References
Ahn, D.G., Shin, H.J., Kim, M.H., Lee, S., Kim, H.S., Myoung, J., et al.
(2020). Current Status of Epidemiology, Diagnosis, Therapeutics, and
Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol.
Biotechnol. 30 : 313.
Al-Tawfiq, J.A., Momattin, H., Dib, J., and Memish, Z.A. (2014).
Ribavirin and interferon therapy in patients infected with the Middle
East respiratory syndrome coronavirus: an observational study. Int. J.
Infect. Dis. 20 : 42–46.
Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., and Garry, R.F.
(2020). The proximal origin of SARS-CoV-2. Nat. Med. 1–3.
André, F.E. (2001). The future of vaccines, immunisation concepts and
practice. Vaccine 19 : 2206–2209.
ARENA (2020). UK researchers to trial Covid-19 vaccine and plasma
therapy.
Backer, J.A., Klinkenberg, D., and Wallinga, J. (2020). Incubation
period of 2019 novel coronavirus (2019-nCoV) infections among travellers
from Wuhan, China, 20–28 January 2020. Eurosurveillance 25 :.
Baden, L.R., and Rubin, E.J. (2020). Covid-19—The Search for Effective
Therapy.
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., et al.
(2020). Presumed asymptomatic carrier transmission of COVID-19. Jama.
Berry, J.D., Jones, S., Drebot, M.A., Andonov, A., Sabara, M., Yuan,
X.Y., et al. (2004). Development and characterisation of neutralising
monoclonal antibody to the SARS-coronavirus. J. Virol. Methods120 : 87–96.
Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., and
Ellington, A.D. (2015). Real-time sequence-validated loop-mediated
isothermal amplification assays for detection of Middle East respiratory
syndrome coronavirus (MERS-CoV). PLoS One 10 :.
Bioscience Institute (2020). Stem Cell Therapy: A Promising Treatment
for COVID-19?
Biot, C., Daher, W., Chavain, N., Fandeur, T., Khalife, J., Dive, D., et
al. (2006). Design and synthesis of hydroxyferroquine derivatives with
antimalarial and antiviral activities. J. Med. Chem. 49 :
2845–2849.
Boheemen, S. van, Graaf, M. de, Lauber, C., Bestebroer, T.M., Raj, V.S.,
Zaki, A.M., et al. (2012). Genomic characterization of a newly
discovered coronavirus associated with acute respiratory distress
syndrome in humans. MBio 3 : e00473-12.
Broughton, J.P., Deng, W., Fasching, C.L., Singh, J., Chiu, C.Y., and
Chen, J.S. A protocol for rapid detection of the 2019 novel coronavirus
SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR.
Cao, B., Wang, Y., and Wen, D. A trial of lopinavir-ritonavir in adults
hospitalized with severe COVID-19 [published online ahead of print
March 18, 2020]. N Engl J Med. Doi 10 :.
Cao, X. (2020). COVID-19: immunopathology and its implications for
therapy. Nat. Rev. Immunol. 1–2.
CDC (2020). Information for Clinicians on Therapeutic Options for
Patients with COVID-19.
Chan, J.F.-W., Choi, G.K.-Y., Tsang, A.K.-L., Tee, K.-M., Lam, H.-Y.,
Yip, C.C.-Y., et al. (2015). Development and evaluation of novel
real-time reverse transcription-PCR assays with locked nucleic acid
probes targeting leader sequences of human-pathogenic coronaviruses. J.
Clin. Microbiol. 53 : 2722–2726.
Chan, J.F.-W., Lau, S.K.-P., and Woo, P.C.-Y. (2013). The emerging novel
Middle East respiratory syndrome coronavirus: the “knowns” and
“unknowns”. J. Formos. Med. Assoc. 112 : 372–381.
Chan, J.F.-W., Yip, C.C.-Y., To, K.K.-W., Tang, T.H.-C., Wong, S.C.-Y.,
Leung, K.-H., et al. (2020a). Improved molecular diagnosis of COVID-19
by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time
reverse transcription-polymerase chain reaction assay validated in vitro
and with clinical specimens. J. Clin. Microbiol.
Chan, J.F.-W., Yuan, S., Kok, K.-H., To, K.K.-W., Chu, H., Yang, J., et
al. (2020b). A familial cluster of pneumonia associated with the 2019
novel coronavirus indicating person-to-person transmission: a study of a
family cluster. Lancet 395 : 514–523.
Chen, J.-Y., Qiao, K., Liu, F., Wu, B., Xu, X., Jiao, G.-Q., et al.
(2020a). Lung transplantation as therapeutic option in acute respiratory
distress syndrome for COVID-19-related pulmonary fibrosis. Chin. Med. J.
(Engl).
Chen, L., Xiong, J., Bao, L., and Shi, Y. (2020b). Convalescent plasma
as a potential therapy for COVID-19. Lancet Infect. Dis. 20 :
398–400.
Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., and Yuen, K.Y. (2007). Severe
acute respiratory syndrome coronavirus as an agent of emerging and
reemerging infection. Clin. Microbiol. Rev. 20 : 660–694.
ChiCTR (2020). Chinese Clinical Trial Registry.
Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Wong, M.M.L., Chan, K.H., Chan,
K.S., et al. (2004). Role of lopinavir/ritonavir in the treatment of
SARS: initial virological and clinical findings. Thorax 59 :
252–256.
Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., et al.
(2020). CT imaging features of 2019 novel coronavirus (2019-nCoV).
Radiology 295 : 202–207.
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and
Doerr, H.W. (2003). Treatment of SARS with human interferons. Lancet362 : 293–294.
Clercq, E. De (2019). New Nucleoside Analogues for the Treatment of
Hemorrhagic Fever Virus Infections. Chem. Asian J. 14 :
3962–3968.
Clover Biopharmaceuticals (2020). Clover Biopharmaceuticals vaccines
programs. Accessed 28 Feb. 2020.
Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu,
D.K.W., et al. (2020). Detection of 2019 novel coronavirus (2019-nCoV)
by real-time RT-PCR. Eurosurveillance 25 :.
Cyranoski, D. (2020). Did pangolins spread the China coronavirus to
people. Nature.
Dai, W., Zhang, B., Su, H., Li, J., Zhao, Y., Xie, X., et al. (2020).
Structure-based design of antiviral drug candidates targeting the
SARS-CoV-2 main protease. Science (80-. ). eabb4489.
Darwin Malicdem Hydrogen Peroxide A Potential Treatment For Coronavirus
Infection?
Debing, Y., Emerson, S.U., Wang, Y., Pan, Q., Balzarini, J., Dallmeier,
K., et al. (2014). Ribavirin inhibits in vitro hepatitis E virus
replication through depletion of cellular GTP pools and is moderately
synergistic with alpha interferon. Antimicrob. Agents Chemother.58 : 267–273.
Delamater, P.L., Street, E.J., Leslie, T.F., Yang, Y.T., and Jacobsen,
K.H. (2019). Complexity of the basic reproduction number (R0). Emerg.
Infect. Dis. 25 : 1.
Dong, L., Hu, S., and Gao, J. (2020). Discovering drugs to treat
coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 14 :
58–60.
DU, H.-Z., HOU, X.-Y., MIAO, Y.-H., HUANG, B.-S., and LIU, D.-H. (2020).
Traditional Chinese Medicine: an effective treatment for 2019 novel
coronavirus pneumonia (NCP). Chin. J. Nat. Med. 18 : 206–210.
Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R.,
Kindrachuk, J., et al. (2014). Repurposing of clinically developed drugs
for treatment of Middle East respiratory syndrome coronavirus infection.
Antimicrob. Agents Chemother. 58 : 4885–4893.
Elshabrawy, H.A., Fan, J., Haddad, C.S., Ratia, K., Broder, C.C.,
Caffrey, M., et al. (2014). Identification of a broad-spectrum antiviral
small molecule against severe acute respiratory syndrome coronavirus and
Ebola, Hendra, and Nipah viruses by using a novel high-throughput
screening assay. J. Virol. 88 : 4353–4365.
Forster, P., Forster, L., Renfrew, C., and Forster, M. (2020).
Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad.
Sci. 202004999.
Fu, Y., Cheng, Y., and Wu, Y. (2020). Understanding SARS-CoV-2-mediated
inflammatory responses: from mechanisms to potential therapeutic tools.
Virol. Sin. 1–6.
Gadalla, M.R., and Veit, M. (2020). Toward the identification of ZDHHC
enzymes required for palmitoylation of viral protein as potential drug
targets. Expert Opin. Drug Discov. 15 : 159–177.
Gao, J., Tian, Z., and Yang, X. (2020). Breakthrough: Chloroquine
phosphate has shown apparent efficacy in treatment of COVID-19
associated pneumonia in clinical studies. Biosci. Trends.
Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier,
B., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of
COVID-19: results of an open-label non-randomized clinical trial. Int.
J. Antimicrob. Agents 105949.
Generex (2020). Update:, Generex Provides Coronavirus Develop, Generex
Receives Contract from Chinese Partners to Vaccines, a COVID-19 Vaccine
Using Ii-Key Peptide.
Genexine (2020). hyFc® Platform.
Golchin, A., Seyedjafari, E., and Ardeshirylajimi, A. (2020).
Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell
Rev. Reports 1–7.
Graham, R.L., Donaldson, E.F., and Baric, R.S. (2013). A decade after
SARS: strategies for controlling emerging coronaviruses. Nat. Rev.
Microbiol. 11 : 836–848.
Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A.,
et al. (2020). Compassionate Use of Remdesivir for Patients with Severe
Covid-19. N. Engl. J. Med.
GSK (2020). Clover and GSK announce research collaboration to evaluate
coronavirus (COVID-19) vaccine candidate with pandemic adjuvant system.
HHS.gov (2020). Vaccine Types.
Hodgson, J. (2020). The pandemic pipeline.
Hoehl, S., Rabenau, H., Berger, A., Kortenbusch, M., Cinatl, J.,
Bojkova, D., et al. (2020). Evidence of SARS-CoV-2 infection in
returning travelers from Wuhan, China. N. Engl. J. Med.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T.,
Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and
TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell.
Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J.,
Bruce, H., et al. (2020). First case of 2019 novel coronavirus in the
United States. N. Engl. J. Med.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020).
Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet 395 : 497–506.
Ibrahim, I.M., Abdelmalek, D.H., Elshahat, M.E., and Elfiky, A.A.
(2020). COVID-19 spike-host cell receptor GRP78 binding site prediction.
J. Infect.
INOVIO (2020a). dMAbTM Technology Platform.
INOVIO (2020b). Inovio’s Product Pipeline.
INOVIO (2020c). Inovio Accelerates Timeline for COVID-19 DNA Vaccine
INO-4800.
Jallouli, M., Galicier, L., Zahr, N., Aumaitre, O., Frances, C., Guern,
V. Le, et al. (2015). Determinants of hydroxychloroquine blood
concentration variations in systemic lupus erythematosus. Arthritis
Rheumatol. 67 : 2176–2184.
Jean, S.-S., Lee, P.-I., and Hsueh, P.-R. (2020). Treatment options for
COVID-19: the reality and challenges. J. Microbiol. Immunol. Infect.
Jiang, S. (2020). Don’t rush to deploy COVID-19 vaccines and drugs
without sufficient safety guarantees.
Jiang, X., Rayner, S., and Luo, M. (2020). Does SARS‐CoV‐2 has a longer
incubation period than SARS and MERS? J. Med. Virol.
Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., et al. (2020).
Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses12 : 372.
Kampf, G., Todt, D., Pfaender, S., and Steinmann, E. (2020). Persistence
of coronaviruses on inanimate surfaces and its inactivation with
biocidal agents. J. Hosp. Infect.
Kang, M.C., Park, H.W., Choi, D.-H., Choi, Y.W., Park, Y., Sung, Y.C.,
et al. (2017). Plasmacytoid dendritic cells contribute to the protective
immunity induced by intranasal treatment with Fc-fused interleukin-7
against lethal influenza virus infection. Immune Netw. 17 :
343–351.
Kanne, J.P. (2020). Chest CT findings in 2019 novel coronavirus
(2019-nCoV) infections from Wuhan, China: key points for the
radiologist.
Keown, A. (2020). WHO: More than 70 COVID-19 Vaccines are in
Development, Three in Clinical Trials.
Khamitov, R.A., Loginova, Si., Shchukina, V.N., Borisevich, S. V,
Maksimov, V.A., and Shuster, A.M. (2008). Antiviral activity of arbidol
and its derivatives against the pathogen of severe acute respiratory
syndrome in the cell cultures. Vopr. Virusol. 53 : 9–13.
Kindrachuk, J., Ork, B., Hart, B.J., Mazur, S., Holbrook, M.R., Frieman,
M.B., et al. (2015). Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR
signaling modulation for Middle East respiratory syndrome coronavirus
infection as identified by temporal kinome analysis. Antimicrob. Agents
Chemother. 59 : 1088–1099.
Kratzel, A., Todt, D., V’kovski, P., Steiner, S., Gultom, M.L., Thao,
T.T.N., et al. (2020). Efficient inactivation of SARS-CoV-2 by
WHO-recommended hand rub formulations and alcohols. BioRxiv.
Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., and Hsueh, P.-R.
(2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
corona virus disease-2019 (COVID-19): the epidemic and the challenges.
Int. J. Antimicrob. Agents 105924.
Lan, L., Xu, D., Ye, G., Xia, C., Wang, S., Li, Y., et al. (2020).
Positive RT-PCR test results in patients recovered from COVID-19. Jama.
Le, T.T., Andreadakis, Z., Kumar, A., Román, R.G., Tollefsen, S., &
M.S., et al. The COVID-19 vaccine development landscape.
Lee, J.-H., Cho, J.H., Yeo, J., Lee, S.H., Yang, S.H., Sung, Y.C., et
al. (2013). The pharmacology study of a new recombinant TNF
receptor-hyFc fusion protein. Biologicals 41 : 77–83.
Lee, N., Chan, K.C.A., Hui, D.S., Ng, E.K.O., Wu, A., Chiu, R.W.K., et
al. (2004). Effects of early corticosteroid treatment on plasma
SARS-associated Coronavirus RNA concentrations in adult patients. J.
Clin. Virol. 31 : 304–309.
Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., et al. (2020).
Transplantation of ACE2-mesenchymal stem cells improves the outcome of
patients with COVID-19 pneumonia. Aging Dis. 11 : 216–228.
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020).
Early transmission dynamics in Wuhan, China, of novel
coronavirus–infected pneumonia. N. Engl. J. Med.
Liu, X., Zhang, M., He, L., and Li, Y. (2012). Chinese herbs combined
with Western medicine for severe acute respiratory syndrome (SARS).
Cochrane Database Syst. Rev.
Løset, G.Å., Roux, K.H., Zhu, P., Michaelsen, T.E., and Sandlie, I.
(2004). Differential segmental flexibility and reach dictate the antigen
binding mode of chimeric IgD and IgM: implications for the function of
the B cell receptor. J. Immunol. 172 : 2925–2934.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020).
Genomic characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet 395 :
565–574.
Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw,
F.-M., Lim, W.S., et al. (2015). The effectiveness of convalescent
plasma and hyperimmune immunoglobulin for the treatment of severe acute
respiratory infections of viral etiology: a systematic review and
exploratory meta-analysis. J. Infect. Dis. 211 : 80–90.
Metcalf, C.J.E., and Lessler, J. (2017). Opportunities and challenges in
modeling emerging infectious diseases. Science (80-. ). 357 :
149–152.
MODERNA (2020a). Moderna’s Work on a Potential Vaccine Against COVID-19.
MODERNA (2020b). mRNA Platform: Enabling Drug Discovery & Development.
Morgenstern, B., Michaelis, M., Baer, P.C., Doerr, H.W., and Cinatl Jr,
J. (2005). Ribavirin and interferon-β synergistically inhibit
SARS-associated coronavirus replication in animal and human cell lines.
Biochem. Biophys. Res. Commun. 326 : 905–908.
Okba, N.M.A., Raj, V.S., and Haagmans, B.L. (2017). Middle East
respiratory syndrome coronavirus vaccines: current status and novel
approaches. Curr. Opin. Virol. 23 : 49–58.
Organization, W.H. (2020). Coronavirus disease 2019 (COVID-19):
situation report, 67.
Pardi, N., Hogan, M.J., Porter, F.W., and Weissman, D. (2018). mRNA
vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17 :
261.
Park, A. (2020). Leaked Data From a Key Remdesivir Study Suggest the
Potential Coronavirus Drug Is Not Effective.
Peeples, L. (2020). News Feature: Avoiding pitfalls in the pursuit of a
COVID-19 vaccine. Proc. Natl. Acad. Sci. 202005456.
Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W.,
et al. (2003). Coronavirus as a possible cause of severe acute
respiratory syndrome. Lancet 361 : 1319–1325.
Que, T.L., Wong, V.C.W., and Yuen, K.Y. (2003). Treatment of severe
acute respiratory syndrome with lopinavir/ritonavir: a multicentre
retrospective matched cohort study. Hong Kong Med J 9 : 399–406.
Rice, J., Ottensmeier, C.H., and Stevenson, F.K. (2008). DNA vaccines:
precision tools for activating effective immunity against cancer. Nat.
Rev. Cancer 8 : 108–120.
Runfeng, L., Yunlong, H., Jicheng, H., Weiqi, P., Qinhai, M., Yongxia,
S., et al. (2020). Lianhuaqingwen exerts anti-viral and
anti-inflammatory activity against novel coronavirus (SARS-CoV-2).
Pharmacol. Res. 104761.
Russell, C.D., Millar, J.E., and Baillie, J.K. (2020). Clinical evidence
does not support corticosteroid treatment for 2019-nCoV lung injury.
Lancet 395 : 473–475.
Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F., and
Peiffer-Smadja, N. (2020). Type 1 interferons as a potential treatment
against COVID-19. Antiviral Res. 178 : 104791.
Samuel, C.E. (2001). Antiviral actions of interferons. Clin. Microbiol.
Rev. 14 : 778–809.
Sardesai, N.Y., and Weiner, D.B. (2011). Electroporation delivery of DNA
vaccines: prospects for success. Curr. Opin. Immunol. 23 :
421–429.
Savarino, A., Trani, L. Di, Donatelli, I., Cauda, R., and Cassone, A.
(2006). New insights into the antiviral effects of chloroquine. Lancet
Infect. Dis. 6 : 67–69.
Scagnolari, C., Vicenzi, E., Bellomi, F., Stillitano, M.G., Pinna, D.,
Poli, G., et al. (2004). Increased sensitivity of SARS-coronavirus to a
combination of human type I and type II interferons. Antivir Ther9 : 1003–1011.
Schrezenmeier, E., and Dörner, T. (2020). Mechanisms of action of
hydroxychloroquine and chloroquine: implications for rheumatology. Nat.
Rev. Rheumatol. 1–12.
Seo, Y.B., Im, S.J., Namkoong, H., Kim, S.W., Choi, Y.W., Kang, M.C., et
al. (2014). Crucial roles of interleukin-7 in the development of T
follicular helper cells and in the induction of humoral immunity. J.
Virol. 88 : 8998–9009.
Sheahan, T.P., Sims, A.C., Leist, S.R., Schäfer, A., Won, J., Brown,
A.J., et al. (2020). Comparative therapeutic efficacy of remdesivir and
combination lopinavir, ritonavir, and interferon beta against MERS-CoV.
Nat. Commun. 11 : 1–14.
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., et al. (2020).
Treatment of 5 critically ill patients with COVID-19 with convalescent
plasma. Jama.
Sheridan, C. (2020). Fast, portable tests come online to curb
coronavirus pandemic. Nat. Biotechnol.
So, L.K.Y., Lau, A.C.W., Yam, L.Y.C., Cheung, T.M.T., Poon, E., Yung,
R.W.H., et al. (2003). Development of a standard treatment protocol for
severe acute respiratory syndrome. Lancet 361 : 1615–1617.
Sohu (2020). Hydrogen molecular biomedicine promotes new coronary
pneumonia diagnosis and treatment plan.
Su, H., Yang, M., Wan, C., Yi, L.-X., Tang, F., Zhu, H.-Y., et al.
(2020). Renal histopathological analysis of 26 postmortem findings of
patients with COVID-19 in China. Kidney Int.
Sun, J., He, W.-T., Wang, L., Lai, A., Ji, X., Zhai, X., et al. (2020).
COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives.
Trends Mol. Med.
Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao, Y., et al.
(2020). Estimation of the transmission risk of the 2019-nCoV and its
implication for public health interventions. J. Clin. Med. 9 :
462.
Tang, F., Quan, Y., Xin, Z.-T., Wrammert, J., Ma, M.-J., Lv, H., et al.
(2011). Lack of peripheral memory B cell responses in recovered patients
with severe acute respiratory syndrome: a six-year follow-up study. J.
Immunol. 186 : 7264–7268.
Tchesnokov, E.P., Feng, J.Y., Porter, D.P., and Götte, M. (2019).
Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by
remdesivir. Viruses 11 : 326.
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., et al. (2020).
Potent binding of 2019 novel coronavirus spike protein by a SARS
coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect.9 : 382–385.
Tilocca, B., Soggiu, A., Sanguinetti, M., Musella, V., Britti, D.,
Bonizzi, L., et al. (2020). Comparative computational analysis of
SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related
coronaviruses. Microbes Infect.
Times, T.E. (2020). Chinese research firm attached to Army first to
start 2nd clinical trial for coronavirus vaccine.
To, K.K.-W., Tsang, O.T.-Y., Yip, C.C.-Y., Chan, K.-H., Wu, T.-C., Chan,
J.M.-C., et al. (2020). Consistent detection of 2019 novel coronavirus
in saliva. Clin. Infect. Dis. an Off. Publ. Infect. Dis. Soc. Am.
Touret, F., and Lamballerie, X. de (2020). Of chloroquine and COVID-19.
Antiviral Res. 104762.
TW, LeBaron, McCullough ML, R.S.K. A novel functional beverage for
COVID-19 and other conditions: Hypothesis and preliminary data,
increased blood flow, and wound healing.
University of Queensland (2020). ‘Significant step’ in COVID-19 vaccine
quest.
Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin,
P.E., Ksiazek, T.G., et al. (2005). Chloroquine is a potent inhibitor of
SARS coronavirus infection and spread. Virol. J. 2 : 69.
Walls, A.C., Park, Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., and
Veesler, D. (2020). Structure, function, and antigenicity of the
SARS-CoV-2 spike glycoprotein. Cell.
Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor
recognition by the novel coronavirus from Wuhan: an analysis based on
decade-long structural studies of SARS coronavirus. J. Virol.94 :.
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020a).
Clinical characteristics of 138 hospitalized patients with 2019 novel
coronavirus–infected pneumonia in Wuhan, China. Jama.
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020b).
Remdesivir and chloroquine effectively inhibit the recently emerged
novel coronavirus (2019-nCoV) in vitro. Cell Res. 30 : 269–271.
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., et al.
(2020c). Structural and Functional Basis of SARS-CoV-2 Entry by Using
Human ACE2. Cell.
Wang, Y., Wang, W., Xu, L., Zhou, X., Shokrollahi, E., Felczak, K., et
al. (2016). Cross talk between nucleotide synthesis pathways with
cellular immunity in constraining hepatitis E virus replication.
Antimicrob. Agents Chemother. 60 : 2834–2848.
Wenzel, R.P., and Edmond, M.B. (2003). Managing SARS amidst uncertainty.
N. Engl. J. Med. 348 : 1947–1948.
WHO (2020). Coronavirus (COVID-19) Last updated: 2020/4/26, 2:00am CEST.
Wilde, A.H. de, Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C.,
Nieuwkoop, S. van, Bestebroer, T.M., et al. (2014). Screening of an
FDA-approved compound library identifies four small-molecule inhibitors
of Middle East respiratory syndrome coronavirus replication in cell
culture. Antimicrob. Agents Chemother. 58 : 4875–4884.
Williams, R. (2020). Are Mesenchymal Stem Cells a Promising Treatment
for COVID-19?
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L.,
Abiona, O., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in
the prefusion conformation. Science (80-. ). 367 : 1260–1263.
Wu, C.-Y., Jan, J.-T., Ma, S.-H., Kuo, C.-J., Juan, H.-F., Cheng,
Y.-S.E., et al. (2004). Small molecules targeting severe acute
respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci.101 : 10012–10017.
Wu, F., Wang, A., Liu, M., Wang, Q., Chen, J., Xia, S., et al. (2020a).
Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered
patient cohort and their implications. MedRxiv 2020.03.30.20047365.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Hu, Y., et al. (2020b).
Complete genome characterisation of a novel coronavirus associated with
severe human respiratory disease in Wuhan, China. BioRxiv.
Wu, J.T., Leung, K., Bushman, M., Kishore, N., Niehus, R., Salazar, P.M.
de, et al. (2020c). Estimating clinical severity of COVID-19 from the
transmission dynamics in Wuhan, China. Nat. Med. 1–5.
Xia, J., Tong, J., Liu, M., Shen, Y., and Guo, D. (2020a). Evaluation of
coronavirus in tears and conjunctival secretions of patients with
SARS‐CoV‐2 infection. J. Med. Virol.
Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., et al. (2020b).
Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly
potent pan-coronavirus fusion inhibitor targeting its spike protein that
harbors a high capacity to mediate membrane fusion. Cell Res. 1–13.
Xiao, F., Tang, M., Zheng, X., Li, C., He, J., Hong, Z., et al. (2020).
Evidence for gastrointestinal infection of SARS-CoV-2. MedRxiv.
Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., and Liu, J. (2020).
Chest CT for typical 2019-nCoV pneumonia: relationship to negative
RT-PCR testing. Radiology 200343.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al.
(2020). Pathological findings of COVID-19 associated with acute
respiratory distress syndrome. Lancet Respir. Med. 8 : 420–422.
Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl,
J., et al. (2004). HIV protease inhibitor nelfinavir inhibits
replication of SARS-associated coronavirus. Biochem. Biophys. Res.
Commun. 318 : 719–725.
Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., et al. (2005).
Design of wide-spectrum inhibitors targeting coronavirus main proteases.
PLoS Biol. 3 :.
Yang, M. (2020). Cell pyroptosis, a potential pathogenic mechanism of
2019-nCoV infection. Available SSRN 3527420.
Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., et al. (2020a).
Clinical course and outcomes of critically ill patients with SARS-CoV-2
pneumonia in Wuhan, China: a single-centered, retrospective,
observational study. Lancet Respir. Med.
Yang, Y., Islam, M.S., Wang, J., Li, Y., and Chen, X. (2020b).
Traditional Chinese Medicine in the Treatment of Patients Infected with
2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J.
Biol. Sci. 16 : 1708.
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., et al. (2020).
In vitro antiviral activity and projection of optimized dosing design of
hydroxychloroquine for the treatment of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis.
Yuan, K., Yi, L., Chen, J., Qu, X., Qing, T., Rao, X., et al. (2004).
Suppression of SARS-CoV entry by peptides corresponding to heptad
regions on spike glycoprotein. Biochem. Biophys. Res. Commun.319 : 746–752.
Zhang, J., Dong, X., Cao, Y., Yuan, Y., Yang, Y., Yan, Y., et al.
(2020a). Clinical characteristics of 140 patients infected by SARS‐CoV‐2
in Wuhan, China. Allergy.
Zhang, T., Wu, Q., and Zhang, Z. (2020b). Probable pangolin origin of
SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol.
Zhou, M., Zhang, X., and Qu, J. (2020a). Coronavirus disease 2019
(COVID-19): a clinical update. Front. Med. 1.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., et al.
(2020b). A pneumonia outbreak associated with a new coronavirus of
probable bat origin. Nature 579 : 270–273.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020).
A novel coronavirus from patients with pneumonia in China, 2019. N.
Engl. J. Med.
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., and Han, Z. (2020).
Single-cell RNA-seq data analysis on the receptor ACE2 expression
reveals the potential risk of different human organs vulnerable to
2019-nCoV infection. Front. Med. 1–8.
Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., and Yuen, K.-Y.
(2016). Coronaviruses—drug discovery and therapeutic options. Nat.
Rev. Drug Discov. 15 : 327.
Coronavirus (COVID-19) Last updated: 2020/4/23, 2:00am CEST.