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1 Introduction

1.1 The model on the half-line.

We consider the following initial-boundary value problem on the half line, called Kawahara
equation:
g — use — (ud)z =0, (x,t) € RT x (0,7T),
u(z,0) = ¢(x), x € RT, (1.1)
w(0,t) = hi(t),u,(0,t) = hao(t), te€(0,T)
with the compatibility h1(0) = ¢(0), when 3 < s < 2, or hy(0) = ¢(0), h2(0) = ¢'(0) when
3 < s < 5. The data (¢,h1,hs) will be in the space H;(R*),H:EQ (RJF),Ht%(R‘F). The

equation was first proposed by Kawahara [1], it arises in the theory of shallow water waves and

* Corresponding author (Fengxia Liu).

E-mail addresses: ghl@iapcm.ac.cn (B. Guo); liufengxia91@126.com (F. Liu).



it is regarded as a singular perturbation of KdV equation, we refer to [2]- [5] and references
therein.

There are many results about the Cauchy problem and IBVP for Kawahara equation. Here
we only give some previous works. The LWP for Cauchy problem of Kawahara equation was first
studied by Cui and Tao [6], they obtained the LWP in H*(R), s > %, and GWP in H?(R). Later,
Cui [7] improved the previous result to H*(R), s > —1. In Chen [8] and Huo [9], they proved
the LWP in H*(R), s > —T independently. Kato [10] proved the LWP in H*(R), s > —2. We
also refer to Kenig [11] for more details. In the previous works on the IBVP of the Kawahara
equation and its related equations posed on the right half-line, e.g. [12]- [14] and references
therein, authors proved local and global well-posedness in the high regularity function spaces
with exponential decay property, or weighted Sobolev space for at least nonnegative regularity.

Kwak [15] proved the LWP of (1.1) in H*(R) on the half line, s > —1 by using Duhamel
boundary forcing operator, for more details, we can refer to [16], [17].

In this paper, we consider Kawahara equation on the half line by using Laplace transportation
instead of Duhamel boundary operator, and we have to note that the nonlinear term of this paper
is smoother than initial value and we improved the regularity that obtained in [15]. We will
extend the data into the whole line and then use Laplace transform to get an equivalent equation
on the whole line. Then we use the restricted norm and tools that are available on the whole
line. This method is standard and readers can refer to [18]- [20] and references therein for more

details.

1.2 Structure of the paper

This paper is organized as follows. In section 1, we will introduce the function space we will
work in and some notations in this paper, and give the main result at last. In the next section,
we will recall some linear and nonlinear estimates needed in the proofs of our theorem. In section
3, we will give a prior estimates on linear and nonlinear terms that needed for the establish of
the contraction map. Then in section 4, we will use the estimates above to get the main result,
and in the last section, we will show that the uniqueness of the solution is independent in the

extension.



1.3 Function spaces and notation.

Denoting Dy representing evaluation at z = 0, i.e., Do[u(z,t)] = u(0,t). The solution to the

linear problem u; — us, = 0 on R with initial data u(z,0) = ¢(x) will be denoted by
— LI
Who(z) = 7o (€76(9)) (@),
gg(f) denotes the Fourier transform

5(6) = (Fao)(©) = / ¢~ 3() .

R

It is clear that the solution of (1.1) is
¢
u(z,t) = Who*(x) + WE(0, hy, ha) +/ W G(u)dt (1.2)
0

where

and ¢* is the extension of ¢ in the full line R,
t
pi(t) = Do [Who™(2)],  aqi(t) = Do [ / wht G(u)dt’] :
0

p2(t) = Do [Who*(2)] ., q2(t) = Do [ /0 Wgt’G(u)dt’] ,

x

Note that
W5 (¢, h1, ha) + Wgo*

is the solution of

up — use = 0, (x,t) € RT x (0,7),
u(w, 0) = 6(z), r €RY, (13)
w(0,t) = hy(t),us(0,t) = ha(t), t€(0,T).

It is clear that the solution u of (1.1) satisfy ®(u) = u, for ¢ < T, where the operator ® is
defined by

t
D(u(z,1)) = 1) Whe" + () WEO, by —pr — a1, hs — p2 — o) + () /0 W Gluyd, (1.4)

where n € C*, such that n =1 in [-1,1], n =0 in (—o0, —2) U (2, +00).



Next, we will use a fixed point argument to obtain a unique solution to ®(u(z,t)) = u(x,t)

in a suitable function space. We will work on the space X*° where

lullxes = ||(€)(7 = €)ae, 7)|

2 )
Lfﬂ'

and u(&, 7) denotes the Fourier transform over time-space

u(g, 1) = FoFilu(z, b)) = //R2 e ey (2, t)dxdt,

we denote (£) = /1 + [£|?, and the characteristic function on (0, c0) is denoted by x. We define
the Sobolev space H® norm by

Julfyey = [ (€7l P
and the Sobolev space H*(R™) on the half line is defined as
H*(RT) = {f € D(RT) : there exists f € H*(R) with fx = f},

1911+ ®+) = nf{[| gl ) : 9x = g}-

Finally, a < b denotes that a < Cb for some constant C, and if C' < 1 we use the symbol
a < b instead of <. a ~ b indicates that @ < b and b < a, a+ indicates a + €, where € can be
arbitrarily small, a— denotes similarly.
Definition 1.1. We define that the equation solution (1.1) is locally well-posed in H*(R™) if for
any initial-boundary data (¢, h1, ha) € HE(RT) x Ht% (RT) x Ht% (RT), with the compatibility
condition that hi(0) = ¢(0), when 3 < s < 3, or h1(0) = $(0),h2(0) = ¢'(0) when 3 <
s < % The equation ®(u) = u, where ® has been defined in (1.4), has a unique solution
u e XN CYHS N Cgﬂt% for % —b > 0 and T both sufficiently small. Furthermore, the

solution u depends only on the initial-boundary data.

Remark 1.2. The main goal in the paper is to show the local well-posedness of (1.1) in the

low regularity Sobolev space, so we only consider the reqularity for s < % The compatibility

conditions for high regularities are negligible. See [5] for the comparison.

Theorem 1.3. For any s € (—2,5)\{3, 2}, the equation solution (1.1) is locally well-posed in
H*(R). For a < min{2s+ 3,—1— s},

u — Wi(é, hi, ho) € CYHST.



2 Lemmas

We will render the problem (1.1) in the following:

p

ur — use = 0, (x,t) € RT x (0,7),
u(,0) = 6(x), z €RY, (21)
U(O,t) = Oyuw(ovt) =0, te (O7T)7

up — usy = f(x,1), (x,t) € RT x (0,7),
u(z,0) =0, xr € RT, (2.2)
| u(0,6) = 0,u,(0,6) =0, te(0,7)

where f(z,t) = (u®),, and

up — usy = 0, (z,t) e RT x (0,7),
u(x,0) =0, x € RT, (2.3)
u(O,t) = hl(t),uz(O,t) = hg(t), t e (O,T).

Next, we will show the estimates in X*?.

Lemma 2.1. ( [5]) Let s,b € R. If ¢ € H*(R), then
In®)Wrellxos < 0l (w)-
Lemma 2.2. ( [21]) For any —3 <V <0< b <V +1 and T € (0,1), the estimate holds

t
Hn<t/T> [ witawar| <6
0

Xsb

Also, for any —% <b <by < % and F € X%b2
In(t/T)Fllxsn S T F |l xons (2.4)
To obtain the solution of IBVP (1.1), we also need the lemma about extensions of H*(R™).

Lemma 2.3. ( [22]) Let h € H*(R"),
(1) If =% < s < %, then ||xhllgs@®) S Il s @+
(2) If § <s <3, h(0)=0, then ||xh|lg=@) S 1Pl s ®+)-

Lemma 2.4. If 5 >1,v >0, 8 >, then we have

/ W= a)ﬁl@ — b>7dw S{a—0b)77.




3 A prior estimates

To obtain the local theory, we need the linear estimates and nonlinear estimates. We will

give the linear estimates firstly.

Lemma 3.1. There holds that

In(®EWES (@) sz S 167 (2) 11
LeH, °

T t

for any s and j =0,1,2.

Proof. We can refer [5] for details.

Lemma 3.2. For any s € R and b < %,
In(E)W5(0, iy, bl xso S IxBlx

where h = (hy, hs),

1Pllx = lhall sz 4 [lholl s
H,° (R) H,° (R)

Proof. Indeed, we need to calculate W((0, hy, ho) firstly. Note that the Laplace transform of the

function u over [0, 00) is
u(s) = / e Stu(t)dt.
0

Taking the Laplace transform with respect to ¢ of (2.3) yields

su(x, s) — usg(x,s) =0, reRT, seRT
(z,0) =0, z € RY, (3.1)
(0, 8) = h1(s), Uy (0,5) = ho(s), s€RT.

The characteristic equation is s — A% = 0 and A;(s)(j = 1,2,---,5) are the solutions.

As both u(z, s), uy(z,s) — 0, when = — oo, it is concluded that for any s with Res > 0

iz, 5) [(Alle(s) ~ Ra(s))e*2T — (Agha(s) — fzg(s))e)‘lx] .

T — N

Thus, for any fixed v > 0, we have

1 iOO+'Y
u(z,t) = 5 /ioo%y eSu(x, s)ds.



By the continuity of v at v = 0 we have
1 100 1 0
u(z,t) = / eSu(x, s)ds + — eSu(x, s)ds.
211 0 21 —ico
On the positive imaginary axis, take s = iu®, 1 < u < oo, then

- 177

A(s) = pel 10, Ao(s) = pe'ts,

(e, 1) = UOR)(2) + TORE)
=R [ [Oha(s) = (o)™ — Ol (s) = Pa(s)e] ds.
where
U@ = 5 [ et [ah(s) = Ra(9)e™ = (o (s) = ha(s))e] ds

Since, s = iu®, ds = 5ip*du, then

5 o0 iuSt 4 7 [e') 00 x
u(:c,t) = / % |:<,LL6Z117 / efsthl(t)dt _/ 6Sth2(t)dt> ehae W:| du
2 Jo p(e’ 0 —e'o) 0 o

5 00 eiu5tu4 . [ 00 i1t
,—) [(Melw/o e_Sthl(t)dt—/O B_Sthg(t)dt> ehre ]du.

T o 17w . T
2m Jo  p(etio — e'io

Denote

o0 Lipdt 4ei117—6reueill0x 00 oo 4eiu5t+pxei% N
= a “sthy(tdtdp = | B e Ry (u)d
- S177 - T e 1 :u‘_ -177 s € 1 /’L /’67
0 0 0

et 10 — e'1o e 10 — e'10

0o 3 ipdt+pze’ 10 oo 4 ipdt+ a:e"”kll?(%T ids
we 2 e ~ 5 e H H el10 ~ 5

= | —m——a—h(”)dp, I = T h(u”)dp,

0 et 10 — e'1o 0 et 10 — e'10

. St
00 M3ez,u5t+u:re 0 5

v :/ — = he()dp.

0 e’ — e'io

Then,
(i, t) = ;Re (=TI — I+ 1V).
™

Since 2ZEWE(0,hy,hy) = I —II — IIT + IV. We now consider I. Assume first s = 0,b = 1—,
fly) = e Yp(y), where p € C* be a cut-off function with p =1 in [0,00) and 0 in (—oo, —1).

Therefore,
S 177

e''10 . c o~
(z,t) = ——+ /M4€lt“5f(—/m€“°)hl(MS)dﬂa

e'10 — e'1lo

7



and

- 177

M6 T) = e [ = ) T (e ) €)d
et 170 — e'10

- 177

e’ 10 . ~ ~ &
= M/”(T —M5)M4h1(ﬂ5) ( i ).
et 10 — e'10 —pe’10
Since f is a Schwarz function, we have
fit 1 et
_Mei% ~1 ‘1‘55#562% ~gs +M5€i§’

and 7 is also a Schwarz function,

1 1
(r— )% (r — 5)5+

(T — 1) S
Then, using variable changes z = ° we have

pre's 5\4- [ 5\,,4% (,,5
||771HX0,§_ S m<7’—5 )5 (7 — )" ha (1) |dpe

2
Lg,r

N

1 ~
/R<T_M5>2M4#2|h1(/ﬁ5)|d/ﬁ
[ il

wir— w2 L,

<( [ im 2d%<h
s @HhE@eE) sl

Cw Smry

A

Similarly, we also get

i, ) < |k o nIvE, D) < |k
[ T S M2l V(&7 S Nhall

|nIIne, o) < |k .
(g, 7)| < || 1”H§ £ ®)

1
¢ (R) R)

We still need to obtain bounds on I, IIT and I, IV in X 3~ and X*5~ respctively for general s.

For any s € N,
ei% 4 itu® | T i T N\NST 5
%mwawz.m.W/%@uaﬂﬂwﬂm&vawfmwym
e'10 — ¢e'10 JR

itu’ r(s i\ ST
< /Rn(t)/f*e 1 f) (—pwe’10) pha (1°)dp,



then

105 (D) (2, )| 0,4 -

<

<

\ N

s poe's 5\3— (BN AT (5
Mm<7—5> /R’U(T ) h1(/ﬁ)‘dﬂ

S [[hal]
L2 H,;

Analogously, we have 03 (nll)(z,t), 05 (nlll)(x,t) and 05(nIV)(z,t) bounds. We omit the proof.

O

2 1
Lemma 3.3. For any s € R, the initial data such that (xhi, xhe) € H (R) x H} (R) we have

WE(0, by, ho) € COHE(R x R), UWMOMWQGCH’(RXM

Proof. Since the proofs of II, III, IV are similar to I, so we only give the proof of I. Note that

I(z,t) =

-177
el 10

m/“ e f(—pwe' ™ )hy (1°)dp,

e'10 — e’lo

let o5 = /flﬁl(;ﬁ), then combing variable changes z = u® we have

61l = [ > a®) P S [ e ()P

—00

o0
S / <Z> 2s;r4
—o0

hi(2)Pdz < [xha|f? wse
5

t

Next, due to the continuity of operator etag, it suffices to show that the map

is bounded from H?® to HS.

~ [ renee g

First, we consider s = 0. Since

=)z,

then combining with variable changes and that f is a Schwarz function, we have

ITgl2: < / )

1

er 10 J’/‘e 10

M</f|/|g gmw
s [ [1reiEmr—

< (1912 / F)hdz < ||g||%2,
R zZ




this completes the proof that I € CYH? for s = 0.
When s > 0, for any s € N, we have

]

95 Tg(x) = /0 O (et ) (uei )G () dp,

so [|0;Tg(2)1172 < llglls- B
Next we will proof that nW{(0, ki, he) € COH, ® (R). We only give the proof of I. We will

consider || f| 72 and | f| g1 separaterly.

/ (et ) Pdy = / (et ) Pdu + / (et ) 2d,
R lul<1

lul>1

since f is bounded, the first term is bounded. For the second term,

i 1
/ (e )| 2dp = / F)P——dy
ul>1 —ze’10

[£]>1
which is bounded since f is a Schwarz function.

Next, we will also use the fact that f is a Schwarz function to obtain the bound of differential

term, since

dcif(—uweiﬂ)) — (e (e ).

Lemma 3.4. (see [5]) For s > —I with b=b(s) < 5, we have
10z (uv) [ xs-0 S Jull s vl xse-

Lemma 3.5. For s > —%, a < min{—1—s,2s + %} and % — b > 0 sufficiently small, we have
[0z (wvw) | xs+a—s S [[ullxsol[vllxsollwll xsp-

Proof. To prove

102 (uow) || xs+a—s S lJull s l|vllxsellwllxse,

by duality, it suffices to prove that

/ / O (wvw)ddedt < ull oo [0l o 0l oo |l —osers (3.2)

for any ¢ € X~ (sta)b,

10



Now we define

FET) = (O (r —Pa(g,r),  gl&r) = () (1 — i, 7),
h(€7) = (&) —Vw(E, 1), 1) = TN — )Ph(¢, 7).

Then the inequality (3.2) is equivalent to

‘/ M(§7 515 527 T,T1, T2)f(€17 Tl)g(é-? - 51) T2 — Tl)h(f - 525 T — TQ)T(é-y T)d£1d71d52d7—2d£d7—

Sz Mgllzz NAllzz vl
&7 &7 &7 &7
(3.3)

where

(€)% — 1) * (€ — &) °IEIE)
(1 = &) — 11 — (&2 = &)P)NT — 1 — (£ = &2)°)2(1 — &5)b
Using Cauchy-Schwarz and Young’s inequality,

M:

LHS of (3.3) Ssup M|z M fllzz_llgllez _lIAllzz
& 1,71 &7 &7 &

then it suffices to show that

28 52 £1> <§ - £2>_28<§>2<§>2(a+s)d§1d£2d7'1d7'2 <
el e e ey e e R

Using the triangular inequality (a)(b) > (a + b), we have

(€1)725(€r — &) T2 (€ — &) 72 2(€) 2T dg dEodrs
LHS of (34) 5 Sup // R3 (ro — (&2 — &)° =€) (T + (£ — &)5 —£5)2 7

applying Lemma 2.4 in 75 integral, we are reduced to prove

(1)~ 52—51 )72(E — &) 7O HE) I dE déo
S“p/ . T6-artEop-op ~" (35)

Let
= - - (6-&)° - (E-&)
= 252(52 —G)E-L-&)E+E+(E- L)+ (&L - &),

due to the symmetry of &1,&s — £1,& — &2, we may assume that |§1] S [&2 — &1 S |€ — ] We

will discuss (3.5) in the following cases.

11



Case I:  |&| > 1, [€ — &| ~ &2 — &1] ~ [€] ~ |€1]- Then combining triangular inequality,
(G) ~ (E)(& — &) (€ — & — &)(6)* =€),

LHS of (3.5) S sup(€)>>+2 / (&)71%der Ssup(e) PR S,
: R :

provided that a < 2s + %

Case II: |6 — &1 > 1, €] < [&2 — & ~ € — & ~ [€].
Case IT-a: || < 1, here (G) ~ (£)*(¢&3) Then

LHS of (3.5) < sup(¢)2t2st2e—ds—4 < q
¢

provided that a < s+ 1.
Case II-b: |¢1] > 1. |G| ~ [£]°. Then

LHS of (3.5) < Sup<£>2+28+2a—4s—5/<§1>_23d€1
£ R

If s <0, then (£1)725 < (€)%,

LHS of (3.5) <sup(€)?* 43 <1
3

provided a < 2s + %
If s > 0, then
LHS of (3.5) < / (&) P t2ge <1
R

provided a < min{2s +1,s + 3}.
Case IIL:  |&| > L, [¢] < |&1] ~ € — &I, then (G) ~ (&1)°.
Case ITI-a: || > 1.

LHS of (3.5) < sup(¢)2+2++2 / (€)% 5de; <1,
¢ R

providedthata<—1—sands>—% or —s—1<a<2s+1.
Case III-b: [¢| < 1. Then

LHS of (3.5) < /R<£1>‘5‘63d§1 <1

provided s > —%.

12



Lemma 3.6. For % — b > 0 sufficiently small, we have
t / t /
Hn(t) / WLt Gdt s T Hn(t) [ / Wit Gdt’]
0 LXH, b 0 x

< Gllxers + H [ xate e - €76 )

s+1
L>H, >

s> —1,

where R = {|7| > |€]P} U {|¢| < 1}.

Proof. We only consider the equation at x = 0.

/Wt ‘Gat’ —// =8 7 (G) (€, ¢')dedt
= /O /R eit=t)e /R e G(¢, T)drdedt!

it (1—€5 it(r—&°
/teit/(T_Ss)dt':et( 5)‘t:et( 5)_1.
0 i(r=&)lo  i(r-¢€)

and

Then, we will bound

//Wetf“( g) Gle.mards = | ZT‘ “ Gle.rydre.

On the other hand,

/WEtGdt—n // T: ztf5 e
/:é27—55 G(& T (r = €)drds

zt£5
—nlt) [ [ =g Gl — € arae
—A+B+C,

where ¢ € O, ¢ = 1 in [~1,1], 1 = 0 outside [~2,2], ¥* =1 — 1.
By Taylor expanding, we have

eitT _ oit€? i O i€ —T) 4k . —_—
Gr—e) ¢ ZT[Z(T—i)] :
k=1

13



Then,

Z [m(2) tkHHl

/ / i (7 — €8YLp(r — )€, 7)dédr

JAI a2 S "
Ht Ht5
S 1 +2 5\k—1 5\ A
Wi GR L=y o -6t
< |[m 52 / b(r — €)0(E,7)
R

1
2

12
w —2s 25y - -
[ Lo ( [ .. d£> ( JAGREC )d&)d]

< sup |(r) 252 / (&) / €€ | <G xes,
T |[T—¢£5]<1 |[T—£%|<1

where we have used that

2(s+2) _ 1, 7] <1,
@[ @S] e
|[r—g5)<1 (t)75 f|T7€5‘<1<7'> 5T s5dr, || >1.

For the second inequality, we have used that 7 ~ &5.

N

For the derivative terms, we have
et _ zt§5 R
/W”Gdt—n // e BT =) B ryp(r — €)drde

) [ - T_Z; P — €)drdg
) [ [ 5 KB W - €

7—55
=A+B+C.

By the same way, we have ||A|| 51 S G xs,-b-
H

t

For the term B,

(T) S xR(E,T)(T =€) +(6)°.

14



We obtain

HBHH%S 7y / (155) (€m)
)G, 7)d

<

Ge.r) S
’ R i(T— &%) ’

I

S /RXR<T — )T

+
2
the second term is bounded by ||G|| xs.—» if

{4
Sup/R<7‘—§5>2_2bd£ < 00,

T

which holds provided that b < 3.

For s < %, we consider

0% [ =10t

L2
: [/Qﬂw (L =amsg=e) (/R W@ dT] |

2(s+2 1
S o)™ 5 (| —gpmgymte) 160

To bound the last term, we take variable changes z = £°, then the above inequality have the

bound

2(9+2)
sup(r) 5 |G oo /
T R <7-

1 2s42) . ro op 2(s+2)
o502 S |Gl xemvsup(r) s min2= TS
— 2™ f

S G s

provided that b < % and —2<s< %

Next, we consider the derivative term B. If s > —1,

1], -5 <H '5’ 16

< H / xR<5,T><T—s5>%é<sn>

|€|s+2
for—amioe

+
L2

for b < %, we have the bound

1Gllxos + H [ xate.nir - €% e

15



For s < —1, we consider

% f g

On the region |7] < |£]° and |¢] 2 1, we obtain the bound

<T>554/RXQ(&T)|§’6|é(5’7)|d£HL$

where Q = {|7| < ¢} N{[¢] 2 1}
On the region |7| 2 [£]° or |¢] < 1, we have

ot [ Aaen

7 e e T
< G < |G| xs.—b-
<| [ prgiote et | si6.

For C, firstly we consider [£] < 1.

zt§5
n0) [ [ gl mue (e - &g

e e
<[ == 5; G, 0 (7 — €)drde

/ / ! ” 7)|dédr

X[-1,1 €3]
S Gl xs - H<T[_£§>1b L S G| xsi—b-
Ey

When |£] > 1, make variable changes z = £, then
zt§5 c 5
Y~ (1T — £)drd€
//5|>1 i(r — 55 RAa )

e [ BlEE.T)
@ [ r—z

HBH s S

H,?®

H,?®

2
L\ |>1

1

won o [|GEE)DP e
< /|z|21<z> (2) /R<T—Z>2b<> dd)

oy 20 [ BEDE )
5</|§5|21<5> O [ e ands

(r—¢)
S (€)M d2lIG ] xos S |Gllxom.
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Similarly we get HCH 41 S G| xs—b-
O

Lemma 3.7. Let R be the set {|7| > [P} U{|§| S 1}. For -3 <s+a<2anda < 2s+ 3,

=25} we have

2<s+a<$and0<a<min{3,

Héxmaﬂv—

for any u,v,w € X

ww(, )

S llullxsollollxspllwllxss, (3.6)

Proof. To obtain (3.6), it suffices to show that

/ / / / / XR(E,T)(T — 55 S5 F (6, m)g(E — 1,72 — T)R(E — o, 7 — 7o) |drdrad€ dEade
$(& — &1)3(€ — &) (m1 — EH (12 — 1) — (&2 — &1)PW{(T — m2) — (£ — &2)P)P

S llzz Ngllzz [1Alzz -
& &7 &

L2

Using Cauchy-Schwarz in 7 and Young’s inequality, we have

LHS of (3.7) (wp/[//yﬁxR@ A%dﬁmmﬁm&mﬁ £z Nz 1kl gz

where

(r-&)"5
@) — 60 €~ &) G —m) — (&~ P —7) — (€~ &P

It suffices to show that

s [[[ [ /R (e, T)MEdridradé deade <1 (3.8)

Using Lemma 2.4 in the 71 and 75 integral, we have

My =

LHS of (3.8)
2(sta=2) (3.9)

xn(6, ) (7 — €)
o e e e e ey e BTG

When 2 < s+a < %, we use the inequality

(T =€) ST =& — (£ = &)° — (&2 — &))" (O)°(E — &)°(& — &)°
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and we get the inequality
LHS of (3.8) 5 [[[ (©%9(6)%0 (6 - 020 2g - @D dgacadsa

We use Lemma 2.4 in the &; integral. Notice that § =2(2—a) > 1,s0 a < %, then

/R<€1>2(a_2) (&5 — )27 de; < (&)%),

then use Lemma 2.4 in the & integral, thus

RHS 0f(3.9) < / (6)206a=2) ()22 ge < 1
R

- 7—2
provided that a < ==,

When —% < s+ a < 2, we use triangular inequality to get

RHS of (3.9)

< su Xr(&, 7)d&1dEadE
<[] (E)2(6 - @) (6 — )2(E — ( + (- &P + (G- &)7) 7 (310

< sup XR(E, 7)dE1dEadE I
T ///RS (€1)25(€ — &2)%5 (&2 — §1>25<G>%

Due to the symmetry of &1, £ — &2, £2 — &1, we may assume that |§1] S [&2 —&1] S |€ — &2 without

loss of generality.

Case I:  |&]| > 1, [€ — &| ~ & — &1] ~ [€] ~ |€1]- Then combining triangular inequality,
(G) ~ (E2)(&2 — E1){€ — &1 — &2)(6)* = (€)°,

RHS of (3.10) < / (6)-2(2-s—a)=6s ¢
R

provided that a < 2s + %
Case II: |& — &1 > 1, & < & — &1 ~ |€ — &| ~ |€]. Then |G| ~ [£]5. Then

RHS of (3.10) < / <5>2(2”)4S?§C§§i '
R 1

If s <0, then (£)72% < (€)%,
RHS of (3.10) < / ()2 bsag <1
R

provided a < 2s + %
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If s > 0, then
RHS of (3.10) < / (6) 220 ~6sge, < 1
R

provided a < 2s + %
Case ITL:  |&1] > 1, |¢] < [&1] ~ [€ — &, then |G| ~ [&]°. Then

RHS of (3.10) < / (&) 70572C=s—a)ge; <1,
R

provided that a < 2s + %

4 Proof of Theorem 1.3

For discussing the contraction theory, we will proof the map ® defined in (1.4) has a unique

fixed point in X*¥. Let ¢* be extension of ¢ such that [|¢*|| =) S [|¢] = (r+)- Recall that

Blu(z.8) = 1 IWho (0)-+n()WEO. = —an,ha—pa—ae) +n(7) [ Wi Glajar', (41)

where G(u),p;, ¢; have been defined before. We will use the above results to bound the three

terms in ®(u(x,t)). We will use Lemma 2.1 to obtain

In(t/T)Whd™ | xs0 S N6 o) < N0 mrs sy

For the Duhamel term, we apply Lemma 2.2 and Lemmas 3.4-3.5 to obtain

S T2 (@®)all oo S T2 lullSeon-
X

to
o) [ Wit car

Finally, for the second term, we apply Lemmas 3.2 and 2.3 to obtain

t
”ﬁ(T)WS(Q hi —p1 —qi,ha — p2 — @2)|| x s

Slix(he —pr — @)l sy2 +Ix(h2 —p2 — q2)|| sna
HE (®) 75 ®)

+ [|h2 — p2

Slhr=pull sz 4l
H, 5 (RY)

: o ||Q2HH:;1

542 s+1 .
H,° (RT) H, > (R) (RF)

By Kato smoothing and Lemma 3.1 we have

Ste + s /S s )
ool g2+ el s S Wl
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for the ¢; terms, we apply Lemmas 3.4-3.7 to obtain

1
< m5—b— 3
\|Q1||Ht#(R) + HQ2||H:;1(R) ST [l

Combining those results, we have

1
< L p— 113
2o S Wl + Il gz o+l e+ Tl

Then we have that ®(u) has a fixed point w if

T=T s LR s IR a1
(11l s m+, I 1HHth2(]R+) [ gHHtgl(Rﬂ)

sufficiently small.

Next, we prove continuity in H*. For the W{} term, it follows from Lemma 3.3. For the
Duhamel terms, it follows from that X** C CPHS for b > 1,. In fact the solution u € COHY,,
follows from Lemmas 3.4-3.5 for the Wé term. For the linear flow on R, we have from Kaio

smoothing and Lemma 3.1. For the Duhamel term, we get the continuity from Lemmas 3.6-3.7.

5 Uniqueness

It is not clear if different extensions of initial data produce the same solution on RT, we
start with a proof of uniqueness in the case s > % The uniqueness of solution (under additional

assumptions) will follow from an approximation argument.

Lemma 5.1. [5] Let s € R. For 0 <b< £ <1—b, we have

t
Hn(t)/o W " G)dt llew,msz,) S 1Glxss-

Lemma 5.2. If ; + =1+

=, and if u € LP(R"), v € LY(R"), then uxv € L"(R") and
|ux vl Lr@ny < Cp: g7 n)||ulle@ny |0]| La@n)-
Proof of uniqueness. wu,v be the solution we obtained above, noting that
u—v="ou)—d) = /Ot WEY(G(u) — G(v))dt'.
Then

SIG(u) = G() |l xs.-e-

MW%4MM@@=MAW%WQM—GwMﬂwm
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Next, we will estimate the nonlinear terms. Since
u — 03 = (u—v)? + 3uv(u —v),
combing Lemmas 3.4, 3.5 we obtain

1 = v)all o0 S N0 (= 0)* | xo0 + 1|00 (wv(u — )| 5o
S llu =0l %ew + lluvll xoollu = vl xos

S llu = ol %as + lull xsol[vll xonllu — vl oo,
when s > % Where we have used that
uv|lxse S Null xsollv]l xsp-

Indeed,

luvlle = |[€€ e T (e, )l

_ H<5>8H6it£5(a* 0) (& )] o

2 2
L L

S @ le e, Ol |, | 1e e Ol

2 2
L Lg

S lullxsolloll xs,

here we have used the Lemma 5.2 and that H® is the Hardy space when s > %
Hence

1@ (u) = 2(v)llcopy = 0

as 4 — v when s > % The case of s < % will follow from an approximation argument.
Thus, local Lipschitz continuity of the data-to-solution map has been established, and we

established the uniqueness.
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