References
Ahn, D.G., Shin, H.J., Kim, M.H., Lee, S., Kim, H.S., Myoung, J., et al. (2020). Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30 : 313.
Al-Tawfiq, J.A., Momattin, H., Dib, J., and Memish, Z.A. (2014). Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis. 20 : 42–46.
Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., and Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. 1–3.
André, F.E. (2001). The future of vaccines, immunisation concepts and practice. Vaccine 19 : 2206–2209.
ARENA (2020). UK researchers to trial Covid-19 vaccine and plasma therapy.
Backer, J.A., Klinkenberg, D., and Wallinga, J. (2020). Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 25 :.
Baden, L.R., and Rubin, E.J. (2020). Covid-19—The Search for Effective Therapy.
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., et al. (2020). Presumed asymptomatic carrier transmission of COVID-19. Jama.
Berry, J.D., Jones, S., Drebot, M.A., Andonov, A., Sabara, M., Yuan, X.Y., et al. (2004). Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J. Virol. Methods120 : 87–96.
Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., and Ellington, A.D. (2015). Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). PLoS One 10 :.
Bioscience Institute (2020). Stem Cell Therapy: A Promising Treatment for COVID-19?
Biot, C., Daher, W., Chavain, N., Fandeur, T., Khalife, J., Dive, D., et al. (2006). Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem. 49 : 2845–2849.
Boheemen, S. van, Graaf, M. de, Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., et al. (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3 : e00473-12.
Broughton, J.P., Deng, W., Fasching, C.L., Singh, J., Chiu, C.Y., and Chen, J.S. A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR.
Cao, B., Wang, Y., and Wen, D. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19 [published online ahead of print March 18, 2020]. N Engl J Med. Doi 10 :.
Cao, X. (2020). COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 1–2.
CDC (2020). Information for Clinicians on Therapeutic Options for Patients with COVID-19.
Chan, J.F.-W., Choi, G.K.-Y., Tsang, A.K.-L., Tee, K.-M., Lam, H.-Y., Yip, C.C.-Y., et al. (2015). Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses. J. Clin. Microbiol. 53 : 2722–2726.
Chan, J.F.-W., Lau, S.K.-P., and Woo, P.C.-Y. (2013). The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns”. J. Formos. Med. Assoc. 112 : 372–381.
Chan, J.F.-W., Yip, C.C.-Y., To, K.K.-W., Tang, T.H.-C., Wong, S.C.-Y., Leung, K.-H., et al. (2020a). Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens. J. Clin. Microbiol.
Chan, J.F.-W., Yuan, S., Kok, K.-H., To, K.K.-W., Chu, H., Yang, J., et al. (2020b). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395 : 514–523.
Chen, J.-Y., Qiao, K., Liu, F., Wu, B., Xu, X., Jiao, G.-Q., et al. (2020a). Lung transplantation as therapeutic option in acute respiratory distress syndrome for COVID-19-related pulmonary fibrosis. Chin. Med. J. (Engl).
Chen, L., Xiong, J., Bao, L., and Shi, Y. (2020b). Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 20 : 398–400.
Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., and Yuen, K.Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20 : 660–694.
ChiCTR (2020). Chinese Clinical Trial Registry.
Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Wong, M.M.L., Chan, K.H., Chan, K.S., et al. (2004). Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 59 : 252–256.
Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., et al. (2020). CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295 : 202–207.
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and Doerr, H.W. (2003). Treatment of SARS with human interferons. Lancet362 : 293–294.
Clercq, E. De (2019). New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem. Asian J. 14 : 3962–3968.
Clover Biopharmaceuticals (2020). Clover Biopharmaceuticals vaccines programs. Accessed 28 Feb. 2020.
Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K.W., et al. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25 :.
Cyranoski, D. (2020). Did pangolins spread the China coronavirus to people. Nature.
Dai, W., Zhang, B., Su, H., Li, J., Zhao, Y., Xie, X., et al. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (80-. ). eabb4489.
Darwin Malicdem Hydrogen Peroxide A Potential Treatment For Coronavirus Infection?
Debing, Y., Emerson, S.U., Wang, Y., Pan, Q., Balzarini, J., Dallmeier, K., et al. (2014). Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon. Antimicrob. Agents Chemother.58 : 267–273.
Delamater, P.L., Street, E.J., Leslie, T.F., Yang, Y.T., and Jacobsen, K.H. (2019). Complexity of the basic reproduction number (R0). Emerg. Infect. Dis. 25 : 1.
Dong, L., Hu, S., and Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 14 : 58–60.
DU, H.-Z., HOU, X.-Y., MIAO, Y.-H., HUANG, B.-S., and LIU, D.-H. (2020). Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP). Chin. J. Nat. Med. 18 : 206–210.
Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., et al. (2014). Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 58 : 4885–4893.
Elshabrawy, H.A., Fan, J., Haddad, C.S., Ratia, K., Broder, C.C., Caffrey, M., et al. (2014). Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol. 88 : 4353–4365.
Forster, P., Forster, L., Renfrew, C., and Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. 202004999.
Fu, Y., Cheng, Y., and Wu, Y. (2020). Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol. Sin. 1–6.
Gadalla, M.R., and Veit, M. (2020). Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin. Drug Discov. 15 : 159–177.
Gao, J., Tian, Z., and Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends.
Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 105949.
Generex (2020). Update:, Generex Provides Coronavirus Develop, Generex Receives Contract from Chinese Partners to Vaccines, a COVID-19 Vaccine Using Ii-Key Peptide.
Genexine (2020). hyFc® Platform.
Golchin, A., Seyedjafari, E., and Ardeshirylajimi, A. (2020). Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev. Reports 1–7.
Graham, R.L., Donaldson, E.F., and Baric, R.S. (2013). A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11 : 836–848.
Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., et al. (2020). Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med.
GSK (2020). Clover and GSK announce research collaboration to evaluate coronavirus (COVID-19) vaccine candidate with pandemic adjuvant system.
HHS.gov (2020). Vaccine Types.
Hodgson, J. (2020). The pandemic pipeline.
Hoehl, S., Rabenau, H., Berger, A., Kortenbusch, M., Cinatl, J., Bojkova, D., et al. (2020). Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N. Engl. J. Med.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell.
Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., et al. (2020). First case of 2019 novel coronavirus in the United States. N. Engl. J. Med.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 : 497–506.
Ibrahim, I.M., Abdelmalek, D.H., Elshahat, M.E., and Elfiky, A.A. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect.
INOVIO (2020a). dMAbTM Technology Platform.
INOVIO (2020b). Inovio’s Product Pipeline.
INOVIO (2020c). Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800.
Jallouli, M., Galicier, L., Zahr, N., Aumaitre, O., Frances, C., Guern, V. Le, et al. (2015). Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 67 : 2176–2184.
Jean, S.-S., Lee, P.-I., and Hsueh, P.-R. (2020). Treatment options for COVID-19: the reality and challenges. J. Microbiol. Immunol. Infect.
Jiang, S. (2020). Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees.
Jiang, X., Rayner, S., and Luo, M. (2020). Does SARS‐CoV‐2 has a longer incubation period than SARS and MERS? J. Med. Virol.
Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., et al. (2020). Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses12 : 372.
Kampf, G., Todt, D., Pfaender, S., and Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J. Hosp. Infect.
Kang, M.C., Park, H.W., Choi, D.-H., Choi, Y.W., Park, Y., Sung, Y.C., et al. (2017). Plasmacytoid dendritic cells contribute to the protective immunity induced by intranasal treatment with Fc-fused interleukin-7 against lethal influenza virus infection. Immune Netw. 17 : 343–351.
Kanne, J.P. (2020). Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist.
Keown, A. (2020). WHO: More than 70 COVID-19 Vaccines are in Development, Three in Clinical Trials.
Khamitov, R.A., Loginova, Si., Shchukina, V.N., Borisevich, S. V, Maksimov, V.A., and Shuster, A.M. (2008). Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr. Virusol. 53 : 9–13.
Kindrachuk, J., Ork, B., Hart, B.J., Mazur, S., Holbrook, M.R., Frieman, M.B., et al. (2015). Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob. Agents Chemother. 59 : 1088–1099.
Kratzel, A., Todt, D., V’kovski, P., Steiner, S., Gultom, M.L., Thao, T.T.N., et al. (2020). Efficient inactivation of SARS-CoV-2 by WHO-recommended hand rub formulations and alcohols. BioRxiv.
Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., and Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 105924.
Lan, L., Xu, D., Ye, G., Xia, C., Wang, S., Li, Y., et al. (2020). Positive RT-PCR test results in patients recovered from COVID-19. Jama.
Le, T.T., Andreadakis, Z., Kumar, A., Román, R.G., Tollefsen, S., & M.S., et al. The COVID-19 vaccine development landscape.
Lee, J.-H., Cho, J.H., Yeo, J., Lee, S.H., Yang, S.H., Sung, Y.C., et al. (2013). The pharmacology study of a new recombinant TNF receptor-hyFc fusion protein. Biologicals 41 : 77–83.
Lee, N., Chan, K.C.A., Hui, D.S., Ng, E.K.O., Wu, A., Chiu, R.W.K., et al. (2004). Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J. Clin. Virol. 31 : 304–309.
Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., et al. (2020). Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 11 : 216–228.
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med.
Liu, X., Zhang, M., He, L., and Li, Y. (2012). Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst. Rev.
Løset, G.Å., Roux, K.H., Zhu, P., Michaelsen, T.E., and Sandlie, I. (2004). Differential segmental flexibility and reach dictate the antigen binding mode of chimeric IgD and IgM: implications for the function of the B cell receptor. J. Immunol. 172 : 2925–2934.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395 : 565–574.
Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.-M., Lim, W.S., et al. (2015). The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis. 211 : 80–90.
Metcalf, C.J.E., and Lessler, J. (2017). Opportunities and challenges in modeling emerging infectious diseases. Science (80-. ). 357 : 149–152.
MODERNA (2020a). Moderna’s Work on a Potential Vaccine Against COVID-19.
MODERNA (2020b). mRNA Platform: Enabling Drug Discovery & Development.
Morgenstern, B., Michaelis, M., Baer, P.C., Doerr, H.W., and Cinatl Jr, J. (2005). Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun. 326 : 905–908.
Okba, N.M.A., Raj, V.S., and Haagmans, B.L. (2017). Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr. Opin. Virol. 23 : 49–58.
Organization, W.H. (2020). Coronavirus disease 2019 (COVID-19): situation report, 67.
Pardi, N., Hogan, M.J., Porter, F.W., and Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17 : 261.
Park, A. (2020). Leaked Data From a Key Remdesivir Study Suggest the Potential Coronavirus Drug Is Not Effective.
Peeples, L. (2020). News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc. Natl. Acad. Sci. 202005456.
Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361 : 1319–1325.
Que, T.L., Wong, V.C.W., and Yuen, K.Y. (2003). Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 9 : 399–406.
Rice, J., Ottensmeier, C.H., and Stevenson, F.K. (2008). DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer 8 : 108–120.
Runfeng, L., Yunlong, H., Jicheng, H., Weiqi, P., Qinhai, M., Yongxia, S., et al. (2020). Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 104761.
Russell, C.D., Millar, J.E., and Baillie, J.K. (2020). Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395 : 473–475.
Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F., and Peiffer-Smadja, N. (2020). Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 178 : 104791.
Samuel, C.E. (2001). Antiviral actions of interferons. Clin. Microbiol. Rev. 14 : 778–809.
Sardesai, N.Y., and Weiner, D.B. (2011). Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23 : 421–429.
Savarino, A., Trani, L. Di, Donatelli, I., Cauda, R., and Cassone, A. (2006). New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 6 : 67–69.
Scagnolari, C., Vicenzi, E., Bellomi, F., Stillitano, M.G., Pinna, D., Poli, G., et al. (2004). Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir Ther9 : 1003–1011.
Schrezenmeier, E., and Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 1–12.
Seo, Y.B., Im, S.J., Namkoong, H., Kim, S.W., Choi, Y.W., Kang, M.C., et al. (2014). Crucial roles of interleukin-7 in the development of T follicular helper cells and in the induction of humoral immunity. J. Virol. 88 : 8998–9009.
Sheahan, T.P., Sims, A.C., Leist, S.R., Schäfer, A., Won, J., Brown, A.J., et al. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 11 : 1–14.
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., et al. (2020). Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. Jama.
Sheridan, C. (2020). Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol.
So, L.K.Y., Lau, A.C.W., Yam, L.Y.C., Cheung, T.M.T., Poon, E., Yung, R.W.H., et al. (2003). Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 361 : 1615–1617.
Sohu (2020). Hydrogen molecular biomedicine promotes new coronary pneumonia diagnosis and treatment plan.
Su, H., Yang, M., Wan, C., Yi, L.-X., Tang, F., Zhu, H.-Y., et al. (2020). Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int.
Sun, J., He, W.-T., Wang, L., Lai, A., Ji, X., Zhai, X., et al. (2020). COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol. Med.
Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao, Y., et al. (2020). Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9 : 462.
Tang, F., Quan, Y., Xin, Z.-T., Wrammert, J., Ma, M.-J., Lv, H., et al. (2011). Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186 : 7264–7268.
Tchesnokov, E.P., Feng, J.Y., Porter, D.P., and Götte, M. (2019). Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11 : 326.
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., et al. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect.9 : 382–385.
Tilocca, B., Soggiu, A., Sanguinetti, M., Musella, V., Britti, D., Bonizzi, L., et al. (2020). Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect.
Times, T.E. (2020). Chinese research firm attached to Army first to start 2nd clinical trial for coronavirus vaccine.
To, K.K.-W., Tsang, O.T.-Y., Yip, C.C.-Y., Chan, K.-H., Wu, T.-C., Chan, J.M.-C., et al. (2020). Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. an Off. Publ. Infect. Dis. Soc. Am.
Touret, F., and Lamballerie, X. de (2020). Of chloroquine and COVID-19. Antiviral Res. 104762.
TW, LeBaron, McCullough ML, R.S.K. A novel functional beverage for COVID-19 and other conditions: Hypothesis and preliminary data, increased blood flow, and wound healing.
University of Queensland (2020). ‘Significant step’ in COVID-19 vaccine quest.
Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin, P.E., Ksiazek, T.G., et al. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2 : 69.
Walls, A.C., Park, Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell.
Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol.94 :.
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020a). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama.
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020b). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30 : 269–271.
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., et al. (2020c). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell.
Wang, Y., Wang, W., Xu, L., Zhou, X., Shokrollahi, E., Felczak, K., et al. (2016). Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication. Antimicrob. Agents Chemother. 60 : 2834–2848.
Wenzel, R.P., and Edmond, M.B. (2003). Managing SARS amidst uncertainty. N. Engl. J. Med. 348 : 1947–1948.
WHO (2020). Coronavirus (COVID-19) Last updated: 2020/4/26, 2:00am CEST.
Wilde, A.H. de, Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Nieuwkoop, S. van, Bestebroer, T.M., et al. (2014). Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 58 : 4875–4884.
Williams, R. (2020). Are Mesenchymal Stem Cells a Promising Treatment for COVID-19?
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-. ). 367 : 1260–1263.
Wu, C.-Y., Jan, J.-T., Ma, S.-H., Kuo, C.-J., Juan, H.-F., Cheng, Y.-S.E., et al. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci.101 : 10012–10017.
Wu, F., Wang, A., Liu, M., Wang, Q., Chen, J., Xia, S., et al. (2020a). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. MedRxiv 2020.03.30.20047365.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Hu, Y., et al. (2020b). Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv.
Wu, J.T., Leung, K., Bushman, M., Kishore, N., Niehus, R., Salazar, P.M. de, et al. (2020c). Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 1–5.
Xia, J., Tong, J., Liu, M., Shen, Y., and Guo, D. (2020a). Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection. J. Med. Virol.
Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., et al. (2020b). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 1–13.
Xiao, F., Tang, M., Zheng, X., Li, C., He, J., Hong, Z., et al. (2020). Evidence for gastrointestinal infection of SARS-CoV-2. MedRxiv.
Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., and Liu, J. (2020). Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology 200343.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8 : 420–422.
Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., et al. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun. 318 : 719–725.
Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., et al. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 3 :.
Yang, M. (2020). Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available SSRN 3527420.
Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., et al. (2020a). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med.
Yang, Y., Islam, M.S., Wang, J., Li, Y., and Chen, X. (2020b). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci. 16 : 1708.
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis.
Yuan, K., Yi, L., Chen, J., Qu, X., Qing, T., Rao, X., et al. (2004). Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochem. Biophys. Res. Commun.319 : 746–752.
Zhang, J., Dong, X., Cao, Y., Yuan, Y., Yang, Y., Yan, Y., et al. (2020a). Clinical characteristics of 140 patients infected by SARS‐CoV‐2 in Wuhan, China. Allergy.
Zhang, T., Wu, Q., and Zhang, Z. (2020b). Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol.
Zhou, M., Zhang, X., and Qu, J. (2020a). Coronavirus disease 2019 (COVID-19): a clinical update. Front. Med. 1.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., et al. (2020b). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 : 270–273.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med.
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., and Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 1–8.
Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., and Yuen, K.-Y. (2016). Coronaviruses—drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15 : 327.
Coronavirus (COVID-19) Last updated: 2020/4/23, 2:00am CEST.