4.3 Conclusion
According to eDNA data, downstream ecosystems are the most species-rich. They are also the most threatened, facing diffuse and cumulated threats from upstream, and located in the most human-impacted areas (populated areas, agricultural plains, industrial effluents…). Our eDNA results highlight very important conservation issues for species downstream of major rivers. In a context of biodiversity erosion and declining populations sizes, it seems essential to implement consistent conservation policies for downstream species, which are currently insufficiently considered by naturalists and managers alike due to the difficulty of access to these environments.
eDNA analyses, with an optimal protocol, have the potential of providing not only ”presence”, but also ”absence” data. Using standardized methods it becomes now possible to reliably document both the progression of invasive species, as well as range contractions of endangered species. Large-scale and long-term eDNA metabarcoding surveys clearly represent a valuable tool for preserving and monitoring freshwater bivalves. However, regarding the poorly known species, it should be kept in mind that what we present here is 16S haplotypes distribution. They may not reflect the actual distribution of species as further studies may jeopardize the current state-of-the-art of molecular taxonomy. This is just an eDNA point of view.
Acknowledgements
The development of the eDNA analysis method for bivalves was carried out jointly by Caracol NGO, Spygen company and Biotope consultancy. The Office Français de la Biodiversité and the Direction Régionale de l’Environnement, de l’Aménagement et du Logement d’Occitanie contributed to its financing. The data presented here includes work carried out by Biotope and Aquascop consultancies, Caracol NGO, SpyGen, the Compagnie Nationale du Rhône, the Regional Natural Park of Limousin, the Conservatoires d’Espaces Naturels Midi-Pyrénées and Nouvelle Aquitaine, the LIFE + Giant Freshwater Mussel program, GRT Gaz, Voies Navigables de France, EPTB Vilaine, CPIE Loire-Anjou for the main studies. The DREAL Grand Est, Nouvelle Aquitaine, Occitanie and the DDT du Tarn also financed part of the studies. We would also like to thank all those who participated in the sampling and laboratory analysis of the samples, in particular Pascal Irz (OFB), Laurent Philippe (Biotope), Mathieu Saget (Aquascop), Mathieu Charneau (OFB).
This research was also developed under ConBiomics: the missing approach for the Conservation of Freshwater Bivalves Project Nº NORTE-01-0145-FEDER-030286, co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by Portuguese Foundation for Science and Technology (FCT) through national funds.
References
Adam, B. (2010). L’Anodonte chinoise Sinanodonta woodiana (Lea, 1834) (Mollusca, Bivalvia, Unionidae) : une espèce introduite qui colonise le bassin Rhône-Méditerranée. MalaCo , 6, 278-287.
Bij de Vaate, A., & Beisel J.-N. (2011). Range expansion of the quagga mussel Dreissena rostriformis bugensis (Andrusov, 1897) in Western Europe: first observation from France. Aquatic Invasions,6(Suppl. 1), 71–74. doi: 10.3391/ai.2011.6.S1.016
Bouchet, P. (2002). Mollusques terrestres et aquatiques de France: un nouveau référentiel taxonomique, un nouveau départ, de nouvelles perspectives. In G. Falkner, Th. E. J. Ripken, & M. Falkner (Eds.),Mollusques continentaux de France ; liste de référence annotée et bibliographie (pp. 5-20). Paris, Patrimoines Naturels 52.
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac E. (2016). obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16, 176–182. doi: 10.1111/1755-0998.12428
Breton, S., Doucet-Beaupré, H., Stewart, D., Hoeh W., & Blier, P. (2007). The unusual system of doubly uniparental inheritance of mtDNA: Isn’t one enough? Trends in genetics, 23, 465-74. doi: 10.1016/j.tig.2007.05.011.
Darling, J. A., & Mahon, A. R. (2011). From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111, 978–988. doi: 10.1016/j.envres.2011.02.001
Darwall, W., Carrizo, S., Numa, C., Barrios, V., Freyhof, J., & Smith, K. (2014). Freshwater Key Biodiversity Areas in the Mediterranean Basin Hotspot: Informing species conservation and development planning in freshwater ecosystems . Retrieved from IUCN website: https://portals.iucn.org/library/sites/library/files/documents/SSC-OP-052.pdf. doi: 10.2305/IUCN.CH.2014.SSC-OP.52.en.
Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6, e23398. doi: 10.1371/journal.pone.0023398
De Ventura, L., Kopp, K., Seppälä, K., & Jokela, J. (2017). Tracing the quagga mussel invasion along the Rhine river system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels.Management of Biological Invasions, 8, 101–112. doi: 10.3391/mbi.2017.8.1.10
Donrovich, S., Douda, K., Plechingerova, V., Rylková, K., Horky, P., Slavík, O., Huan-zhang, L., Reichard, M., Lopes-Lima, M., & Sousa, R. (2017). Invasive Chinese pond mussel Sinanodonta woodianathreatens native mussel reproduction by inducing crossresistance of host fish. Aquatic Conservation Marine and Freshwater Ecosystems , 1-9. doi: 10.1002/aqc.2759.
Duncan, N. (2008). Survey Protocol for Aquatic Mollusk Species: Preliminary Inventory and Presence/Absence Sampling, Version 3.1. Portland, OR. Interagency Special Status/Sensitive Species Program. U.S. Department of Interior, Bureau of Land Management, Oregon/Washington and U.S. Department of Agriculture, Forest Service, Region 6. Retrieved from https://www.blm.gov/or/plans/surveyandmanage/files/10-mollusks_v3-1.pdf
Evans, N. T., Olds, B. P., Turner, C. R., Li, Y., Jerde, C. L., Mahon, A. R., Pfrender, M. E., Lamberti, G. A., & Lodge, D. M. (2015). Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding. Molecular Ecology Resources , 16, 29-41. doi: 10.1111/17550998.12433
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples.Biological Letters, 4, 423–425. doi: 10.1098/rsbl.2008.0118
Froufe, E., Lopes-Lima, M., Riccardi, N., Zaccara, S., Vanetti, I., Lajtner, J., Teixeira, A., Varandas, S., Prié, V., Zieritz, A., Sousa R., & Bogan, A. E. (2017). Lifting the curtain on the freshwater mussel diversity of the Italian Peninsula and Croatian Adriatic coast.Biodiversity and Conservation, 26, 3255-3274. doi: 10.1007/s10531-017-1403-z
Gargominy, O., Léonard, L., Prié, V., & Cucherat, X. (2016). De l’utilité d’un inventaire national. MalaCo , 12 : 67-87.
Gargominy, O., Tercerie, S., Régnier, C., Ramage, T., Dupont, P., Daszkiewicz, P., & Poncet, L. (2019). TAXREF v13, référentiel taxonomique pour la France : méthodologie, mise en œuvre et diffusion . Retrieved from National Museum fop Natural History, Paris https://inpn.mnhn.fr/docs-web/docs/download/302170
Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt J., & Waits, L. P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum ). Freshwater Science, 32, 792–800. doi: 10.1899/13-046.1
Huber, V., & Geist, J. (2019). Reproduction success of the invasiveSinanodonta woodiana (Lea 1834) in relation to native mussel species. Biological Invasions , 21, 3451-3465. doi: 10.1007/s10530-019-02060-3.
Klymus, K. E., Marshall, N. T., & Stepien, C. A. (2017). Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS ONE , 12(5), e0177643. doi:10.1371/journal.pone.0177643
Liu, H.-P., Mitton, J. B., & Wu, S.-K. (1996). Paternal mitochondrial DNA differentiation far exceeds maternal mitochondrial DNA and allozyme differentiation in the freshwater mussel, Anodonta grandis grandis . Evolution , 50, 952-957. doi: 10.1111/j.1558-5646.1996.tb03907.x
Lopes-Lima, M., Kebapçı, U., & Van Damme, D. (2014). Unio crassus . The IUCN Red List of Threatened Species 2014: e.T22736A42465628. doi: 10.2305/IUCN.UK.2014-1.RLTS.T22736A42465628.en. Downloaded on 28 April 2020.
Mioduchowska, M., Kaczmarczyk, A., Zajac, K., Zajac T., & Sell, J. (2016). Gender-associated mitochondrial DNA heteroplasmy in somatic tissues of the endangered freshwater mussel Unio crassus(bivalvia: unionidae): implications for sex identification and phylogeographical studies. Journal of Experimental Zoology, 325A, 610–625. doi: 10.1002/jez.2055
Mouthon, J., & Kuiper, J. (1987). Inventaire des Sphaeriidae de France. Paris, MNHN (Collection Inventaire de Faune et de Flore).
Mouthon, J., & Tair Abbaci, K. (2012). The taxonomic confusion surrounding Pisidium (Bivalvia, Sphaeriidae): the possible birth of a new taxon. Basteria 76 (4-6): 126-130
Mouthon, J., Forcellini, M., & van Haaren, T. (2018). Euglesa compressa (Bivalvia, Sphaeriidae), native of North America, a ’hidden’ species introduced in Western Europe before 1940. Basteria,82(1-3), 50-54.
Mouthon, J., & Forcellini, M. (2017). Genetic evidence of the presence in France of the North American species Euglesa compressa Prime, 1852, (Bivalvia, Sphaeriidae). BioInvasions Records, 6(3), 225-231. doi : 10.3391/bir.2017.6.3.07
Mouthon, J. (2018). Répartition en France des formes actuelle et fossile d’Euglesa pulchella Jenyns , 1832 (Bivalvia, Sphaeriidae), une espèce rare. Folia conchyliologica, 45, 3–8.
Pfenninger, M., Reinhardt, F., & Streit, B. (2002). Evidence for cryptic hybridization between different evolutionary lineages of the invasive clam genus Corbicula (Veneroida, Bivalvia).Journal of Evolutionary Biology , 15(5), 818-829. doi: 10.1046/j.1420-9101.2002.00440.x.
Pigneur, L.-M., Marescaux, J., Roland, K., Etoundi, E., Descy, J.-P., & Van Doninck, K. (2011). Phylogeny and androgenesis in the invasiveCorbicula clams (Bivalvia, Corbiculidae) in western Europe.BMC Evolutionary Biology, 11, 147. doi: 10.1186/1471-2148-11-147
Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., & Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 8, 10361. doi:10.1038/s41598-018-28424-8
Prie, V., Puillandre, N., & Bouchet, P. (2012). Bad taxonomy can kill: molecular reevaluation of Unio mancus Lamarck, 1819 (Bivalvia: Unionidae) and its accepted subspecies. Knowledge and Management of Aquatic Ecosystems, 405(8). doi: 10.1051/kmae/2012014
Prié, V., & Puillandre, N. (2014). Molecular phylogeny, taxonomy and distribution of French Unio species (Bivalvia, Unionidae).Hydrobiologia, 735(1), 95–110. doi : 10.1007/s10750-013-1571-0
Prié, V. (2017). Naïades et autres bivalves d’eau douce de France. Mèze, Paris : Biotope éditions, Publications scientifiques du Muséum (collection Inventaires et Biodiversité).
Prié, V., & Fruget, J.-F. (2017). Heading south: new records of the invasive freshwater quagga musselDreissena rostriformis bugensis (Andrusov, 1897) in France and further perspectives. Knowledge and Management of Aquatic Ecosystems, 418, 37. doi: 10.1051/kmae/2017023
Prié, V., Soler, J., Araujo, R., Cucherat, X., Philippe, L., Legrand, N., Patry, N., Adam, B., Jugé, P., Richard, N., & Wantzen, K. M. (2018). Challenging exploration of troubled waters: ten years’ surveys of the giant freshwater pearl mussel Margaritifera auricularia in Europe. Hydrobiologia, 818(1), 157–175. doi:10.1007/s10750-017-3456-0
Prié, V., Valentini, A., Lopes-Lima, M., Froufe, E., Rocle, M., Poulet, N., Taberlet, P. & Déjean, T. (2020). Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region). Hydrobiologia . doi: 10.1007/s10750-020-04260-8
Riccardi, N., Froufe, E., Bogan, A. E., Zieritz, A., Teixeira, A., Vanetti, I., Varandas, S., Zaccara, S., Nagel, K.-O., & Lopes-Lima, M. (2019). Phylogeny of European Anodontini (Bivalvia: Unionidae) with a redescription of Anodonta exulcerata . Zoological Journal of the Linnean Society , zlz136. doi: 10.1093/zoolinnean/zlz136.
Stoeckle, B. C., Huehn, R., & Geist, J. (2016). Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquatic Conservation Marine and Freshwater ecosystems, 26(6), 1120–1129. doi: 10.1002/aqc.2611
Schnell, I. B., Bohmann, K., & Gilbert, M. T. (2015). Tag jumps illuminated – reducing sequence‐to‐sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15, 1289–1303. doi:10.1111/1755-0998.12402
Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21, 1789–1793. doi: 10.1111/j.1365-294X.2012.05542.x
Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18. doi: 10.1016/j.biocon.2014.11.019
Welter-Schultes, F. (2012). European non-marine molluscs, a guide for species identification. Göttingen: Planet Poster Editions.
Zouros, E., Ball, A.O., Saavedra, C., & Freeman, K. R. (1994). Mitochondrial DNA inheritance. Nature, 368(818). doi: 10.1038/368818a0