WEIGHTED HARDY-SOBOLEV INEQUALITY AND GLOBAL
EXISTENCE RESULT OF THERMOELASTIC SYSTEM ON MANIFOLDS
WITH CORNER-EDGE SINGULARITIES

MORTEZA KOOZEHGAR KALLEJI

ABSTRACT. This article concerns with the thermoelastic corner-edge type system with sin-
gular potential function on a wedge manifold with corner singularities. First, we introduce
weighted p—Sobolev spaces on manifolds with corner-edge singularities. Then, we prove the
corner-edge type Sobolev inequality , Poincaré inequality and Hardy inequality and obtain
some results about the compactness of embedding maps on the weighted corner-edge Sobolev
spaces. Finally, as an application of these results, we apply the potential well theory and
the Faedo-Galerkin approximations to obtain the global weak solutions for the thermoelastic

corner-edge type system |1.1

1. INTRODUCTION

The present article deals with the global existence of solutions for thermoelastic corner-
edge type system under suitable conditions. First, we introduce the corner-edge type weighted
p— Sobolev spaces and discuss the properties of the continuous embedding and compactness.
Then, we obtain the corner-edge type Sobolev inequality , Poincaré inequality and Hardy
inequality, which are important in the proof of main result about the global solution of ther-
moelastic type system on the manifolds with corner-edge singularities. In fact, by making
use of our results in the preliminary sections we combine the Faedo-Galerkin method and the
monotonicity-compactness method with some implications of the potential well theory and
prove the existence of global solutions for a class of thermoelastic equations. More precisely,
this article is concerned with following initial-boundary value problem for a thermoelastic

system which contains corner-edge Laplacian and p-Laplacian type operators with potential
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function
up — Apxu — €V (2)u + ¢ = Jul*tu, (2,t) € intK x (0,7,
Yy — Agu = uy, (z,t) € intK x (0,7T),
u(z,0) = up(Z), w(x,0) = w1 (), (1.1)
Y(&,0) = o(2), i € intK,
{ u(z,t) =¢(z,t) =0, (z,t) € OK x (0,7,
(=L Ny N-1 N N-1 N
where ug € H,, " "(K), ur € Ly? "?(K), o € Ly® "*(K), T € (0,00, 2 < p < o0,

l<a<2, N=14+n+qg +1+ ¢ > 3 is the dimension of the stretched manifold K with
respect to the manifold K with corner-edge singularity and = (1, z,y1, 72, y2) € K. Further-
more, the singular potential function V(&) is unbounded over K which is satisfied in weighted
corner-edge Hardy inequality(see Proposition . The operator A,k + €V(Z) with p # 2
arises from a diversity of physical phenomena. It is applied in reaction-diffusion problems, in
nonlinear elasticity, in non-Newtonian fluids and petroleum extraction. The investigation of
wave equations with the Laplacian and p-Laplacian operators emanates from the nonlinear
model for the longitudinal vibrations of the viscoelastic materials. Furthermore, problems re-
lating to wave propagation in generalized theories of thermoelasticity which admit finite speed
of thermal signals (second sound effect) in elastic solids have been the subject of active re-
search in recent years [14]. It is well-known that the question about the existence of a global
solution for the wave equation of p—Laplacian type uy — Ayu = 0, without any dissipation
term is still an open problem. However, there is an extensive literature on the existence and
non-existence global solutions to the wave equation of p—Laplacian type with potential func-
tion of the suitable domain 2 C R™ under appropriate conditions. In [12], the author studied
the local existence of the solution with respect to time variable and he showed by a counter
example, that the global solution with respect to the time variable can not be obtained. In the
case p = 2, Sattinger [27] proved the existence global weak solution of the following problem
uy — Au = f(u) by using the potential well method. From then on,the potential well theory
has become one of the most important methods for studying nonlinear evolution equations
under the suitable assumptions on source term f and convenient initial-boundary conditions
[201 28, [31] . In [I6], the authors investigated the global existence, nonexistence and asymptotic
behaviour of solutions of the initial boundary value problem of semilinear hyperbolic equations
with dissipative term wy — Au + yug = f(u). The authors in [22] investigated a quasilinear
wave equation with Kelvin-Voigt damping, u; — Apu + Au, = f(u), where 2 < p < 3. They

proved existence of local weak solutions, which can be extended globally provided the damping
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term dominates the source in an appropriate sense. Moreover, a blow-up result is proved for
solutions with negative initial total energy. In the case p = 2, Dafermos [10] studied the linear
thermoelastic system defines a semigroup of contractions in an appropriated Hilbert space.
In [23], the authors considered a thermal effect acting on the wave equation of p—Laplacian
type and they obtained an global result for a nonlinear thermoelastic system on bounded
open domain 2 C R™. All of the aforementioned above works have been studied on suitable
domain 2 C R", but in setting of the manifolds, Cavalcanti et al. [2], studied the asymp-
totic stability of the wave equation on a compact Riemannian manifold subject to the locally
distributed viscoelastic effects. Boundary value problems in domains with conical singularity
on the boundary were investigated by Kondratev [18]. MaZya and Plamenevskii [21] studied
elliptic boundary value problems of differential equations on manifolds with singularities of a
sufficiently general nature. In [§], the authors studied multiple solutions of semilinear corner
degenerate elliptic equations with singular potential term. Furthermore, Chen et al. studied
about the cone Sobolev inequality and Dirichlet problems for nonlinear elliptic equations and
multiple solutions for semilinear totally characteristic elliptic equations with subcritical or crit-
ical cone Sobolev exponents on the manifolds with conical and edge singularities, see [3] and
the references therein. In [1], the authors studied the existence and totally characteristic prop-
erties of hypeelleptic equations with conical singularities. Moreover, multiple solutions for a
class of nonhomogeneous semilinear equations with critical cone Sobolev exponent on manifolds
with conical points is considered in [I7]. Also, multiple sign changing solutions for semilinear
corner degenerate elliptic equations were investigated by [9] and the references therein. In all
of these papers, the authors were considered only the typical degenerate differential operators
with cone, edge or corner degeneracy and obtained the existence results for stationary wave
system. As far as we know, there have been no results up till now on the initial-boundary
value problem for a hyperbolic form of wave equations and in a special case for a thermoelastic
system which contains corner-edge Laplacian and p-Laplacian type operators with potential
function on a manifold with corner-edge singularity. Hence, as an application of our results,
we want to answer an open question about the global solution of the corner-edge thermoelas-
tic equations in the last section. This paper is organized as follows. In the second section,
we recall some basic definitions and concepts about the manifolds with singularities and then
introduce the stretched corner-edge manifold K. Moreover, in this section we introduce the
corner-edge Sobolev spaces corresponding with the manifold K. In the third section, we ob-
tain two the most important inequalities so-called weighted corner-edge Sobolev and weighted

corner-edge Hardy inequalities and prove a result about the compactness embedding theorem
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on the corner-edge Sobolev spaces. In the last section, we study about the existence of global
solutions for a thermoelastic system which contains corner-edge Laplacian and p-Laplacian

type operators with potential function on a manifold with corner-edge singularity.

2. MANIFOLDS WITH CORNER-EDGE SINGULARITIES

Consider X as a closed compact C°°—manifold of dimension n of the unit sphere in R**!. We

_ R+XX
= 01xx

coordinates (r,0) € X — {0} in R"! — {0} are the standard coordinates. This gives us

define an infinite cone in R*! as a quotient space X2 with base X. The cylindrical
the description of X2 — {0} in the form R, x X. Then the stretched cone can be defined
as Ry x X = X, Now, consider B = X® with a conical point, then by the similar way in
[0, 25, 26], one can define the stretched manifold B with respect to B as a C'°*°—manifold with
smooth boundary 0B = X (0), where X (0) is the cross section of singular point zero such that
there is a diffeomorphism B — {0} = B — 9B, the restriction of which to U — {0} = V — 9B for
an open neighbourhood U C B near the conic point zero and a collar neighbourhood V' C B
with V' 2 [0,1) x X(0). Therefore, we can take B = [0,1) x X C Ry x X = X”\. In order to
consider another type of a manifold with singularity of order one so-called wedge manifold, we
consider a bounded domain Y7 in R%. Set W = X2 xY; = BxY;. Then W is a corresponding
wedge in R*7*9 Therefore, the stretched wedge manifold W to W is X" x Y} which is a
manifold with smooth boundary {0} x X x Yj. Set (ri,z) € X”. In order to define a finite
wedge, it sufficient to consider the case r1 € [0,1). Thus, we define a finite wedge as

1) x X
E_[O’ )X

= Y C XA XY =W,
{O}XXXlC X Y1

The stretched wedge manifold with respect to E is
E=0,1)xXxY=BxY,CcX"xY, =W",
with smooth boundary JE = {0} x X x Y.

Again for a bounded domain Y3 C R%, we take M = (X2 xY1)? x Yy = W2 xY; as a wedge,
i.e., a Cartesian product between an infinite cone W* and edge Y, which is as corner-edge in

Rl+n+q1+1+‘12_ Set (',"1’1’7y17’r’2’y2) [ W/\ X }/2 Where7

WHN=WxRy xYo=(X"xY]) xRy xYo=(Ry x X xY1) xRy x Ya.

To define a finite corner-edge, we restrict ourselves to 72 € [0, 1) then we consider

E x[0,1)

Y- AxYy=M
Ex{O}X b CW= %Yy

K =
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as a finite corner-edge. Then the stretched finite corner-edge to K is
K=Ex[0,1)xY2CE" xRy x Yo CW" x Yo

with smooth boundary 0K = 0E x {0} x Ya.

As introduced in [6, [7, 25] 26], the typical Fuchs operator A on the finite stretched wedge
ECX"xY, C X"xR% is as
A=r" > ajalry, 1) (r0n, ) (rdy,)*
Jtlal<v
with coefficients aj, € C* <R+ x Y1, Diff”_(j+|°‘)(X)>. Let Dif f!'(E) denote the space of
all edge-degenerate differential operators of order p on finite stretched wedge E C X x Y3

equipped with the structure of a Fréchet space. Therefore, by looking at (X" x Y1) x Yy =

W x Yy with a corner-edge metric
Jee = dr3 +13(drf + rigx + dyf) + dy3

where gx is a Riemannian metric on X, the typical corner-edge degenerate or corner-edge

Fuchs operator on the open stretched corner-edge K =E x [0,1) x Y is of the following form
B=ry" > brs(ra,y2)(r20,,)" (r20y,)"
k+|B|<v

where byg = rl_(y_(kﬂm)) > aja(r1,y1)(r10r, )7 (r10y,)® which implies that

J+lel<v—(k+|81)

B=(rr2)™" > caks(r,yn,ma,y2) (=100 ) (110y,)* (—r1r20r,)F (r1m20y,)° (2.1)
J+lal+h+BI<y

where

ks € O (R+ « Vi x R, x Y, Dif fv—<a'+la+k+ﬂl><x>).

Suppose that Dif ft(K) denote the space of all corner-edge differential operators as on
K, of order pu.

Let us consider K = [0,1) x X x Y3 x [0,1) x Y2 C Ry x X x Y] x Ry x Y3 and set
= (x1,...,2n) € X, 11 = WY1,1, -, Y1,¢,) € Y1 and y2 = (y2,1,...,Y2,¢,) € Y2. Thus with the
coordinates (71, x,y1,72,y2) € K C Rf such that N =1+ n + g1 + 1 4 g2, the local model K

can be regarded as a bounded subset in Rf .

Consider gee(r1,y1,72,y2) = dri +r3(dr? + rigx + dy?) + dy3 as a Riemannain corner-edge

metric on manifold K which is infinity differentiable in (r1,72) € [0,1) x [0,1) and ¢(0,y1, 0, y2)
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depend only on y; and dy; for i = 1,2. Therefore, (TK). that is, the corner-edge tangent

bundle which has a basis expressed in local coordinates as follows

{Tlamaz, T18y17T1T23r2,7“17"23y2}

where 0y = (0, ..+, 0x,)s Oyy = (Oyy 15+, Oy, ) and Oyy = (Oyy 1, -y Oy, . ). This basis induces
a dual basis for the corner-edge cotangent bundle (7*K).. which is given by

{dTl dy1 dry  dyo }

Ty Ty e T
where dz = (dz1,...,dzy), dy1 = (dyi1,....,dYy1,4,) and dya = (dy2,1, ..., dy2,4,). According to
the Riemannian corner-edge metric g.. on the stretched manifold K, the gradient and the

divergence operators with respect to this metric are first order corner-edge operators that is
divg € Dif fo (K, (TK)ee,R), Vi € Diffi(K,R, (TK)ce).

Therefore, we can consider the gradient and the divergence operators with corner-edge degen-

eracy as

Vi = (Tlam y Oz, Tlayl ; 7’17’23@7 7’1T23y2)

) 400 NS00

rmr .
Y1, a =1 8342,1

diUK(.)

Then the corner-edge Laplacian as elliptic differential operator of second order is defined by

q2

n q1
Ag = <T18T1)2 + Z a:%j + Z<T18y1¢z)2 + (T1T28T2)2 + 2(7’17”28342,1)2
j= 1 =1

= (7"18“)2 + (8%‘)2 + (Tlayl)Q + (T1T28T2)2 + (T1T28y2)2. (2'2)

In order to introduce the weighted corner-edge p—Sobolev spaces on Rf with N=1+n+
q1 + 14 g2 > 3, we first need the following L,—spaces.

Definition 2.1. Suppose that (r1,z,y1,72,y2) € RY = Ry xR"xY; xRy x Y5 where, Y; C R%!
and Ys C R% are bounded domains and let 1 < p < 4o00. We say that u(ry,z,y1,72,y2) €
D'(RY) belongs to the space Ly(RY, @1dydn drz dv2 —_ g,y whenever,

+ ry 1 T1T2 T1T2

N N %
(/ Iy g’ u (TlvxayhTQayQ”pd,U«) < 0.

Now, we can define the weighted corner-edge L)""* on RJX as the following;:
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Definition 2.2. Suppose that (r1,z,y1,7r2,y2) € Rf =Ry xR*" xY; xRy x Yy and let
71,72 € Rand 1 < p < co. Then the weighted space Lj""? (]Rﬂ\r], du) denotes the space of all
u(r1,x,y1,72,y2) € D (RY) such that

|+

Then, we can introduce the weighted corner-edge p—Sobolev on Rf by the above definitions.

1
N N =
=7 o2 p
Y1,72 = {/ ‘Tlp r2p u(rhx)yl:rr%yQ)‘de} < 00.
’ N
Ly, RJr

Definition 2.3. Let m € N, 7,72 and 1 < p < oo. The weighted corner-edge p—Sobolev

space is defined as follows:

H;@,(’YLW)(RJE) = {u(rl,x,yl,’r‘g, y2) € D (RJI)

| (r100,) 05 (r10y,)” (11720, ¥ (r1r20y,) u(ry, @, y1,m2, 1) € LZ“W(Rf,dﬂ)}

for k,1 € N and multi-indices o € N, f € N and § € N® with | + |a| + || + k + [0] < m.

Therefore, ’H;n’(% ’72)(]Rf ) is a Banach space with the following norm,

u =
H ‘H;TLv(’Ylez)(Rf) Z {/RN

I+|o]+|B|+k+|0]<m +

1
N N ™
‘ D 7 P 72

1 T2 (Tlam)la?(?“layl)6(7“17“23r2)k(7‘17“25y2)gu(7“1,$,y1,7‘2,y2)|pdﬂ}p-
Furthermore, the closure of C§°(RY) functions in H,,' (72) (R¥Y) is indicated by H;?(’)(“ 72) (RY).
Proposition 2.4. For any u € H;,n’(%’W)(Rf) we have an isomorphism
Sy {2 (RY) — WP(R x R" x ¥; x R x Yy = RY)
which is defined by

s (N _ N _
SI2(u(ry, g1, 2, y2)) == e s1(5 =) g=r1s2(5 ’Yz)u(efsl’xefmél’efrlszjefmfsz&)

Inrs
T1

where s1 = —Inry, & = e*ly1, So = — and &5 = e51752y,
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Proof. Let us consider v(s1,z,&1, 52,&2) = Sp " (u(r1, ,y1,72,y2)). Then

HU(S1,$751,32752)";%19(]1%1\;)) - Z /RN

I+|al+|B]+k+|0]<m

0L, 0207 0F O v(s1, 3,61, 82, )| dsrdwderdsades

s17x Y€1 782

! k a0 —si(5—m) —ris2(F—
=Y Jtaeg st
I+ o] +]8l+k+[0]|<m

p
u(e™* x,e” "y, e 2, 6_81_8262)‘ deydodsy dspdly
N N
_ Z /N‘esl(p71)67“182(1372)ai18582852322><
I+|af+|8+k+|0]<m * &
p
u(e™ ™, x, e %y, e %2, 6_81_82&)‘ derdrdgidsydts

_ N _ _ N _
~ Z / ‘6 s1(p ’Y1)6 r132(p 72)8;8‘,?
N
I+]al -+ +k+ o] <m R

P d d
(6318%)58?2 (681+828y2)9u(6781,$, yp, e T2, y2)‘ dSldl‘ﬂdSQﬂ
1

r1re
_ N _ _ N _
= 2 / ‘e e ) () 0
N
I+|a|+| 8| +k+10]<m 7 BT

pdry d dyy dra dys

k 0
(110y,)° (117208, (r1728y,) u(r1, 2, y1, 72, y2) 1 U e s

HUH m,(v1,72) (e Ny
Hp RY)

0

Consider closed compact C'° manifold X and by the similar way, we can define the weighted
corner-edge p—Sobolev on an open stretched corner-edge W x Y5 =R, x X x Y] x Ry x Y3

as follows :

H;nv('YIfYZ) ( WA xYs) = {u(rhx,yl,rg,yg) e D (W" x Ya)

‘ (7“1(9”)lag(rlayl)5(r1r28T2)k(mm@w)eu(rl, Zr,Y1,72, y2) € L;IOQ (W/\ X }/'27 d”)}7

for k,l € N and multi-indices a € N, § € N? and § € N© with | + |o| + |B] + k + 0] < m,
which is a Banach space with the following norm

N N
o T T2
Ul (v v2) o |T1 "2
Hp TR (WAXY2) WAXYs

I+]al+|Bl+k+|0]<m

3=

( Tlan)laﬁ(rlayl)B(7“17“23r2)k(7"17“23y2)eu(7“1»xaylaT2vy2)|pdﬂ} :

The closure of C°(W" x Yz) as a subspace of functions in H?’(WI’W)(W/\ x Y3) is denoted

by ’HZ?E’)('YI’W)(W’\ x Y3). Moreover, we indicate W,)."(.) as the classical local Sobolev space on
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suitable space. Now, we define the weighted corner-edge p—Sobolev space on the stretched

finite corner-edge manifold K = E x [0,1) x Y5 C W” x Y3 with respect to K. Set Ky = intK.

Definition 2.5. Let m € N, 71,79 € R and 1 < p < 0o. The weighted corner-edge p—Sobolev

space is defined as follows
H;,n’('Yl’W)(K) = {u(rl,:p,yl,rz,yg) € W"P(Ko) | (wiwa)u € H?’(Wl"Y?)(W/\ X Yg)} (2.3)

for any cut-off functions w; = w(r1) and wy = w(ry) supported by the collar neighborhoods of

(0,1) x OK and 9K x (0, 1) respectively.

In fact, for cut-off functions wy and wa, one can consider €; € (0,1) and €2 € (0, 1), depending
only on w; and ws respectively, so that w; = w(ry) = 1 for 11 € supp(wi) N (0,€1] and

wo = w(re) =1 for ro € supp(wa) N (0, €2]. Therefore,

HIOIKY) = [wn][we HI 0TI (W X V) + [1— wn][wa] HIG? (Aey X X X Vi X Ry x Ya)

+ [wl][l — wg]%;%’yl (R+ x X XY x AGQ X YQ)

+ [1 — wl][l — wg]Wgn’p(Ael x X xY] x Ay x YQ) (24)

m,y1

where, A¢, = (€1,1) and A, = (e2,1). Moreover, the weighted p—Sobolev spaces H, 3" (R4 x

X xY) X Ae, x Y3) and 7—[;}672 (A, X X XYy x Ry X Y3) are the closure of C§°—functions in

the following weighted edge p—Sobolev spaces [3], 24]:

loc

Hy TRy x X X Y] X Ag, X Vo) := {u(rl,xayl,m?@D) € Wil (R x X x Y1 x Ag, x Y2)

N _
e (1100,)102 (r10y,)P (1101, (110, Pu(ry, 2, 91,72, 92) €

dry . dyy dry d
Ly(Ry x X x V1 x Ay x YV, —bip 022002 }
1 T T onm

for k,1 € N and multi-indices « € N, § € N% and 0 € N with [ + |o| + |8] + k + 0] < m,

and also

loc

Hy 2 (A, x X x Y1 xRy xYy) i= {u(rl,x,yl,rg,yg) EW,"P(Ae, x X X Y] x Ry X Y3)

N_
|7y 72(7“28r1)18$(7“23y1)5(7”237"2)16(7"28112)9“(7“1a»”U,yl,7"27y2) €

Ly(Aq, x X x Y1 X Ry X Y, ‘j”;dxdyldwdm)}

T2 T2 T2

for k,1 € N and multi-indices e € N, € N and 0 € N© with | + |a| + [8] + &k + || < m.
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Remark 2.6. [8] One can consider the Banach spaces Q; with norm ||.||; fori=1,2,3,4 and
a smooth partition unity {1; ;1:1. Then 2 = Y11 + Yoo + 1303 + ¥4Q4 will be a Banach

4
space with norm ||ul|3, := > ||viul|?. Since the cut-off functions wy and we satisfy wiws + (1 —

=1

wiwe + wi(l —we) + (1 —w1)(1 — we) = 1, then it implies that H;n’(%’W)(K) is a Banach
space for 1 < p < oo and a Hilbert space for p = 2. Moreover, one can obtain the property
i) Hg%(m 2) (K) = %g7(71 +r1,72+72) (K).

3. CORNER-EDGE TYPE INEQUALITIES
1

- N
R™ x

Proposition 3.1. (Corner-Edge Sobolev Inequality) Suppose that 1 < p < N, ]% = }D
X

with N =14+n+q + 1+ g2 and v1,72 € R. Then for any u(r, zy1,r2, y2) € C3° (R4
R x Ry x R = Rf) the following inequality holds :

Ir——)s

DQH’LL

IN

Oz, U

q2
+ ZHmm@m lu‘
Lzl sV2 (Ri\_]) — 5

q1
+ ZHTlayl lu‘
L;l Y2 (Rﬁ) — ,

+D3Hu‘

+

Ln*lﬁz (RN) L;mz (Ri\f)

+ (5D4HT‘18,«1U

+ (5D5HT’17"267«2’U’

LWl »V2 ('RN) L;l »V2 (RJ']\_I)

where vf =v1 — 1,7 =7 —1and d = (]X, 2” Moreover, the constants D1, Dy, D3, D4 and

D5 are positive for which

L;l Y2 (’R’f)]

(3.1)

1 1 //(N-1>*N- N — N —1)(N - N —1)(N —
p, = L, 1 |( )*(N —pm)( mz)‘%ﬂ( )( p'n), +,( )( p'm),%,
N N (N —p) N-—-p N-»p
1, (N—-1)(N-— N —-1)(N -
Dy — L )( p’yz)ﬁ 1+|( )( p'71)|% ’
N N—p N—p
Dg_i(N—l)(N—ml),% H,(N—l)(N—ma)‘% 7
N N—p N—p
1L 1 (N=1(N—pyp)
Dy=—+ —
=Nt N—p BE
1 1 (N=DV —pn)
Ds=—+ — :
TN N—p B
Proof. To prove the mequahty first we consider p = 1, so p* ~—. Choose arbitrary

’yl,’yQ € R and u(ry, zy1, r2,y2) € CF° (RN) then

N—-1— 7 N—1— 'y
‘ T ! Ty 2 (’I"l,fE y177"2,3/2)

N—-1— N 1—
T 71 72/ 8 /udx

oo
<
—00

N—l—’y1 N—l—'y2

< ‘/ Q. N 1_71 N 1% )da:; ) Ty (Oz,;u)|dx;

(3.2)
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sy T

! !
N—-1—~ N—-1—~.
‘ &1 Loy *u(ry, z,y1,72, y2)

o
< /r
—0o0

fori=1,...,q1, and

Y1,1 T L dy/
<[ g gy
0 1,1

1

N-1-v; N-1-v,

1 Ty (rlﬁy;)l)u

dy/
N— gy (3.3)
1

! !
N—-1-v, N—1-7,
‘ L] )

o
< /7“
—o0

,q2. Now, we compute the similar estimates in r; and ro—directions

u(ry, @, Y1, 72, y2)| =

! !
N—1—v; N—1-7,
T r10./ u
1 2 (119, )

forl=1,...

li li [e @] ! i
N-1-~ N-l-~ N-1—~ N-1-~ dry
' ) b 2u(ry, @, Y1, 72, Y2) S/ (r10r,)(ry 'ry 2u(ry, x, Y1, 72, Y2) | —
0
o o0 ! !
/ N—1— N 1y, |dri N—1—~ N-1- dry
< ‘N —1-m / ] 71 ﬁ{2 +/ 1 %7‘2 72 (11 0pyu) | —
0 1 0 1
= Ay + As. (35)
And also,
’ o
N—l-n  N—l-n N—1—v Nl’y dry.
' Ty S *u(ry, o, Y1, 72, Y2) S/ (717200, ) (1 5] ! *u 1To
0
H [ N—1—4) N—1—4, | dr 0 dr
—yy | dr2 N-1-~ N-1-~, 2
< ‘N— 1—, / T 7y 2y +/ 1y *(r1r20p,u) | ——
0 T1T2 0 T1T2

Hence, we have the number of N = 1+ n + ¢; + 1 + ¢ inequalities as the form ,
and [3.6] Multiplying these inequalities, one gets :

N-l—n  N-l—n. N
"I" 711" 7

1 2 2U(T1,x,y1,r2,y2)

n q1 q2 n
< HIjHJ1,zHJ2,l (A1 + Ag) (A3 + Ay) = H HJ11HJ21 A A3
=1 =1 =1 j=1 =1 =1
+ HIJHJ11HJ21A1A4+HI HJUHJQZAZAS
J=1 j=1 I=1

l

=1
+ HIJHJUHJNAQ/M
j=1 I=

1
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By assumption, we have N = 1+n+4¢q; +1+¢o, then ﬁ < 1 and thus we obtain the following

estimates:
N
N-l—vy  N—1—v. -1
‘ A1 N T v2u(rl7$7ylar2ay2) (37)
n q1 q2 N— n q1 q2 ﬁ
< (H H 11HJ2,l A1A3> <H Ll Ju HJz,l A1A4>
=1 =1 =1 =1 I=1 =1
n a 92 ~ n a q2 T
+ <H i\ | 1, Hle A2A3> <H i | 1, HJz,l A2A4>
j=1 I=1 =1 =1 i=1 =1

Now, let us integrate both side of with respect to ‘f% then,

A

% dT‘l
=1 (3.8)

! !

N-1— N-1—
r n Ty 72
(]

u(ry, , Y1, 72, Y2)

Tdr L 7 e ﬁalrl
< /R<HI HJ11HJ21A1A3> — /(H 11 11HJ21A1A4> -
+ =1 =1

1

j=1 =1 =1
n Q q2 - —

+ / <H H T ] i A2A3)N liﬁ / (HI HJllHJ2zA2A4>N 1517;1.
=1 =1 =1 R \jZi 14

For every term on the right hand side of the inequality one obtains

q1 q2 1 dT‘
/ < [[5-1 1 H J1 H Ja A1A3> —1< H(/ /
R+ =1 =1 L R4

1

N—1— N 1— dry -1
’Y1 72(81».114) = dr
W

N171N172 dTldyu
S ( [/ (104 0)
Ry 1
N—l-ny, N—1-r, dry dyz; \ V-1
X (// r 2 (Tlr?aym u)
Ry r1 TIT2
1 1 . ;g\ B
N_1 N_1 N_1
N—l—vy N—-1— 1
X —1-m N—1-1 </ ety Pu )
Ry 1
1
y (/ / N'lel'yQ d?“ldT2>N1
Ry JRy 1 rira

We use the similar way to obtain the same inequalities from the other three terms in as

follows:
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/ <ﬁ HjllHJ21A1A4> dr1<H<// N—1-7 V1 72(8%_“) Ci:l“ldwj)ll

j=1 ) 1

(L)
(L)

XN —1—m

(L)

LR floefionan)™ 5 <HULL

=1 =1

(L)
(L)

T 0y, )|
ll

T1 T1

dry dyy, z)

1
dry dyz, > N-T

N 1- ’Yl N— 177
" 1 T1iT2

1
N-1
r
Ry

prlNl’YQ(

(T1T28y2 1 )

N—l—y; N—1—v, |dri\~-1
1 ) u|—

1
dry drg )

1 T17T2

11720r,u) | —

N171N172(
T2

T T I
ll

dry dyn, z>

T1 T1

N 1— N—1—
’h T2 k (7’17”281/2[ u)

dldyzl>N

1 TiT2

Nl’YlNl'YQ

1
AR dr
X|N —1— 7, (/ ) r (110, 11) 1)
(// N'lelyz dT1d7-2>N1
R R+ 1 T1T2

/ /
N—1-v, N—1—
717“2 72(89:]-11)

/ (ﬁI HJ”H‘]21 A2A4>Nllci:1 ij[l</ﬂ%/R+ T

1
d N1
ﬁdxj>

j=1 I=1 "
(3.10)
(// N—-1— ‘Y; N 1—- 72(7'18 ) d'l“l dyll)
Ry Y1, U -
dry dyg\ F-1
r
(// N—-1— ’Yl N 1- 72(7“17“281,/21 ) 1 yzl)
R+ 1 T1T2
N-1- ’Yl N 1- ’72 d?"l
X Tl (Tlarlu) "
4 dry dr
</ / N— '71 —1—, (T1T28r2u) 1 2>
R IR+ T TiT2
Now, we can apply the similar integrations with respect to dz1, ..., dz,, 22, ..., Y1, 1o and

! r1 ) rire
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d d . . .
Y21 2292 and the obtain the following estimates
riTY riTY
N-1—v, N—-l-v, e & N—1—v, N—1—, v
/ r o " < | | (// T "y K (Oz;u) d#)
RY =1 VR IR,

! !
N—-1— N—-1—
n ) I (rlayuu)

< ML )™

1

- Nel—ry, N—1—n, N-1
< TI( L P a0y, 0 an)
1=1 VR Ry
[ | N—1—y, N—1-n, W
X IN—1-—m N—-1—r, /R ] 1y Yuldp
+
, ) 1
N—vy, N—1— -1
X </ / ry Mty Pu d,u) +
R, JRy
a N-l—v  N—1—r. dry v
(L] At o]
j=1 \WR Ry 1
N 1- N 1— dry dyy
X 'Y1 ’72(7,18 w)|—L 10¥1,0
Y1, U
R+ T1 T1
N-1—~ N-1 dry dys, o
X (// "y Ty 72(7’17“259yzz )|~ l)
Ry TL T1T2
1
| NI N—l—y; N—1—v, |dri\¥-1
X |N_ 1 _71 </ T]. 717’2 72'& —
R4 !
N~ N—1-~} drq d?"Q
X </ / 1 2(7"17”287«2U)
Ry JRy Ty rirs
e N-1-—~  N-1-+. drq NI
(L[] A | )
j=1 \WR Ry !
N—1—v N-1— dry dyy; \ V1
X </ / % Ty 72(7“18?41116) Ui, )
Ry ’ T
N 1— N 1— dry dya
X 71 (7“17“26 ) y
y2z
R, L TITY

1

1
| N1 N-l—v N-1-—1. dry
X IN =1 -4 </ T 1y 2(r10p, u)|—
R, 1
I ’ N _1
N—~, N—1—v, |dry drg \ ¥-1
R, JR, rLTITY
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n 1
N 1- N—1—n, drq N-1
H(// 71 T 72<8xju) rdxj)
j=1 R+ !
o
" (// N—1— “/1 N 1- WQ(Tlay u) dTldy11>
I=1 Ry R TS
- Nflf'y, Nflf'y/ d’l“l dygl ﬁ
X / / 2 7y 2(r1120y, u)| — —=
=1 \WRJRy ’ L rir2
1
N—1—7; N—1—, dri\ V-1
X 2 Ty (r10pu)|—
Ry 1
1
N—v; N—l-, dry dry
X ry 2(r1reOp,u) | — —I—l—II—i—III—i—IV
Ry JRy Ty T172
For any a; > 0,7 =1, ..., N, we have the inequality A; v <4 N a; and since Y=L < 1
y i=1 N =1
we can get the following estimates:
N N_1 1 1 1
1 N-1 N , |~
(/ r Ty T du) S’N_1_71 N—-1-m
RN N
a N—1 N—-1 - N-1 N—-1
- ", N-1-7,
Z/}RN T 7y 72(8%‘“) dp + Z/}RN T e 2(r10y, ,u) |dp

/ /
N—-1-v; N—-1-—7, N—-1— 'yl N 1— '\/2
1 o ( T w|dp |+

g Nel—vy,
1 —1—y; N—-1— fy N 1— ’y N 1— ’7
N‘N— 1 —'yl’N Z/RN m ry *(On;u) 1y ?(r10y, ,u)|dp+
Jj=1 +
= N-1 N-1— N—1— N 1—
Z/ o _711"2 B 72(r1r28y21u) d,u—l—/ ] 71 7 u|dp+
RN RY
1=1 /RY
/ r{v_l_%rév_l_%(rlrgamu MNdp| + — ‘N—l—'yg N 1_71 N = V2(8‘70]11) du
Y
n N-1 N-1 N-1 N 1—
~1-7; N—1-n, - —
+Z/]RN ] 17"2 2(r18y1l dﬂ"’Z/ r 2(7'17"262421“) d:u
=1 VRY
—i—/ r{v Vlrév_l T2y du—i—/ riv -7 év - 72(7'187«111) du
RY RY
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Z/RN a2 ],

Nl’lel'yQau lelel’yZ(
Zj

rla@h,zu) dp

1
N

Nl’lel'yQ(

r1r28y2’lu) du

d,u-f—/
RN

Z/RN

/
ry "y 1772(7“17’23@/2,1“)

/7 / /
N—y; N—1—~. N—-1— 'y N—1—.
LTy *(r10r,u) "1 'y 2(r1r20r,u)

+/
RN

=4 [0203 + Cy + Cg

dM]

N171N1’y2( Nl’lelyz(
T2 Ty

iju rlaylylu) du

du+2/

N— N 1—
r 'Y1 ’72

+ 0103(02 + 1) /
RN

du u|dp

N—l—vy; N—1—v,

N—-1— 'yl N—-1— 72 5
1 L) (r10r,u)

] T'9

+OIC(1 + 03)/N

RY

d,u,—i-Cl(Cg—‘rl)/N

RY

dp

N—1— '71 N— 177/

+C1(Cy + 1)/ ] T 2(r1ro0p,u) |dp

RN

where C1 = 4, Co = [N —1— 'yl|N and C3 = [N — 1 — 75|V ~ . This follows that the assertion
holds for p = 1. Now, we show that the inequality hold for the case 1 < p < oo. Let v = |u|®
where o > 1 and will be determined in the proof process. Then v € C§°(R;) and we have the

following calculations

(el

+0103(02 + 1)/
Y

N—-1

N
= ~
@ d,u) <Ch [0203 + Cy + 03}

n

>/

j=1"R¢

Nl'y1

N-1-~ N-1-~.
1 1 717”2 72(81'j|u’a)

dp

N 1— '71 N 1—'72( N 1— 71TN 1— 72(

T18y11|u| ‘ 7“17“28y2’l’u|a)‘dlu]

- Ty AR 1JY2|UIQ du+C1C2(1+03)/N S ny
R‘F

!/ /

N—-1— N—-1—
| ’717“2 o
N
RY

e | 2(7“17“23r2|ua)’du-

RN

On the other hand, one can consider |u|* = (u.u)? and the obtain the following computations:

2 ()2

O, lul®| = <alulMoul |0l < el (i,
(17205, ul)| < alul ! (r1720,,,0) (10 ul®)| < alul ! (r10,,u)

‘(r1r28r2\u\a)’ < a\u!o‘_l\(n?bargu)’-

Therefore,
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N

N
N—1
d,u) < OéCl [1 + 0203 + CQ + Cg}

1

/ /
no Pl

(3L

a2
oy
2

(1

’
N—-1— N-1
’717”2

/ 4 :
T{V_l_’yl’r’év_l_')a|u’04—1|8$ju| 1 _72]u‘0‘_1|?"18y1’lu|

dp

q1
|
1=1 /R

1 !/ ! !/
T T R 0 e, s T R ) d

du) + C1C3(Cy + 1)/
RN

+

N—l—y, N=1-7, 1a— N—l—vy, N=1-7, 1
+C1C5(Cs + 1)/ ] Ty T 2 | uldp + aCy (1 —I-Cg)/ ] Ty T 2 | 1 Oy uldp
RY RY
+ +
N—1—v, N—l—vy o_
+O[Cl(1+CQ)/N ) ! Ty T 2 | a0y ul dp.
R+
, N-1 . ] . _ (N=p)m « _ (N=p)7,
We consider o = % > 1 and choose 7 and ~; such that 77 :,(( N_Pl))VI; and v5 = (( N_pl))Zf .
Furthermore, we set ¢;p = N — (7 + 1)p and (ﬁi% = W for i = 1,2. Since Z% =
N— _ 1 . N—p)(N—1—7, N(p—1)(N—1—,
%— += —Npp =N pT, then one can obtain ¢; = N=p)(N-1-7,) 1(0%71)1) ) and i = Np-D(N-1-7,) (]3,(71)1) ")

Therefore, p;+¢; = N—1 —’y; =n+q+¢ _%{ for i = 1, 2. Hence, by the above considerations

and by the Holder inequality we obtain the following calculations:

(/

N—-1
N

iy ‘1‘”2(|u|‘”‘>wldu> < aCy [1 + CyCh+ C + 03]

N
+
p—1

n 1 p—1
D e R e e
. N RN
Jj=1 + +
an 1 p=1
P 1 P P
+Z( / N(rflr;"ﬂmayl,lu)\)”du) x ( [ el 1)p1du> T
=1 R+ R+

p—1

q2 1 p—1
P _ P P
z( / N(rflr*;?r<r1r2ay2,lu>r>pdu) x ( / NG 1)P1du>

1=1 R +

+

1 p=1

_Db
" x </ (rflr§2!u|“‘1)Pldu> -
RN

+

crca+ o [ s ulan )
RN

+

C1C3(1 + Cs) ( / (ri"lr“;"’lu)pdu)
RN

+

1 p=1

" % </ (rqflrfgluf‘_l)fﬁldu) ’ +
RN

+

p—1

0401(14-03) (/N(rflr%”Vlarlqud,u) X (/N(r?lr§2|u|al)pfldﬂ> P n
R

RY N

=

p—1
P

aCy(1+ C2)(/N(Tflrfz’!ﬁrzamu\)pdu) " x (/N(rflr?u\“l)fld/uc)
R

RY y
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Finally, we set v1 = 7] + 1 and 2 = 75 + 1. Therefore,

1
=

pﬁ*_'yﬁlk pl*_’yg p*d i <
[l gty = (bt ] ) <
"~ ﬂ*% ﬂ*’Yz %
OéCl I:l + CQC3 + CQC3:| Z (/N |r1” 7"21’ (8% U)V’d:“’)
j=1 WVRY

a N_ N, L@ NN, 1
p
+ lz; </]R§ |T1p sz (Tlayl,lu) ’pd,U/> + lz; (/Rﬁ ‘Tlp 7“219 (T1T28y2’lu)} dlj,)

By By v By By v
+C1C3(1 + C) </ |rlp Ty u’ du) + C1C(1 4 C) </ ’rf’ Ty u‘ du)
R R

N N
+ +

ﬂ_'yl ﬁ—’h p %
—i—OzC1(1 + Cg) </N|rlp r2P (rlarlu)‘ dﬂ)
R

+

N ., N
+aC1(1+C2)</ 7
RN

+

-2

1
P
(r1r20p,u) ‘pdu> .

Hence, we can regular the coefficients of the previous calculations and then write it as follows:

1
" N_, N_, »
aDq Z(/}RN‘rf’ 17“2‘0 2(8xju)‘pdu>
j=1 +
S M p P& Ky Xy p z
([ ) ([T )
=1 VR 1=1 VR
N_ N _ l N _ N _ :
+D> (/ ‘rlp 717“27’ V2U}pd,u>p + Dy </ }Tlp ’er2p V2u|pd,u>p
RY RY
N_ N _ : N _ N_ :
+aDy </N}T1p erzp 72(r167«1u)|pd,u>p +aDs (/N’ﬁp %TQp 72(r1r23r2u)‘pd,u>p
R+ RJr
where,
p, - L,1L |(N— 1)2(N—p71)(N—mz)‘% +\(N_ 1)(N—m1)’% N ’(N— 1)(N—p’yg)’%
fONTN (N=p) N-p N-p :
D2:1‘(N—1>(N—m?)|}v(1 |(N 1)(N_p71)|}v>
N N-p N—p ’
L (N-DIN—pn) o (N —1)(N —pvy2) 2
—p »
I 1 (NN —pyp)
HER A S e
11 (N1 —pn) 2
Ds=g+§—>7 N I™
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Remark 3.2. In the case of vy1 = 72 = %, one can obtain that the constants Dy = D3 = 0

Dy = D5 = %, then the Hélder inequality implies that for every

PRY)
],

where Vg = (110r,, Oy, 110y, , 11720, , 71720y, ) is the corner-edge type gradient operator on the

stretched corner-edge manifold K and the constant C = aCy = ](V]zfjgi)pp) is the best constant to

and the constants Dy

(

S|z

1’
u(?"l,[]ﬁ, 91,7”27312) € HP

Y172
LP

110 < €[ Vi
p*

the corner-edge type Sobolev inequality.

Proposition 3.3. (Poincaré Inequality) Let K = E x [0,1) x Y2 be a bounded subset in RY =
Ry x R" x R x Ry x R2. For u(ry,z,y1,72,92) € 7{;:(()71’72)(}1{), 1<p<ooand~y,y €R,

|+

the following inequality holds

o <o

I L2 ()

where d is the diameter of K.

Proof. First we consider

I'= {(rl,x,yl,rg,yg)eRN |0<rm <d, a;<z;<a;+d, i=1,..,n,

0<T‘2<d,y1€Y1CRQ1, ygEYQCRqQ}

where d € Ry is large enough such that K C I'. Suppose that w(ri,z,y1,72,y2) € C3°(K).
Then for every (r1,z,y1,72,y2) € K C I' one gets:

1
U(Tl,x, y177ﬂ2ay2) = / 8x1U(7“1, 8,2, -5 Ty, Y1, T27y2)d$'
al

Now we can use the Hoder inequality and obtain the following inequalities:

p

p T, %1 X1 » %
< </ 1p_1d$> </ ‘axlu(rlas)x%"'7xnay1>r2ay2)‘ dS)
al al

1
1 =
< dp</ ‘8x1u(7‘1,57$2,...,mn,yl,rg,yg)}pds>p. (3.11)

1

w(r, z,y1,72,y2)

Therefore, one can apply the mean value theorem for the inequality and obtain that
P

u(rt, 2, y1,72,y2)| < dP|Opyu(rr, @y, 22, ey Tny Y1, 72, y2) |7

for a; < x;, < a; + d. Multiplying the both sides with term r{vf'm’ rév “72P and then integrating

; dry g..dy1 dra dys
with respect to TitdazT7E 25

= dp on I'. Hence,

N—yip N—~2p P N—yip N—v2p ! P
/|7“1 ) u(ry, z, g1, ro, y2)[Cdp < dP | |y ) Oy u(ry, @1, T2, ooy T Y1, 72, 2) |
r r
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According to the definition of I" and the assumption u € C5°(K) one obtains
N- N N—~1p, N— ’
/‘7’ le 2P (7’1,(17 Y1,72,Y2 { d,u’ < dp/|r ’Ylp 2 '72178 u(rhml?xQ?"'7xn7ylvr27y2)‘pdu'

Therefore, the density of C§°(K) in H, (71’72)( K), for every u € ’Hl mm)(K) we have the

following inequality :

<dfews

U(Tla%?/lﬂ“zaw)‘ .
H L3V 72 (K) L2 (K)

O

Proposition 3.4. (Weighted Corner-Edge Hardy Inequality) Let (ri,x,y1,72,y2) € K and
n>2, N=14+n+q +1+q and let V=L where

P
n q1 q2
Y(re, @y, ra,ye) =15+ Y @i+ > Yl HrE+ > yh
i=1 =1 =1
1,(%,%2

Then for every u(ri,x,y1,72,y2) € Hq) )(K), where 1 > q2 and 2 > —1, we have the

following Hardy estimate

9 2
r T2Vu2du<< )/r L2 | Vw2 dp.
Lrrpvibin < (ymgmm—=r) [ 19l

. , . o LR - . .
Proof. Since C§°(intK) is dense in 7—[278 202 )(K), it is sufficient to prove the weighted corner-

edge Hardy inequality for u(ri, z,y1,72,y2) € C5°([ K). To do this, we introduce an operator
as follows:
=720, + Zw,@xl + Z 1 Y10y, ; + 1730, + Z?”N”z Y250y, ;-
=1 7j=1 7=1

Now, we use the operator R and obtain the following estimate

1 2
RV =R(=)=-2A-2V,
(w) QpQ Y

where A = 72(1 —71) + 73(1 — r172) + i y%j(l =)+ 30 yg’j(l — ryra). Therefore,

Y1 VQV 2d _ Tl T;2A 2d _1 71 ’YQRV 2d
ity Viu[“du = — 5 |u|“dp T Ty lu|“dp.
K K Y 2 Jx

By using of u = 0 near the boundary of K, one can obtain
q1
/ PP RV |udy = / g [ 20, (V) + Za:z 2 (V) + > 11 1,0y, (V) + 11730, (V)
K K -
7j=1
2

+ Z?“N’z y2,j3y2,j(V)] lulPdp = I + I + Is + 1y + I,
=1
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where

L= / P20, (V)luldy
K

= —n-a- Q2)/ {3t VufPdp — 2/ ri'ry? (r1Vu) (roy, u)dp,
K K

n

I = / 'y Y w0, (V) ulfdp = —n/ r{'r3tV |ul*dp — 2/ >ty (wiVu) (0, u)dp,
K ] K

Ki=1

q1
Iy = /7"317’32 Y "1y, (V)|ufPdp = —q1/ eV ulPdp
K . K
7=1

q1
_ 2/ Zr¥17';2 (ijVU)(T'layl’ju)dlu’
]Kj_l
Iy = / 7”1)/17’;27’17”'%87"2 (V)|u’2d,u = _(72 +1-— q2)/ T’ler’zyz 1Py — 2/ 7’?17’32 (T2vu)(r1r28T2u)dM7
K X 8

q2
b= /T;lrgzz:nr2 Y230y, ; (V) ul*dp = —‘D/ rY eV du
K =1 K
q2
-2 /K D (ya V) (rirady, u)dp
j=1

Since % < 1, it follows from the assumptions and the above calculations that

— 1
/ i) [ W _ g _ W] V]u\Qdu < / ritry? {(TIVu)(rl&ﬂlu)
K K

q1

+ Z(szu)(axlu) + Z(ijVu)(mayl’ju) + (roVu) (rir20r,u)
i=1 j=1
a2

n Z<y2,jVu><mzay2,ju>]du.
j=1

By making use of the Cauchy-Schwartz inequality on the right hand side of the above inequality

and for all r1, 79 € [0,1), we obtain that



22 M. K. KALLEJI

— 1
Z/K e r;”"V\u\2du < /H<T¥1T32[2 + (m 2Q2) + (72 +2)r1r2]V\UI2dM
n a
S (/]K r,lylrgz |:(T18r1u)2 + Z(aﬂ?zu)z + Z(Tlayl’ju)z
i=1 J=1

q2

2
+  (rir20pu)® + Z(nrgaymu)ﬂ du> X

j=1

N

(/K ritry? [(7’1Vu)2 Z(.%'ivu)Z + Z(yl,jVu)Q + (reVu)? Z(yQ,jVU)2:| d,u>

i=1 j=1 j=1

1

2

= /7’1 ro? |\ Vicu|?dp | x /7’1 r? BV |ul?du |
K K

— |,2 noo.2 . 2Na 2 2 4 2,2\ 2
where B = [rl + > x4y =1 Y Ty 2 y%} V' <'1. Hence,

N

1
2 2
g/rl r?Viudu < (7"1 r3? | Viul d,u) X (/ ' ra?Viul d,u> .
K K
0 2
2V uPdu < /7‘ ro? |Viu|“du.
Lorpviaban < | gogmaer ) [ Ve

Therefore,

0

Theorem 3.5. Suppose that m,m’, 71,71 and "yg,’}é are real numbers such that m' > m,

'yi > and 'yé > 2, then the embedding map

’

Hm v(’Yiv’Y;)( ) SN H (Vl,’Yz)(K)

p,0

is continuous and this map is compact if m > m, 'yll >y and ’y; > Y.

Proof. The weighted corner-edge Sobolev spaces ’H ('Ylm)(K) are in the form of non-direct
sum as the Definition For the classical Sobolev spaces Wj"P(A¢, x X x Y1 X A, X Y2) is
continuous for m’ > m and is compact for m’ > m. Now, we prove the similar properties for

the embedding map
[wi][1 —wQ]H ’%(]RJr X X x Y1 X Ay X Y2) = [wi][1 —wo] H)'§" (Ry x X X Y1 X Ag, x Y2).
To do this, we define the following map for any u € H 5" (R4 x X x Y1 x A, x Y2),

N
Syt (u) = e Ty (e m e T, y0) = Vs, @, €1, 72, 1)
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with & = e®ly; and r; = e~ 1. Therefore, we have an isomorphism as
Spt s [wn][1 — WQ]HZO’% (Ry x X X Y1 X Agy x Vo) < [@1][1 — wo] WS P(Ry x Y1 X A, x Y2),

where @1 = @(s1) = w(e ™) = w(ry) and & € Y if and only if y; € e 1€, € Y] for
r1 € suppw(sy). Hence, Sgl induces an isomorphism as follows :

’ ’
m 771

00 TRy XX XY XAy xYa) < [O1][1—wa]e St PRy x ¥} x A, X Va).

Syt wr][1—woH
In fact, for every u € ”HZ}O’% (Ry x X x Y] x A, X Ya) we have
Sy — —s1(Z—y1),  —s1 —s1 _ —si(y—m) —s1(Xy), o =5y —s1
P u=e P u(e y XL, € 51,7%3/2) =€ € P ’LL(G y Ly € 51#“2&/2)
:e_51(71_71)531 =ve Wy P(Ry x Y1 X A, X Y3).
This means that

’ ’
m 771

[wil[1 = walH,,

(R X X x V1 x Agy x Ya) = [wi][1 — walHp g (Ry x X X Y1 X A, X Y2)

is a continuous embedding for m > m, fy; > 1. Now for compactness of the embedding map,
for 7/1 > 1 we set 6*51(71*'”)3‘15 = xs(s1). Hence, all its derivatives in s; are uniformly bounded

over supp(@) for § > 0. This implies that
(@] [L—wn)e T O PR, x T x Aq, X Ya)
—[@][L — wale O [yl s TP PRy x Vi x A, X Ya)
][l — wele T I PR, x ¥ x Ao, x Y)
—[@][1 — wQ]e—Sl(Vi—WW(;”’P(& X Y1 X Ag, X Y2)

where, the last embedding is compact for m > m, fy; > ~1. Moreover, one can obtain the

similar result for the embedding map
[1—wi][wa] Hy o 2 (Aey X X x V1 x Ry X Ya) = [1— wi]wa] Hp g (A, x X x Y1 x Ry x Y3),
if the similar isomorphism for any u € H " (A¢; X X x Y1 x Ry x Y3) is defined by
N
S;QU = 6_82(;_72)u(7ﬂ17 x, Y1, €_r1827 6_51_8252) = UJ(’I“l, x,Y1,S52, £2)a
with &9 = e %1792y and ro = €7 "2, Now, it is enough to show that the embedding
JoorJ[wa) Hy TP (R % X x ¥i % Ry x Vo) < un][wa] HIw ™ (R % X x Vi x Ry x Ya)

is continuous for m' > m, 7/1 > 7, ’y; > 79 and is compact for m > m, fyi > v, ’y; > Yo

and any cut-off functions w; and wy with supports in the collar neighborhoods of (0,1) x JK
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and OK x (0,1) respectively. According to the isomorphisms S;' and Sp,*, we consider the

transform T : A — A which is defined by

y1 —Inre o
T(Tbx:ylar%yQ) = (81>$7£1>827£2) = (_ 11’1’!”1,1', ) 3 )
r1 1 rira

where

A= {(ﬁ;%?ﬂﬂ“z;yz) ER x X x Y xRy x Yo | (r1,2,y1) € Supp(wi) and (x,72,y2) € SUPP(WQ)}

A= {(81,96751,82,52) ERy x X x Yy xRy x Yo | (s1,2,&) € Supp(@) and (x,59,&) € Supp(fdz)}-
Therefore, we can define the following map

Spur? = 5108 s u(ry, T, y1,72, Y2) 6781(%771)64182(%7’”%(6751,x, e g, e eTIT2E,)

which gives an isomorphism as follows

§70 ¢l a1 P (R x X x Vi x Ry x Ya) < 1] @)Wy (Ry x X x Vi x Ry x Ya).
(3.12)

According to the definition of the transform 7" and the using the chain rule we obtain that
Inry

851 = —Tlarl — ylay1 — Tﬁm — y28y2 and

852 = —7’17’28T2 — ygayz.

Hence, if we consider the Jacobian matrix of the transformation 7" that is

= 00 0 0

0 1.0 0 0
Jr=| 4+ 0 L+ 0 0

1

Inro 0 0 —1 0

3 T1T2

—Y2 g 0 —Y2 1

179 rirY  T1T2
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Then the determinate of Jr, is det(Jr) = T% Therefore,

2-
172

Hw(sl,m,ﬁl,82,52)“;5,“7(]\) = Z /;\

I+]al+k+|B8]+0]<m

-y /A

I4+|al4+-k+|B|+]6]<m

p
6éa?85 8k agQw(sl, Z, 51, 59, 52) dsldxdfldSQdfg

&1 752

DL Ok 9 e~ T Te)
x Y€1 Y520

2

p

X u(e Y x,e gy, e 2 e T8, | dsidadidsadEs

> v

I+l +k+|B1+|0|<m

12

N N
et plgagB ok of

2

p

x u(e e %1y, e %2 e T8 dsidrdE dsadEs

> vk

I+]al+k+|B1+[0]<m

I

6—81(%—71)6—7‘182(%—%)8285 (e~ )63;62 (e7m1s2 3y2 )9

p
dsldx%d@—

-5 —7r18
Xu(e 1ax7y176 127y2)
r1 rirs

> e

I+|al+k+|8]+|0]<m

12

%*’Yl %*72 1 aa 8 k 0
T Ty (r10r,) O (110y, ) (117200, )" (r1720y, )
P

X u(rla 90»91#“24/2)

N p
dp = ||U(T17 Z,Y1,72, yQ)HHLn,(’VL’m)(A)'

!

On the other hand, one can use the similar way to prove the same result for 7-[;:0’(71 ’72)(]R+ X
X xY; xRy xY53). In fact, suppose that u(ry, z,y1,72,y2) € H;?O’(VI’VQ)(RjL X X xY1 xRy xYs)

then we set u(ry, xy1,r2, y2) = wiwou(1, x, y1,r2, y2). Hence,
s (N _ _ N _ _ _ _ e —
SN2y = ¢ s1(5 =) g=r1s2(5 72)'&(6 SU g, eTSIEy, e T e IT02E)
! !
—s - —r1$ - —s —s —r182 ,—S51—S§
— 51— g—r152(72 72)]1(6 Lz, e TSy, e T eI,
—81 —51 —7r182 ,—S81—82 781(ﬂ771) *"’152(&*72) —s1 —51 —Tr182 ,—81—S82
where, h(e ™1, z,e7%1&;, e ,€ &) =ce P e P u(e™® z, e %1€ e ,€ &2)

such that h € W)" P(R x X x Y7 x R x Y3). Indeed, Sp*""* induces an isomorphism from

H D (R, X X x V) x Ry x Va) to W' P(R x X x Yi x R x Ya). Thus, for 51 € Supp(G1)

and sy € Supp(w2) we have the following embedding
[01][@a]e 51 =MW mn2 =2 I P(R x X x ¥y X R x Ya) < @] WiP(R x X x V] X R x Y3)

which is continuous for m' > m, 71 >, Vé > ~9 and is compact for m’ > m, 7; > 1, 7/2 > va.

Therefore, the required properties hold for the following embedding :

[cul][ujg]?-LZ?O’(A“’72)(]RJr X X xY] xRy xYs) — [wl][wz]H;?(’)(Vl’W)(RJr X X x Y] xRy x Y5).
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Proposition 3.6. For 1 < p < q < 2%, the following embedding

LA

p,0

0,(F=4, )

H (K) = Heo * " (K)

18 compact.

Proof. For K = E x [0,1) x Yo € W” X Y5 and according to the definition of the space

(M ﬂ) N-1 ﬂ)
H;%(VI’W)(K), we can write Hp:(] PP (K) and quo ¢ 71°(K) as follows
L(M,ﬂ) L(M’ﬂ) l’ﬂ
Hyo 7K = wfwa]Hyg T (W X Ya) + 1 —wifwa] M, (Aey X X X Y1 xRy X )
N-1
+ ][l —wa M, 0" (R x X x Y1 X Ag, X V2)
+[1— w1 —w]WyP(Ag x X X Y1 x A, x Ya)
and also
0,(X=L Ny 0,(¥=L N A 1, N
Hop * 0 (K) = fwnllalHyy © (W x Vo) + [~ wnllwa]Hyd (Aey X X x Yi X Ry % V)

N-—-1

17
+ [wi][1 — wz]?—lq’o T (Ry X X xY] X A, X Y5)

+ [1 — wl][l — (,UQ]Lq(AGI x X xY] x AEQ X Yg)

From Rellich-Kondrachov theorem, for the classical Sobolev space WO1 P(Aey x X xY1 X A, X Y2)

we have the compactness of the following embedding
[1—wi][1 — wo] WP (Aey X X X Y1 X Ay X Ya) < [1 —wi][1 — wo] LA, X X X Vi X Ag, X Ya).
Now, we have to show that the embedding

1LY 0,
[1 — (A.}lHLL)Q]Hp,Op (A€1 x X X Yl X RJr X YQ) — [1 — wl][wg]’}-[q@q (Aq x X X §/1 X RJr X YQ)

(3.13)

N-1 N—1
wil[l —walH, 07 (R x X x Y1 X A, X Vo) = [in][1 —wa]Ho o T (R x X x V1 X A, X Y2)
(3.14)

are compact. To do this, we have the following isomorphism

N-1 N-—

Sq© o fwi][l = walHy o T (Ry x X XYy X Agy x Y) < [@1][1 — wo] LYRy X X x V) X A, x Y3),
(3.15)

-
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where w1 = @(s1) = w(e ') and it holds that & € Y if and only if y; = e 51& € Y; for
O N—-1
s1 € Supp(@1). Using Proposition for u(ri, x,y1,72,y2) € qu T (R x X xY] x A, xY)

we have

N—-1 N
a a’u(e

—S1

No1
(Sq C wi (1 —w)u(r, x, v, 7"27?J2)> (s1,2,&1,72,42) = W(e_sl)e_sl( LT, e ", T, y2).

By the similar way, we obtain that

N—-1

N-1 L (N-1 N
(Spp wi(1 _WZ)U(TlvxaylaT%yQ))(51,x7517T23y2) =w(e™")e (5 ’”)U(e_sla%@_slﬁl,?“z,yz)

such that implies an isomorphism as follows

N—-1 N—-1

Sp? i fwi][l = walH, 0" (Ry x X x V) X Agy x Ya) = [@n][1 — w]HG(R x X x V1 x A, x Y3).

N—-1

1,81 )
On the other hand, for u(ri,z,y1,72,y2) € H, 0" (R4 x X x Y1 x Ae, X ¥2) one can imply that

N-—-1 N—l)
b g

Q

(Sq ¢ u)(817$7£17T25y2) = w(6_31)6_51( u(6_81)x76_81£17’r2ay2)

g (N=1 N—-1 _ _ N1
:w(6_81)€ il PP )u(e Slvxve Slglar2>y2):(5pp U)(81,$,£1,T2,y2)-

N-1 N-1

S, ¢ w1 —wg]’H 07 (Rpx X XYy x Ay, x Yo)[@1][1 = wol Hy (R x X x ¥} x A, x Y3)
is a an isomorphism. Because of the compactness of the embedding
[@1][1 — wo] Wy P(R x X X Y7 X Ag, x Ya) = [@1][1 —wo] LY(R x X x V7 x Ae, X Y3)  (3.16)

is compact for 1 < p < g < 2%, we can imply that the embedding map

N-1 N-1
[wl][l—wg]’;'-[ o7 Ry x X xY1xA, ><Y2)<—>H 0 Ry x X xV)xAg, xYa)
is also compact by the isomorphisms [3.15 and [3.16] By the similar method one can consider

the following isomorphisms

N

N 0,X ~
Sq t[1 —wi]lwa]H, o' (A x X X V1 xRy x Y2) = [1 —wr][@2] LI(Ae; x X x Y1 X Ry x Y3)

where @9 = @(s2) = w(e™"%2) and & € Y, if and only if yo = e7517%2&, € Y, for s9 € Supp(@2).
Also

N -
SFoc[1— wl][MQ]’H (Aq X X X Y1 x Ry x o) = [1 —wi][@a] Wy P (Ag x X X V1 x Ry x Va).
Then one obtains that the embedding

[1 — wl][wg]’H (Aq X X X Yl X R+ X }/2) [1 — wl][OJz]H (AE1 x X X }/1 X R+ X YQ)
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is compact for 1 < ¢ < 2*. Finally, it is enough to show the compactness of the embedding

17(M7ﬂ) 07(b’ﬂ)
nllenlHyy 77 W x a) < orllwalyy ¢ (W x va),
N—
According to the transform T, for u(rq, z,y1,7r2,y2) € [wl][wg]HO’(Tl’%)(RJr X X xY1 xR xY3),
the mapping
S5

s (BN sy (B O —51 —s1 —T182 ,—S51—S2
u(ry, x,y1,7r2,Y2) =€ a a e 0 alu(e Mz, e 1, e ,e &)

= 'U)(Sl, Z, 617 52, 52)

induces an isomorphism

N—-1 N
(T77

07 M7ﬂ ~ ~
willwalHyy T TRy x X X Vi X Ry x Y3) — [01][@] IRy x X x Vi x Ry X )

(3.17)

where 1 = e~ for 1 € Supp(w1), @(s1) = w(e ') and @(s2) is the cut-off function in s =
—Inre

=2 with 1 € Supp(w(r2)) and r2 € Supp(w(r1)). On the other hand, for u(ri, z,y1,72,92) €
1 (N1 N
rllwalHyp * 7

2.0 (Ry x X x Y7 x Ry X Ys) we obtain
(M= Ny . (N_N-1y _ N _ 3 3 o
Sq T u(rlazayhTZayQ) =€ Sl(q 1 )6 TISZ(q q)u(e Sla:l:ae 8151767“182,6 o 8252)
(1 1) N-1 N
—s (i1 ,
=€ a2 SPP p“("”la%ylﬂ"%w)-
-1 N

Upon the isomorphism [3.12] SqT "% gives the following isomorphism

N—1 N

qa ’q
Sq

1, N717ﬂ B B
wllwalt s 7T Ry X X X Vi X Ry x Ya) — [0n][@] WP (R x X x Vi x R x Y2).

(3.18)
Moreover, the embedding
[D1][@2] Wy P(R x X x Y x R x Va) < LY(R x X x Y; x R x Y3)
is compact for 1 < p < ¢ < 2* and s1 € Supp(@1) and sy € Supp(&e). Therefore, the
L= 0,(F=, )
[willwalH, o * P TRy x X x V1 x Ry x Vo) = [wi][wa]H, o * 7 (Ry x X x Y7 x Ry x Y3)

is compact from the isomorphisms [3.17] and [3.18] O
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4. GLOBAL EXISTENCE SOLUTION
In this section, we concerned with the following initial-boundary value problem for a ther-

moelastic system contains corner-edge Laplacian and p—Laplacian type operators with poten-

tial term as

up — Apxu — €V (2)u + ¢ = Jul*tu, (z,t) € intK x (0,T),
Y — Agu = uy, (#,t) € intK x (0,T),
u(z,0) = up(Z), w(x,0) = ui (), (4.1)
P(z,0) = 1o (Z), T € intK,
| @ t) = ¥(@ 1) =0, (#,t) € OK x (0,T),

i,z 7 72
(p’p) 2772

17 771’/772 k]
where up € H,, (K), u1 € Ly ?* (K), ¢ € Ly
N—-—(qg+¢@)n2=N-q@,l<a<2"N=1+n+q + 1+ gy > 3 is the dimension of K,

(K),TE (0,00],2§p<OO, Y1 =

and T = (r1,z,y1,72,y2) € K. We assume that V(Z) is a singular potential function on the
manifold K with corner-edge singularity and by making use of Proposition [3.1] Remark

and Proposition [3.4) we consider

|7
C* = sup{

v

L2 (K) (717 2

;U G”H;”O 7)(K), HVKU‘

L F (k)

and then we suppose that 1 < e < & Upon the corner-edge type Laplacian operator in

the gradient and the divergence operators in the section 1, we introduce an operator

Bpiel) = dive (907200

for all 2 < p < 0o as a corner-edge p— Laplacian operator on the stretched manifold K, which

can be extended to a monotone, bounded, hemicontinuous and coercive operator between the
(2,22)
p’p

spaces H, (K) and its dual by

7("/7172) 717(7717772)
—Bpr i Hy" T EK) = H, (K,
(—Apxu ,V)pK = / r(thr@r;D|VKu|p_2VKu.Vdeu, (4.3)
K
where dy = dr—?dx%i’;i :ll yfg and in particular case of the corner-edge p—Sobolev space, we
(2 22y Moo

p’p

consider the space 1, (K) = Ly " (K) by the following norm

p
: (/ 7“‘111+q2r‘212\u]pd,u,> )
(K) K

2
<R
I
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Similar to the classical case [27], we introduce the following functionals on the corner-edge
Y172
)

Sobolev space ’Hp:O PIPK)
1 1
J(u) = p/Krih—&-qzrgz‘vKMpdﬂ_;/Krg1+q27,gzv(j)|u|2dlu_m Kr(ll1+q27'32|u‘a+ldu,

K(u) = /Kr(fﬁqzrgﬂVKupdu—e/KriIﬁ%rg?V(a?)]uqu—/Kr(fﬁ@rgﬂma“dp. (4.4)

1,(%,22)

Then the functionals J(u) and K (u) are well-defined and belong to CY(H, o7 7 (K);R). Ac-

p,0
cording to the above functionals, we consider J(Au) for every A > 0 and define the corner-edge

Nehari Manifold set as follows

7ﬂaﬁ d )\
Nee = {ueH;é " (K) ; [ I “)] _o,u;«éo}
A=1

dA

1,(L17L2)
= Ju€eMH, " " (K); K(u)=0, u#0,. (4.5)

According to the Mountain Pass theorem [29] and the conception of the depth of the potential
well in [I5, 27], we take

n o
d= inf{ili%J()\u) ;U € ”Hp:((]p P )(K), u # 0}.
This is the well-known result that for 1 < a < 2* = % the depth of the potential well d is

positive constant [29] and d = inf,en J(u).

By making use of the functionals above, we introduce the following corner-edge potential

well

Wee = {ue Ho" 7 (K) 5 () < a}u{o}

('Yl 72)

and partition it into two subsets
Gee = {u € Wee 5 J(u) > 0} U{0}, Bee = {u € Wee s J(u) < 0}

such that we refer to G.. and B.. as the ”Good” and ”Bad” parts of the corner-edge potential
well W, respectively. Furthermore, we can define the set of stability for the problem by
the good corner-edge potential well G.. and the total energy of the problem is given by

1

1
3 [ O g [ AR+ Tw).

1(t) = ;

In order to prove our main result in this section we need the concept Krasnoselskii genus from

the index theory. Let V be a Banach space and define

A= {ACV; A closed, A = —A}
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to be the class of closed symmetric subsets of V.
Definition 4.1. For A € A, A # 0, following Coffman [5], let

(4) inf{m €N; Ihe COA4R™ —{0}), h(—u) = —h(u)}
")/ =
oo if {..} =0, in particular, if 0 € A,

and define (@) = 0.

As stated in [29], one can extended any odd map h € C°(A4;R™) to a map h € CO(V;R™)

by the Tietze extension theorem for every A € A. v(A) is called the Krasnoselskii genus of A.

Now, we can state our main result about the global existence of the solution of the problem

41

RO’} RO’}
Theorem 4.2. Suppose that the initial data ug € Gee, w1 € Ly* "2 (K), ¢g € Ly " * (K) and
1 < a < 2* are given, then there exist functions u, : K x (0,7) — R such that

7(’Y71 12

u e L°°<(O,T) : H;OP’P)(K)>, w € L ((0 T) ; Lg’?(KO
b €L°°<(0 ) ; 21’22(1&)), (4.7)
w(#0) = uo(#), us(#0) = ur(2), B(F0) = do(2), ae. in K
L)

(u, o) +{(=Dpxt, @y + (=€V(@)u, ) = {[ul* " u, o) Vo € H,p" 7 (K),

9, )k +H{— A, 9)x = (u,9)x Vo € Lp * (K). (4.8)

&=

Proof. By making use of the Definition for j € N we consider

Y= {A C G ; Ais compact, symetric and y(A) > j},

172
where G = {u € Ly " (K) ; [Jul nw o= 1}. It follows from [29] (see proof of Theorem 2.6
Ly® 7 (K)

page 181) that

Aj :Amf sup || Vkul|? " —AlIlf sup || Vgu|? Ll, 2

€ojucA Lﬁ’%(K) €5 ueA (&)
1,(24,22)
are two sequences of eigenvalues of the elliptic corner-edge p—Laplacian —A, x : H,, (K) —
("/1 72) (’Y ’YZ) -1 "/1 W2)
Hy (K) and elliptic corner-edge Laplacian —Ag : Hyp* "2 (K) — Hy 272 (K) re-

spectively. These operators are monotone, coercive and hemicontinuous. Hence, by making



32 M. K. KALLEJI

17("{717772

use of the Minty-Browder theorem, there exists a basis {x;}72, for H,," * )(K) given by the

solutions of the stationary problem
—Ap X (L) — eV(2)x;(T) = Ajx;(%), x;j(&) =0, on IK.

As similar result in [13], there exists a basis {¢;}72; to corner-edge Laplacian operator given

by
—Ag& () = p;6(2)  &(2) =0, on K.

Thus by orthogonallization process, the both bases are the Galerkin bases for —A,x and
57 (F3)

17 K
—Ag in H,," 7 (K) and 7—[;:0 (K) respectively. Now, for every m € N, we set Y, :=
Span{x1i, ..., xm} and O, := Span{i,...,&n}. We want to find the functions

un(t) =Y agm()x; m(t) = bim(DE;
j=1

Jj=1

such that for any x € Y, and £ € Oy, up(t) and 1, (t) satisfies the following approximation

equations

"

<um(t>7 X)K + <_Ap,]Kum(t)7 X>p,K + <_6V(j)um(t)? X)K + <wm(t)7 X)]K

= (lum @) um(t), Xk, (4.9)

’

<w;n(t>7 £>K + <_AK'¢m(t)7 g)K - <um(t)7 £>K (410)

with the initial conditions u,,(0) = ug, ulm(O) = U1, and ¥, (0) = Yo, where g, w1y and
Yom are chosen in Y, and O,, such that ug,, — ug in Hp:(()%’%)(K), Wi — g in L;TH%Q(K)
and g, — Yp in L;TI’WTQ(K). Now, we take x = x;, and £ = &; for ¢ = 1,...,m and by making
use of the following

m

U (t) = Zajm(t)Xj(j)’ Ap,Kum(t) = Zajm(t)Ap,KXj(j)
J=1 J=1

m m
!

U(t) = D bim(B& (@), Axthm(t) = bjm(H)Ax&;(7),
j=1

j=1
we obtain that the equations [£.9] and [£.10] approach to a ODE’s system in the variable ¢ such
that it accepts a local solution w,(t), ¥, (t) in an interval (0, 7},) via Carathéodery’s theorem.
In order to extend this local solution to the whole interval [0,7] for T" > 0, we calculate some

estimates for them. Hence, putting y = ulm(t), € = Y (t) in the approximation equations (4.9
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and then

(U (01 (O = (Dt (1), (1)) pyic = (€V (E)tt (), e (£))50

= (lum @) um (1), up (),

W;n(t)’ wm(t»K - <Ame(t)7 ¢m(t)>K = <u;n(t)> wm(t»K (4'11)

By simple calculations, one can obtain the following relations:

d

/ d1
@ b @ﬁﬁ%%%ﬂww+ﬁp4”ﬁ%m“““”%“
d e ~ «
. dt2/rlll1+Q2 QV(m)\um(t)|2du— /| U, ’ +1d,u7 (4.12)

d1

/7“11+q2 5 [ (t )|2du+/7“(111+q27"§2|VK¢m(75)\2d#=/ P (6 () dp. (4.13)
a2 K .
Therefore, one can substitute the estimates [£.12] and into the approximation equations
and then obtains that 41, — Jie i D292 7 peap, () [2dp where the approximation

total energy as follows:

1 / 1
Tnt) = 5 [ A8l (0Pdut 5 [ o8P0+ T (1)

which satisfies the following energy inequality

1 ’ 1
Tnt) < 1u0) = 5 | AP0 O Pdt 5 [ 152 )Pl T (0). - (4149)

From convergence of the sequences in the initial data and this fact that J(u,,(0)) < d in the

good potential well G.., there exists a positive constant C independent of ¢t and m such that

1 / 1
[ 00+ 5 [ 0P < .
2 Jx 2 Jk

Therefore, it follows from the inequality that I,,(t) < I,,(0) < C and we can extend the
approximation solutions u,,(t) and ¢, (t) to the interval [0, T, for T" > 0. On the other hand,

from the inequality
/Kﬂﬁq%g?lvwm(t)?du < /KT?MQT%QWK%@)QW T In(t) < In(0) <C,  (4.15)

we obtain the bounded sequences

v 2

{um(®)} € L% ((o,:r) LT (K)) nL> <(0 T)H, ?’?)(K)) (4.16)

w‘,f,

(1) e L”(«)T)LQ’<K0,{—A@wmxw}eLw(«LTxH;“?””@Q)
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Moreover, by the constant C* in [£.2] and the inequality [£.15 we get the following bounded

®),

a(y1) om
(Ol a0} € 22(0.1528 ). (4.17)

[e3

sequences

71

V@))€ L°°(<o )L

S~

Again from the inequality we obtain that the sequences

) e (O F ) nre(0 iy m)

102

[—Agm()} € L°°(<0,T>;H2 1’(21’2)@@) (4.18)

are bounded in their corresponding spaces respectively. Then, we want to obtain an esti-
mate for u;/n(t) From the standard projection argument in the Hilbert space as described in

n o
[19], we use our Galerkin basis which was taken in Hilbert space Ly*’? (K), the sequences

in u n with approximation equations 4.10{ and obtain that {u,,(t)} is bounded
1 71 72
L <(O T); H,g o (K)) For the sequences in [4.16} [4.17 and [4.18| there exist the subse-

quences corresponding to them which we still denote in the same way and there exist u(t),

P(t), m(t), n2(t) and n3(t) such that they converge as a weakly star in the suitable spaces as

follows:
2 1,(%,22)
um(t) — wu(t) in L°°< Laafl’a“ (K)> N L°°<(O,T);’Hp peor (K))
’ ’ 71 2
U, (t) — wu(t) in L°°< 52 K))
_1,(7,22)
—Aprum(t) — m(t) in L™ ((O,T € (K))

V(@) |um> — ma(t) in L™

|um|“_lum(t) — n3(t) in LOO( (0,7); La‘ff att

)

71
2

m‘s

)

b
) — (t) in L°°<<0T )
CAxtm(t) — —Ag(t) in LOO((O 7)., M E (K)). (4.19)

By making use of Theorem Proposition and the Lions-Aubin compactness lemma [19],
(’Yl 2

one can get from the boundedness of the sequence {u,, (t)} in L™ <(0, T H, 7 )(K)> and
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the first two convergence in [4.19

n 1 n 1
um(t) — wu(t) strongly in Ly * ((O T);Ly "2 (K))

’

U,

() — W(t) stronglyin Lﬁ’f((o T): L 5’?(K)>. (4.20)

First, we show that n;(t) = —A, gu(t). In order to do this, we apply the following inequalities

\wffx—\yr’fy\ sc(rx\ 2 4yl )rx—yr Vo,y ERp> 2, (4.21)

< c(m”f +\y|”52>

By making use of the Holder generalized inequality with + + &= 2 + B~ 2 = 1 and applying

the inequalities [£.21] and [£.22]

[P 22 — [y P2y

\x|%x — y|p§2y‘ Ve,ye R,p>2.  (4.22)

‘< — ApJKum(t), U>p7]K — <—Ap7Ku(t), U)ILK

rg1+qz a2 (IVKum( P2 Vkum(t) — |VK]p2VKu(t)> VKUdN‘

IN

c / 4 (Wicun (O1°F + (Vi)

x '\vKum(t)|"5"’vKum(t) - |VKu(t)\p52VKu(t)‘|VKv(t)]d,u

IN

c/[ r?*%r?(wnwm( O + [Viu(t)| 7 )

Vktm(t) — V]Ku(t)’|VKv|d,u

P P 2
< C<HVKum(t) 8271 272 + HVKU 82l 279 )
L,P L,P P (K)
2 2
X HVKum(t) — VKu(t)‘ LJTI’WTQ(K)HVKU’ L;%’W%(K) < CHVKUm(t) — VKU(t)‘ L;YQL;YQZ(K)

Therefore, from the first convergence in we obtain that u,,(t) — u(t) almost everywhere
in K x (0,7) such that it follows 71 (t) = —A, gu(t). Now, we prove that ns(t) = —eV (Z)|ul?.

102

Let us consider an arbitrary ¢ € Ly’ " ? (K). Then,

1<—ev<az>|um|2,so>K V@

‘/ an+q2 QQV )|um|2g0du—/7"111+q27’32V(§:)u|2<pdu‘
K

_ \ [ @ - IUI2)du'

C*2HVK‘PH271 72 [ tm — U||2W1 72
Ly? " % (K) Ly? " % (K)

IN
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Therefore, by making use the strongly convergence in it implies that na(t) = —eV (2)|ul?.

Furthermore, to obtain n3(¢) = |u(t)|* u(t), we have

q1+92,.92
/ L )
K

Hence, [ty (£)|* Lum (t) — |u(t)|* tu(t) almost everywhere in K x [0,7). Thus, from Lemma

a+1

O (0] = [ 1P <

1.3 in [19], we obtain
av ayy

71 a2 o1 a2
1 ()]t () = ()] u(t) weakly in LI ((o,T>; Lo <K>). (4.23)

[e3

It follows from the fifth weakly convergence in and the weakly convergence in that
n3(t) = |u(t)|]* tu(t). Therefore, by making use the weak convergence in one can pass
to the limit in the approximation equations in 4.9 and obtains the assertions [4.7] and

The verification of the initial conditions is straightforward. O
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