be-
tween models was performed using the parameters opti-
mized to the pressure shift model; that comparison was
not done with the intention of assessing model accuracy,
but rather of understanding the sensitivity of the phase
equilibrium to the pressure shift contribution with given
parameters. We show the influence of each contribution
on the phase equilibrium curve with given parameters, at
both low and high pressure and on the null ∆Vuni line,
which indicates consistency according to the Clapeyron
equation. The colored curves show the pressure shift
model for each guest with current parameters, while the
curves in black, dark gray, and light gray show the results
for the standard, interstitial and inconsistent models with
current parameters, respectively, for the corresponding
guest species.

The standard and interstitial models have constant
cages radii; therefore, the adsorption is the same, and
the chemical potential is very similar at low pressure; at
high pressure, the curves for these models split because
of the Poynting integral. The inconsistent and pressure
shift have different cages radii than those at low pressure,
mainly because in this comparison, the former two mod-
els use the cages radii taken at Tuc,0 = 0 K as constant
at all T, and the inconsistent model uses cages radii cal-
culated according to T, therefore the properties for the

latter two are different from those for the former two
even at low pressure.

Nevertheless, the volume for the interstitial and
inconsistent models are very similar, as they depend
equally on temperature and pressure. The contour level
for |∆Vuni| = 0 is only slightly different because of the
slight difference in composition weighting, sometimes
unnoticeable. Finally, the difference between the incon-
sistent and pressure shift models is due to the extent to
which the guest distorts the lattice beyond intrinsic de-
pendence on temperature and pressure.

For methane and xenon, relatively small
molecules, the biggest influence of the model is at
high pressure, where the lattice size changes signifi-
cantly due to the intrinsic compressibility of the lattice,
and predictions are very sensitive to considering or not
this deformation in the lattice, and in the cages radii; the
equilibrium curve is similar for the pressure shift and
the inconsistent model. In the case of ethane, as it is a
larger molecule, there is a stronger pressure shift, even
at ambient bulk pressure, so the volume, cages radii, and
equilibrium curves are all significantly different even
then. In all cases, the difference in prediction of volume
is rather different, so the locus for null molar volume
determinant is different between these models, and in
the case of the inconsistent model, it does not match the
maximum temperature for the phase equilibrium curve,
as should according to the Clapeyron rule. The null
volume difference contour occurs at a pressure above the
upper limit of calculations performed here for ethane
and xenon.

3.4. Thermodynamic properties along the phase equilibrium
locus

In this section, we plot thermodynamic properties:
∆PH−EL, VEL, Θij, and ∆Huni, along with the equilibrium
points of the phase equilibrium curve calculated with the
pressure shift model for single hydrates of each of these
guest species.

Fig. 10 shows calculations for methane, Fig. 11
shows calculations for ethane, and Fig. 12 shows cal-
culations for xenon. In every case, panel (a) shows the
pressure shift calculated, in all cases seem here the pres-
sure shift was positive, therefore lattice pressure is less
than bulk pressure; the black dashed line shows the base-
line of ∆P = 0, for other conditions or parameterization,
negative values could also be found. This effect on vol-
ume is shown in panel (b) for each case, hydrate vol-
ume at the lower lattice pressure (continuous colorlines)
is higher than empty lattice volume would be at that bulk
pressure (black dashed line): VH(PH = P) is equal to
VEL(PEL = PH +∆P(−)) and greater than VEL(PEL = P).
A negative pressure shift, going below the dashed line in
panel (a), would yield hydrate volume smaller than the
empty lattice volume, below the dashed line in panel (b).
The change in Occupancy along the phase equilibrium
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Figure 8: Volumetric data of sI empty lattice and methane, ethane and xenon single hydrates: empty lattice unit cell edge length as function of
T (a), empty lattice unit cell edge length as function ofP (b) cages radii as function of unit cell edge length (c) hydrate unit cell edge length as
function of T for ambient pressure (d), hydrate unit cell edge length as function of P for T=271K (e), hydrate unit cell edge length as function of P
for T=298K (f)
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Figure 9: Phase equilibrium behavior of methane, ethane and xenon single hydrates. Optimized pressure shift model with experimental data (left)
and comparison of contributions from each model variation (right)
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locus is shown on panel (c) for each case: in all cases,
the occupancy increases as pressure increases, albeit not
necessarily in an obvious manner as each point that com-
poses the curve is at a different temperature - the equilib-
rium temperature for that pressure, and as the fugacity
is calculated from the equation of state. At last, panel
(d), for all cases, show the dissociation enthalpy calcu-
lated with the pressure shift model, the full curves are
the enthalpy of dissociation as defined in this text, while
dashed and dotted are melting and desorption contri-
butions, respectively (for interpretation purposes). The
melting contribution is equivalent t the enthalpy of for-
mation parameter, plus its contributions from the heat
capacity difference and the Poynting-like integral of en-
thalpy (d∆H = ∆CPdT + (∆V − T∂∆V/∂T)dP), the lat-
ter contribution makes the enthalpy of melting negative
at very high pressure, as the liquid has lower molar vol-
ume than the empty lattice. The desorption contribu-
tion is associated with the interaction of guest molecules
with the cages. It is calculated from derivatives of the
Langmuir coefficients with respect to temperature and
tends to increases in magnitude as occupancy increases,
but is also related to the enthalpy of the fluid phase,
which has a discontinuity when passing to a liquid-vapor
transition pressure in the bulk phase, and continuous
but not monotonical behavior slightly supercritical con-
ditions (Joule-Thomson inversion phenomena).

Current calculations show very small occupancy
of the small cage by ethane at low pressure, which is
frequently assumed equal to zero [26]; however, they
do predict that ethane enters the small cages at signifi-
cant quantity for pressure above 1000 bar, along that the
ethane hydrate has larger lattice size and cages radii than
methane or xenon hydrates at the simulated conditions.

For ethane (Fig. 11), there are either cusps or dis-
continuities corresponding to liquid-vapor transition in
all plots. The discontinuities happen for ∆Huni because
of the guest component fluid phase, which brings a con-
tribution to the overall differences.

For Θij and ∆PH−EL, we obtain cusps because, as

∂PH,Pw,G

∂T
=

∆Huni

T∆Vuni (53)

A discontinuity in the right-hand side ratio is equivalent
to a discontinuity in the left-hand side derivative and,
consequently, the slope before and after the fluid phase
transition is suddenly different.

The curves for Θij and ∆PH−EL was calculated
individually from each point in the phase equilibrium
curve, but the curves for these properties must exactly
correspond to the integration of

(
∂Θ
∂P

)
uni

=

(
∂Θ
∂T

)
P

(
∂T
∂P

)
uni

(54)

and (
∂∆P
∂P

)
uni

=

(
∂∆P
∂T

)
P

(
∂T
∂P

)
uni

(55)

This shows how the cusp in the phase equilibrium curve
given by (∂T/∂P)uni is propagated to the plots of Θij and
∆PH−EL versus PH.

For xenon, the critical point is slightly to the left
of the phase equilibrium curve (lower T), so there is a
change in the curvature of that curve, but without a cusp,
this behavior is also observed in the properties shown
here.

Figure 10: Thermodynamic properties of methane hydrate along the
three phase (H,G,Lw) equilibrium locus: (a) pressure shift, (b) lattice
volume, (c) occupancy, (d) enthalpy of dissociation
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Figure 11: Thermodynamic properties of ethane hydrate along the
three phase (H,G,Lw) equilibrium locus: (a) pressure shift, (b) lattice
volume, (c) occupancy, (d) enthalpy of dissociation

Figure 12: Thermodynamic properties of xenon hydrate along the three
phase (H,G,Lw) equilibrium locus: (a) pressure shift, (b) lattice volume,
(c) occupancy, (d) enthalpy of dissociation

4. Conclusions

This work reviewed thermodynamics of clathrates
in the rigorous formulation based on the original van der
Waals and Platteeuw model, where we have proposed an
extension for compressible clathrates. Our extension of
the van der Waals and Platteuw model considers cages

radii dependent on the clathrate volume, scaled accord-
ing to the unit cell edge length, and obtains derived prop-
erties thermodynamically consistent with this assump-
tion.

Our new formulation showed different volume for
clathrates of different guests for the same structure at
the same temperature and pressure, qualitatively in good
agreement with experimental data. Furthermore, the
phase equilibria are quantitatively in good agreement
with experimental data. The proposed model solves
a common thermodynamic inconsistency observed in
phase equilibrium calculations using the state-of-the-art
models for compressible clathrates.

We stress that our model extension does not re-
quire extra guest-dependent parameters other than the
standard clathrate modeling framework. We have in-
cluded only one set of parameters dependent on struc-
ture to tune the scaling of the cages radii with the edge
length.

The proposed model is relevant for hydrate phase
equilibrium at high pressure and for applications across
a temperature range where changes in the volume are
expected due to thermal expansivity. It is also relevant
at low pressure in predicting volume and Langmuir co-
efficients of hydrates formed of different guests, where
the pressure shift contribution from each guest type is
different.
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Appendix A. Derivation of the pressure shift model

In this appendix, we present some details on the
derivation of thermodynamics properties from the semi-
grand canonical partition function, taking into consid-
eration the dependence of the partition function for the
single enclathrated molecule under an external field with
respect to lattice molar volume.
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Appendix A.1. Derivatives of occupancy

Similarly, we need expressions for derivatives of
Θij for the obtainment of the remaining derived proper-
ties; we take generic derivatives from Eq. 29.

dΘij = d

 qijλij

∑k

[
qkjλkj

]
+ 1

 (A.1)

then

dΘij =
λij
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qkjλkj

]
+ 1

dqij

−
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qkjλkj
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+ 1
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k
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λkjdqkj

]

+
qij
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qkjλkj
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+ 1

dλij

−
qijλij(

∑k

[
qkjλkj

]
+ 1
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k

[
qkjdλkj

]
(A.2)

whose terms can be grouped into

dΘij =

(
Θij

(
1−∑

k
Θkj

))
dln qij

+

(
Θij

(
1−∑

k
Θkj

))
dln λij (A.3)

this equation will be most useful for derivatives at con-
stant λ, and using that from Eq. 18

dln qij = dln T + dln Φ + dln Cij (A.4)

Appendix A.2. Derivatives of the Langmuir Coefficients

We need to calculate derivatives of the Langmuir
coefficients with respect to volume, number of molecules
of water, and temperature.

The differential form of the Langmuir coefficients
with respect to volume and number of water molecules
at a constant temperature is

dCij(VH, Nw) =
∂Cij

∂VH dVH +
∂Cij

∂Nw
dNw (A.5)

However, as it is assumed that the Langmuir co-
efficients can be expressed solely as a function of lattice
molar volume, this must be equivalent to

dCij

(
VH

Nw

)
=

∂Cij

∂
(

VH

Nw

)d
(

VH

Nw

)
(A.6)

where the differential form of the lattice molar volume
with respect to volume and number of water molecules
is

d
(

VH

Nw

)
=

∂
(

VH

Nw

)
∂VH dVH +

∂
(

VH

Nw

)
∂Nw

dNw (A.7)

Therefore, executing the partial derivatives

d
(

VH

Nw

)
=

(
1

Nw

)
dVH +

(
−VH

N2
w

)
dNw (A.8)

Using this relation, we show that the differential
form of the Langmuir coefficients with respect to volume
and number of moles as independent variables takes a
simple form for numerical calculations as follows, de-
pending on the partial derivative of the Langmuir coeffi-
cients with lattice molar volume.

dCij =
∂Cij

∂VEL

(
1

Nw
dVH +

VH

−(Nw)2 dNw

)
(A.9)

From this, we express the symbolic partial deriva-
tives of Langmuir coefficients with respect to volume(

∂Cij

∂VH

)
T,Nw

=

(
∂Cij

∂VEL

)
T

1
Nw

(A.10)

and with respect to number of water molecules

(
∂Cij

∂Nw

)
T,VH

=

(
∂Cij

∂VEL

)
T

VH

−(Nw)2 (A.11)

both depending on the partial derivative of the Langmuir
coefficients with respect only to lattice molar volume.

The derivatives of Langmuir coefficients with re-
spect to lattice molar volume is related to the derivatives
of Langmuir coefficients with respect to cage radii ac-
cording to (

∂Cij

∂VEL

)
T
=

(
∂Cij

∂Rj

)
T

(
∂Rj

∂VEL

)
(A.12)

From Eq. A.4(
∂ ln qij

∂Rj

)
T

=
1

Cij

(
∂Cij

∂Rj

)
T

(A.13)

We can evaluate
(
∂Cij/∂Rj

)
T from Eq. 17 using

the Leibniz rule for differentiation of integrals

∂

∂x

∫ u

l
f (t; x)dt = f (u; x)

(
∂u
∂x

)
− f (l; x)

(
∂l
∂x

)
+
∫ u

l

(
∂ f
∂x

)
(t; x)dt (A.14)

with Rj for x, 0 for l, Rj − ai for u, and 4πr2e(−wij/kBT)

for f .
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Then (
∂l
∂x

)
=

(
∂0

∂Rj

)
= 0 (A.15)

and (
∂u
∂x

)
=

(
∂Rj − ai

∂Rj

)
= 1 (A.16)

however wij at the boundary is undetermined with limit
at infinity

lim
r→Rj−ai

(
wij
)
→ ∞ (A.17)

therefore, the exponential factor, in the limit, is zero

f (l; x) = lim
wij→∞

(
4πr2e

−wij
kBT

)
→ 0 (A.18)

Finally ,the derivatives in the third contribution
are taken symbolically

(
∂ f (t; x)

∂x

)
=

(
∂

∂Rj

) (
4πr2 exp

(
−wij

(
r; Rj

)
T

))

=
−4π

T
e

(
−wij
kBT

) (
∂wij

∂Rj

)
r2 (A.19)

then

(
∂Cij

∂Rj

)
=

∫ Rj−ai
0

−4πr2

kBT

(
∂wij
∂Rj

)
exp

(−wij(r)
kBT

)
dr

kBT
(A.20)

Regarding derivatives with respect to temperature,
from Eq. A.4

(
∂ ln qij

∂T

)
Rj

=
1

CijT

(
∂CijT

∂T

)
Rj

+

(
∂ ln Φi

∂T

)
(A.21)

we evaluate again from Eq. 17 using the Leibniz rule for
differentiation of integrals.

In this case, as neither of the limits Rj − ai and 0
are functions of T at constant VH and Nw.

(
∂CijT

∂T

)
Rj

=
1
kB

∫ Rj−ai

0

(
4πr2e

−wij
kBT
−wij

kB

−1
T2

)
dr (A.22)

We evaluate the free volume integrals for all of
Cij,

(
∂Cij/∂Rj

)
T and

(
∂CijT/∂T

)
Rj

using the composite

Simpson method.

Appendix A.3. Cage potential
We describe qij and Cij using the cage potential

derived from the Kihara pair interaction potential. The
resulting expression for wij as given by [23, 26, 27]

D1 =
ai
Rj

(A.23)

D2 = 1− r/Rj − D1 (A.24)

D3 = 1 + r/Rj − D1 (A.25)

DEL(i) =
1
i

(
D2−i − D3−i

)
(A.26)

R1 = σ12
i /R11

j (A.27)

R2 = σ6
i /R5

j (A.28)

S1 = DEL(10) + D1DEL(11) (A.29)
S2 = DEL(4) + D1DEL(5) (A.30)

wij =
2Zjεi

r
(R1S1− R2S2) (A.31)

where ai, σi, and εi are the parameters from the Kihara
pair interaction potential of guest component (i) and a
water molecule from the lattice. Mono-spaced symbols
represent non physically meaningful quantities used for
breaking equations into smaller terms.

The expression for
(
∂wij/∂Rj

)
is obtained symbol-

ically from the expressions above for wij

dD1dR = −ai/R2
j (A.32)

dD3dR = 1− r/R2
j − dD1dR (A.33)

dDELdR(i) = −D2−i−1dD2dR+ D3−i−1dD3dR (A.34)

dR1dR = −11
(
σi/Rj

)12 (A.35)

dR2dR = −5
(
σi/Rj

)−6 (A.36)

dS1dR = dDELdR(10) + dD1dRDEL(11)
+ D1dDELdR(11) (A.37)

dS2dR = dDELdR(4) + dD1dRDEL(5)
+ D1dDELdR(5) (A.38)(

∂wij

∂Rj

)
=

2Zjεi

r

(
dR1dRS1− dR2dRS2

+ R1dS1dR− R2dS2dR
)

(A.39)

Appendix A.4. Hydrate pressure shift
To go from Eq. 34 to Eq. 35, we need to apply the

expressions for derivatives of occupancy A.3.

∆PH−EL =

− kBT ∑
j

νjNw

(
∂ ln

(
1−∑i Θij

)
∂VH

)
T,Nw,λ

 (A.40)
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Taking the chain rule on the differentiation of the
logarithm function

∆PH−EL =

kBT ∑
j

[
νjNw

1−∑i Θij
∑

i

[(
∂Θij

∂VH

)
T,Nw,λ

]]
(A.41)

The derivatives of occupancy with respect to vol-
ume are taken from Eq. A.2.

(
∂Θij

∂VH

)
T,Nw,λ

=(
Θij

(
1−∑

k
Θkj

))(
∂ ln qij

∂VH

)
T,Nw,λ

(A.42)

Then, on substitution

∆PH−EL = kBT ∑
j

[
νjNw

1−∑i Θij

×
(

∑
i

[
Θij

(
1−∑

k
Θkj

)(
∂ ln qij

∂VH

)
T,Nw,λ

]) ]
(A.43)

This can be rearranged into

∆PH−EL = kBT ∑
j

νjNw

×∑
i

Θij

(
1−∑k Θkj

)
1−∑k Θkj

(
∂ ln qij

∂VH

)
T,Nw,λ

 (A.44)

where terms (1−∑k Θkj) in the numerator and denomi-
nator cancel out resulting in

∆PH−EL = kBT ∑
j

νjNw

×∑
i

[
Θij

(
∂ ln qij

∂VH

)
T,Nw,λ

]
(A.45)

Recalling variations in ln qij from Eq. A.4 and vari-
ations in Cij from Eq. A.10.

∆PH−EL = kBT

×∑
j

[
νj ∑

i

[
Θij

(
∂ ln Cij

∂VEL

)
T

]]
(A.46)

This is the final form of the pressure shift expression on
a molecular basis.

The derivatives of Langmuir coefficients with re-
spect to lattice molar volume are taken from numerical
calculations according to Eq. A.39

Appendix A.5. The chemical potential of the host component
As before, to go from Eq. 37 to Eq. 38, we need to

apply the expressions for derivatives of occupancy A.3.

∆µH−EL
w = kBT

×

∂
(

∑j
[
νjNw ln

(
1−∑i Θij

)])
∂Nw


VH,T,λ

(A.47)

Also taking the chain rule on the differentiation of
the logarithm function

∆µH−EL
w = kBT ∑

j

[
νj ln

(
1−∑

i
Θij

)]

− kBT ∑
j

[
νjNw

1−∑i Θij

×
(

∑
i

[(
∂Θij

∂Nw

)
T,VH,λ

]) ]
(A.48)

where the derivatives of occupancy with respect to the
number of water molecules are taken from Eq. A.2, vari-
ations in ln qij are taken from Eq. A.4 and variations in
Cij are taken from Eq. A.11.

µH
w = µEL

w + kBT ∑
j

[
νj ln

(
1−∑

i

[
Θij
])]

+ VELkBT ∑
j

νj

(
∑

i

[
Θij

(
∂ ln Cij

∂VEL

)
T,Nw,λ

])
(A.49)

where Eq. A.46 contains a similar term which can be
substituted here resulting in

∆µH−EL
w = kBT ∑

j

[
νj ln

(
1−∑

i
Θij

)]
+ VEL∆PH−EL (A.50)

This is the final form of the relative chemical potential of
water in the pressure shift model on a molecular basis.
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