Reference
1. Kleene SC. Representation of events in nerve nets and finite
automata. RAND PROJECT AIR FORCE SANTA MONICA CA; 1951.
2. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et
al. Backpropagation applied to handwritten zip code recognition. Neural
computation. 1989;1(4):541-51.
3. LeCun Y. Generalization and network design strategies. Connectionism
in perspective. 19: Citeseer; 1989.
4. Liu X, Annangi P, Gupta MD, Yu B, Padfield DR, Banerjee J, et al.
Learning-based scan plane identification from fetal head ultrasound
images. Proceedings of SPIE. 2012;8320.
5. Chen H, Dou Q, Ni D, Cheng J-Z, Qin J, Li S, et al. Automatic Fetal
Ultrasound Standard Plane Detection Using Knowledge Transferred
Recurrent Neural Networks. Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015. Lecture Notes in Computer Science2015. p.
507-14.
6. Sak H, Senior AW, Beaufays F. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. 2014.
7. Chen H, Ni D, Qin J, Li S, Yang X, Wang T, et al. Standard Plane
Localization in Fetal Ultrasound via Domain Transferred Deep Neural
Networks. IEEE Journal of Biomedical and Health Informatics.
2015;19(5):1627-36.
8. Maurits NM, Lei B, Tan E-L, Chen S, Zhuo L, Li S, et al. Automatic
Recognition of Fetal Facial Standard Plane in Ultrasound Image via
Fisher Vector. Plos One. 2015;10(5):e0121838.
9. Baumgartner CF, Kamnitsas K, Matthew J, Fletcher TP, Smith S, Koch
LM, et al. SonoNet: Real-Time Detection and Localisation of Fetal
Standard Scan Planes in Freehand Ultrasound. IEEE Trans Med Imaging.
2017;36(11):2204-15.
10. Yu Z, Tan E-L, Ni D, Qin J, Chen S, Li S, et al. A Deep
Convolutional Neural Network-Based Framework for Automatic Fetal Facial
Standard Plane Recognition. IEEE Journal of Biomedical and Health
Informatics. 2018;22(3):874-85.
11. Sridar P, Kumar A, Quinton A, Nanan R, Kim J, Krishnakumar RJUim, et
al. Decision Fusion-Based Fetal Ultrasound Image Plane Classification
Using Convolutional Neural Networks. 2019.
12. Sofka M, Zhang J, Good S, Zhou SK, Comaniciu D. Automatic Detection
and Measurement of Structures in Fetal Head Ultrasound Volumes Using
Sequential Estimation and Integrated Detection Network (IDN). IEEE
Transactions on Medical Imaging. 2014;33(5):1054-70.
13. Nie S, Yu J, Chen P, Wang Y, Zhang JQ. Automatic detection of
standard sagittal plane in the first trimester of pregnancy using 3-D
ultrasound data. Ultrasound in medicine & biology. 2017;43(1):286-300.
14. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv
preprint arXiv:180402767. 2018.
15. Xie S, Girshick R, Dollár P, Tu Z, He K, editors. Aggregated
residual transformations for deep neural networks. Proceedings of the
IEEE conference on computer vision and pattern recognition; 2017.
16. Redmon J, Divvala SK, Girshick RB, Farhadi A. You Only Look Once:
Unified, Real-Time Object Detection. computer vision and pattern
recognition. 2016:779-88.
17. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C, et al. SSD:
Single Shot MultiBox Detector. european conference on computer vision.
2016:21-37.
18. Ren S, He K, Girshick RB, Sun J. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 2017;39(6):1137-49.
19. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image
Recognition. computer vision and pattern recognition. 2016:770-8.
20. Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:150500853.
2015.
21. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. international conference
on machine learning. 2015:448-56.
22. He K, Zhang X, Ren S, Sun J. Identity Mappings in Deep Residual
Networks. european conference on computer vision. 2016:630-45.
23. Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning. 2016.
24. Simonyan K, Zisserman A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. international conference on learning
representations. 2015.