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Abstract

This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback
attractors for 2D non-autonomous incompressible Navier-Stokes equations with constant
delay terms. Using the construction of trace formula with two bases for phase spaces of
product flow, the upper boundedness of fractal dimension has been achieved.
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1 Introduction

The incompressible Navier-Stokes equations is the fundamental mathematical model to
describe the conservation law for fluid flow, whose physical background can be founded in some
literatures such as [20]. The rigorous mathematical analysis of three dimensional case goes back
to Leray [21] and Hopf [16], which derived the so called Leray-Hopf weak solution, i.e., the
global existence of weak solutions and local for strong solution. Moreover, the global existence
and uniqueness of weak solution for two dimensional Navier-Stokes equations has been shown
firstly by Ladyzhenskaya [18]. For the infinite-dimensional dynamic systems for 2D Navier-
Stokes equations based on the weak and strong solutions, the existence and fractal dimension
of global and pullback attractors can be referred in Constantin, Foias and Temam [10], Foias,
Manley, Rosa and Temam [11], Ladyzhenskaya [19],  Lukaszewicz and Kalita [25], Robinson [29],
[30], Temam [33], Carvalho, Langa and Robinson [9], and literatures therein. Although there
are fruitful results on dynamic systems for the 2D Navier-Stokes equations, the inertial manifold
is still open.

The delay influence on differential equations was investigated in past decades which is also
used in control theory and engineer especially from the mathematical analysis in physics, non-
instant transmission phenomena and specially biological motivations, see Caraballo and Kiss
[3], Caraballo, Maŕın-Rubio and Valero [4], [5], Hale and Lunel [15]. If the material in fluid
flow is special, then the governing equations becomes 2D incompressible Navier-Stokes system
with delay: continuous or distributed cases. For the well-posedness and dynamic systems for 2D
Navier-Stokes flow with delay, we can refer to [1], [2], [6], [7], [8], [12], [13], [14], [24], [26], [27],
[31] and some more generalized fluid flow model with delay in [23], [34]. The pullback dynamics
for the 2D Navier-Stokes flow has been presented in above literatures, but the fractal dimension
and robustness of pullback attractors have not been solved till now.
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The purpose for this paper is to investigated the finite fractal dimension of pullback attractors
for 2D non-autonomous incompressible Navier-Stokes equations with continuous delay term in
bounded domain Ω ⊂ R2

∂u
∂t − ν∆u+ (u · ∇)u+∇p = f(t, ut) + g(t, x), x ∈ Ω, t ∈ R,
divu = 0, x ∈ Ω, t ∈ R,
u(t, x)|∂Ω = 0,
uτ (θ, x) = u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ Ω,

(1.1)

for h > 0. Here u = (u1(t, x), u2(t, x)) and p = p(x, t) denote the unknown velocity field and
pressure of fluid respectively, ν is the kinematic viscosity of the fluid, the nonlinear term f(ut, x)
is the delay term, g(t, x) ∈ L2

loc(R;L2(Ω)) is the external force, φ(θ, x) be the initial data, which
contains φ(0, x) = ϕ(x) = u(t = τ, x), ut is defined as ut = u(t+ θ) with θ ∈ [−h, 0].

Let X be a separable real Hilbert space, with inner product (·, ·) and norm | · |. Let K ⊂ X
be a non-empty compact subset and ε > 0, we denote Nε(K) to be the minimum number of
open balls in X with radius ε which are necessary to cover K. The fractal dimension of K is

defined as dimF (K) = lim sup
ε→0+

log(Nε(K))

− log ε
. Inspired by [9], [10], [11] and [33], we would prove

the upper boundedness of pullback attractor for problem (1.1) with the constant delay. The
main results and features of this paper are summarized as:

(1). Using the trace formula in [9], we can prove the finite fractal dimension of minimal
family for pullback attractors AMH

(t) for problem (1.1) in H. However, the phase space for
global weak solution is MH = CH × H, which contains AMH

(t), the trace formula can not be
used directly since the Banach spaces MH and CH is not a Hilbert space. To overcome this, we
use two bases of the Hilbert space MH = L2(−h, 0;H) × H or M̃H = LH × H (the choosing
is decided by the time variable) which contains MH instead to construct the linear operator for
first variation equation which is quasi-differentiable and compact, then the basis with delay can
be controlled, which leads to the upper boundedness of pullback attractors. This is a further
result of [6], [7], [8], [12] and [13] partly, i.e., the continuous delay reduces to constant.

(2). However, the strategy used above is invalid for the 2D incompressible Navier-Stokes e-
quations with variable continuous or distributed delays, such as f(t, ut) = f(t, u(t+s)) or f(t, u(t−
ρ(t))) and f =

∫ 0
−hG(t, u(t+ s))ds. The difficulty is the delay basis can not be controlled, espe-

cially the eigenvalues for operator with delay is open, which is a challenging topic.
(3). The difference between classical and delay cases have the similar power for fractal and

Hausdorff dimension of pullback attractors, which can be contracted with Carvalho, Langa and
Robinson [9].

This paper is organized as follows. In Section 2, some preliminaries are given which will be
used in sequel. Then we shall present the global well-posedness and pullback dynamic systems
in Section 3. In Sections 4, we shall prove the finite dimension of pullback attractors for problem
(1.1).

2 Preliminary

2.1 Some spaces

Denoting E := {u|u ∈ (C∞0 (Ω))2, divu = 0}, H is the closure of E in (L2(Ω))2 topology, | · |2
and (·, ·) denote the norm and inner product in H respectively. V is the closure of the set E
in (H1(Ω))2 topology, ‖ · ‖ and ((·, ·)) denote the norm and inner product in V respectively.
Clearly, V ↪→ H ≡ H ′ ↪→ V ′, H ′ and V ′ are dual spaces of H and V respectively, where the
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injection is dense and continuous.The norm ‖ · ‖∗ and 〈·〉 denote the norm in V ′ and the dual
product between V and V ′, respectively.

P is the Helmholz-Leray orthogonal projection in (L2(Ω))2 onto the space H, A := −P∆
is the Stokes operator, {λj}∞j=1 (0 < λ1 ≤ λ2 ≤ · · · ) is the eigenvalue of A with corresponding
eigenfunctions {ωj}∞j=1. We define the fractional operator As (s ∈ C) (see [33]) as follows.

Asu =
∞∑
i=1

λsj(u, ωj)ωj , u ∈ H, s ∈ C, j ∈ N, (2.1)

V s = D(As) =
{
u ∈ H : Asu ∈ H,

∞∑
i=1

λ2s
i |(u, ωi)|2 < +∞

}
, (2.2)

|Asu| =
( ∞∑
i=1

λ2s
i |(u, ωi)|2

)1/2
, (2.3)

where D(As) denotes the domain of As with the inner product and the norm given by

(u, v)V s = (A
s
2u,A

s
2 v), ‖u‖2V s = (u, u)V s . (2.4)

In particular, V = V 1 and V 2 = W = (H2(Ω))3
⋂

(H1
0 (Ω))3. In addition, the immersion

D(A
s
2 ) ↪→ D(A

r
2 ), s > r,

is continuous and

D(A
s
2 ) ↪→↪→ (L

6
(3−2s) (Ω))3, 0 < s ≤ 3

2 , (2.5)

is compact.
We can define the bilinear and trilinear form operators B(·, ·) and b(·, ·, ·) as

B(u, v) := P ((u · ∇)v), b(u, v, w) = (B(u, v), w) =
2∑

i,j=1

∫
Ω
ui
∂vj
∂xi

wjdx,

here B(u, v) is a linear continuous operator from V to V ′, and b(u, v, w) satisfies b(u, v, v) = 0,
b(u, v, w) = −b(u,w, v) and

|b(u, v, w)| ≤ C|u|
1
2
2 ‖u‖

1
2 ‖v‖|w|

1
2
2 ‖w‖

1
2 , ∀ u ∈ V, v ∈ V, w ∈ V. (2.6)

For any t ∈ (τ, T ), let ut be a function defined on (−h, 0) satisfying ut = u(t+s), s ∈ [−h, 0],
we can extend to delay interval u : (τ − h, T ) → (L2(Ω))2. Based on this extension, we can
introduce some phase space on delay interval CH = C([τ − h, τ ];H), CV = C([τ − h, τ ];V ) as
the Banach spaces with the norms

‖u‖CH = sup
θ∈[−h,0]

|u(t+ θ)|2, ‖u‖CV = sup
θ∈[−h,0]

‖u(t+ θ)‖

respectively.
The Lebesgue integrable spaces can be denote as L2

H = L2(τ−h, τ ;H), L2
V = L2(τ−h, τ ;V ),

and moreover L∞H = L∞(τ − h, τ ;H), L∞V = L∞(τ − h, τ ;V ). The inner product and norm of
L2
H = L2(τ − h, τ ;H) is defined by

(u, v)LH×LH =

∫ τ

τ−h
(u(s), v(s))H×Hds and ‖u‖LH =

∫ τ

τ−h
‖u(s)‖Hds

for u, v ∈ LH .
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2.2 Some retarded integral inequalities

In this part, we shall present some retarded integral inequalities from Li, Liu and Ju [22], which
is useful to our estimate.

The literature [22] considers the following retarded integral inequalities:

y(t) ≤ E(t, τ)‖yτ‖+

∫ t

τ
K1(t, s)‖ys‖ds+

∫ ∞
t

K2(t, s)‖ys‖ds+ ρ, ∀ t ≥ τ ≥ 0, (2.7)

where E, K1 and K2 are non-negative measurable functions on R2, ρ ≥ 0 denotes a constant.
Let X be a Banach space with spatial variable, based on the retarded Banach space above, then
we use ‖ · ‖ denotes the norm of space C([−h, 0];X) for some h ≥ 0, y(t) ≥ 0 is a continuous
function defined on C([−h, T ];X), yt(s) = y(t+ s) for s ∈ [−h, 0].

Some Notations and hypothesis:
Let L(E,K1,K2, ρ) = {y ∈ C([−h, T ];X)|y ≥ 0 and satisfies the inequality (2.7)}, and

κ(K1,K2) = sup
t≥τ

(∫ t

τ
K1(t, s)ds+

∫ ∞
t

K2(t, s)ds
)
.

We assume that

lim
t→+∞

E(t+ s, s) = 0 (2.8)

uniformly with respect to s ∈ R+. Moreover, we suppose κ(K1,K2) < +∞.

Lemma 2.1 Denote ϑ = sup
t≥s≥τ

E(t, s) and κ = κ(K1,K2), then we have the following estimates:

(1) If κ < 1, then for any R, ε > 0, there exists T̃ > 0 such that

‖yt‖ < µρ+ ε, (2.9)

for t > T̃ and all bounded functions y ∈ L(E,K1,K2, ρ) with ‖y0‖ ≤ R, where µ = 1
1−κ .

(2) If κ < 1
1+ϑ , then there exist M, λ > 0 which are independent on ρ such that

‖yt‖ ≤M‖y0‖e−λt + γρ, t ≥ τ (2.10)

for all bounded functions y ∈ L(E,K1,K2, ρ), where γ = µ+1
1−κc and c = max{ ϑ

1−κ , 1}.
(3) If κ < 1

1+ϑ , then the solution reduces to trivial for the occasion κc < 1.

Proof. See Li, Liu and Ju [22]. �

Remark 2.2 (The special case: K2 = 0) Denote (K1,K2) = (K1, 0) and let ϑ, κ, µ, γ be the
constants defined in Lemma 2.1. Then we have the similar estimates as in Lemma 2.1.

3 Global Well-posedness and Pullback Dynamic Systems for
(1.1)

In this section, we shall state the global well-posedness and pullback dynamic systems for process,
which can be founded in [6, 7, 8], [12], [13], [14], [27].
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3.1 Assumptions

(H-1) The function f : Ω× R→ R satisfies the following hypothesis:
(I-1) f(x, y) is measurable with respect to x for any y and f(x, 0) = 0;
(I-2) f(x, y) is Lipschitz continuous with respect to y for any x, i.e., there exists a constant
0 < Cf < 1 small enough such that

|f(x, y1)− f(x, y2)| ≤ Cf |y2 − y1|, for any y1, y2 ∈ R. (3.1)

(I-3) there exists Cf > 0, such that for all τ ≤ t and for all u, v ∈ C([τ − h, T ];H)∫ t

τ
|f(s, us)− f(s, vs)|22ds ≤ C2

g

∫ t

τ−h
|u(s)− v(s)|22ds. (3.2)

By (I-2), there exist Lf > 0 and L̃f > 0 such that for any y1, y2 ∈ R,

|f(x, η1t)− f(x, η2t)|2 ≤ Lf‖η1 − η2‖CH , ∀ η1, η2 ∈ H, (3.3)

‖f(x, η1t)− f(x, η2t)‖ ≤ Lf‖η1 − η2‖CV , ∀ η1, η2 ∈ V. (3.4)

(H-2) The function g(t, x) ∈ L2
loc(R;H) and there exists a m > 0 such that for any t ∈ R,∫ t

−∞
ems|g(s)|22ds < +∞. (3.5)

(H-3) The parameter satisfies that 2νλ1−(σ+2Cg) > 0, λ1 is the first eigenvalue of operator
A.

Remark 3.1 The hypothesis (H-3) is equivalent to that the Lipschitz constant Cg and Lf is
small enough, i.e., Cg, Lf << 1.

Proof. Since here σ > 0 is an arbitrary fixed number and (H-3) holds for all bounded domains
with regular boundary which determined the first eigenvalue λ1 and viscosity ν, we can see the
results obviously. �

Remark 3.2 From the proof at Section 4, we can see that the Lipschitz constant small enough is
essential to the finite boundedness of fractal dimension for pullback attractors, hence we assume
that

(H-3’) All the Lipschitz constants Lf , Cg and L are small enough.

3.2 Global well-posedness for (1.1)

By the Helmholz-Leray projection, the system can transform to the abstract equivalent form{
d
dtu(t) + νAu+B(u(t)) = f(t, ut) + g(t, x),
u(t) = φ(t− τ) for t ∈ [τ − h, τ ].

(3.6)

• Global existence and uniqueness of weak solution:

Theorem 3.3 (1) For the initial data φ ∈ CH , if g ∈ L2
loc(R;V ′), f satisfies hypothesis (H-1)-

(H-3), then problem (3.6) possesses a weak solutions u(t, x) ∈ C([τ − h,+∞);H).
(2) If g ∈ L2

loc(R;H), φ ∈ CV , (H-1)-(H-3) hold, then the weak solution becomes strong,
i.e., u ∈ L2(τ, T ;D(A)) ∩ C([τ − h,+∞);V ).

Proof. See, e.g., Caraballo, Real [6]. �
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3.3 Pullback dynamics for (1.1)

• Continuous process:

Lemma 3.4 For the initial data φ ∈ CH , if g ∈ L2
loc(R;V ′), f satisfies hypothesis (H-1)-(H-

3), then the weak solution of (3.6) generates a bi-parametric family of map, i.e., continuous
process {U(t, s)} : U(t, s)φ = ut(t, τ ;φ) on CH .

Proof. See, e.g., Caraballo, Real [6]. �

Denoting MH = CH ×H, we have the following theorem.

Lemma 3.5 For the initial data φ ∈ CH and ϕ ∈ H, if g ∈ L2
loc(R;V ′), f satisfies hypothesis

(H-1)-(H-3), then the weak solution of (3.6) generates a bi-parametric family of map, i.e.,
continuous process {S(t, s)} : S(t, s)(φ, ϕ) = (ut(t, τ ;φ, ϕ), u(t, τ ;ϕ)) on MH .

Proof. See, e.g., Caraballo, Real [6]. �

• Pullback attracting:

Lemma 3.6 (The pullback absorbing ball in CH) For the initial data (φ, ϕ) ∈ CH × H, if
g ∈ L2

loc(R;V ′), f satisfies hypothesis (H-1)-(H-3), then the process U(t, s) possesses a family
of pullback absorbing balls {B(t)} in CH with the center zero and radius ρ̂H(t):

‖S(t, t− s)(φ, ϕ))‖CH = ‖ut‖2CH

≤ Ce−m(t−h)

∫ t

−∞
ems‖g(s)‖2V ′ds+ d̂2emh(1 + Cg)e

−ms

= ρ̂2
H(t). (3.7)

Proof. See, e.g., Caraballo, Real [6] or Garćıa-Luengo, Maŕın-Rubio and Real [12], [13]. �

Lemma 3.7 (The pullback absorbing ball in CV ) For the initial data (φ, ϕ) ∈ CV × V , if g ∈
L2
loc(R;H), f satisfies hypothesis (H-1)-(H-3), then the process S(t, s) possesses a family of

pullback absorbing balls {B̂(t)} in CV with the center zero and radius ρ̂V (t):

‖S(t, t− s)(φ, ϕ))‖2CV = max
θ∈[−h,0]

‖u(t+ θ, t− s, φ, ϕ)‖2 ≤ ρ̂2
V (t), (3.8)

here
ρ̂2
V (t) = (a3 + a2)ea1 ,

with a1 = C1
ν3
ρ̂2
H(t)ÎV , a2 = ν

4 (‖g‖2
L2
loc(R;H)

+ L2
gρ̂

2
H(t)), and

Î2
V =

λ1

2νλ1 − (σ + 2Cg)

(‖g‖2
L2
loc(R;H)

σ
+ (1 + hCg)ρ̂

2
H(t)

)
= a3.

Proof. See, e.g., Caraballo, Real [6] or Garćıa-Luengo, Maŕın-Rubio and Real [12], [13]. �

• Pullback attractors:

Theorem 3.8 Assume that the initial data (φ, ϕ) ∈ CH × H, if g ∈ L2
loc(R;V ′), f satisfies

hypothesis (H-1)-(H-3). Then the process {S(·, ·)} generated by the weak solutions of problem
possesses a bounded family of pullback attractors AMH

(t) in MH . Defining the projector j :
MH → CH , then j(AMH

(t)) = ACH (t) is the pullback attractor in CH for U(·, ·).

Proof. See, e.g., Caraballo and Real [6]. �
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4 The finite fractal dimension of pullback attractors for (1.1)
with delay

4.1 Fractal dimension of pullback attractors

The pullback attractors and its regularity for 2D incompressible Navier-Stokes equations with
delays has been studied by Caraballo, Real [6, 7, 8], Garćıa-Luengo, Maŕın-Rubio and Real [12],
[13], Garćıa-Luengo, Maŕın-Rubio and Planas [14], Maŕın-Rubio and Real [27], especially in
[12, 13, 14, 27]. However, the fractal and Hausdorff dimension of attractors are unknown, which
are our objective in this section.

• The global well-posedness of first variation equation
In this part, we will investigate the well-posedness of first variation equation corresponding to
problem (1.1) as following{

d
dtU + νAU +B(u, U) +B(U, u) = f ′(t, ut)Ut,
U(θ + h) = ξ(θ, x) with θ ∈ [τ − h, τ ] and hence U(τ) = ξ(τ, x) = ξ0.

(4.1)

Setting A(t) = f ′(t, ut) : V → H for every t ∈ [τ − h,+∞) (f(t, ut) is Fréchet differentiable
denote as A) which is a bounded linear operator, i.e., A(t) ∈ L(V,H), using the usual energy
estimates, then problem (4.1) possesses a unique solution

U(t) ∈ L∞([τ, T ];H)
⋂
L2([τ, T ];V ), Ut ∈ ([τ − h, T ];H).

Thanks to u(t, x) ∈ C([τ − h,+∞);H), it yields that

U(t) ∈ C([τ,+∞);H), Ut ∈ C([τ − h,+∞);H).

• The quasi-differentiability and compactness of linear operator S(t, τ)
Defining the space XH = C([τ − h, T ];H) × C([τ, T ];H), MH = L2(τ − h, τ ;H) × H and
MH = CH ×H, then the quasi-differentiability of linear operator Λ : MH → XH can be shown
as following theorem.

Theorem 4.1 If the hypotheses (H) and νλ1− 2L
νλ1
− 8C3
ν2λ1

ρ̂2
H > 0 in below hold, and ξ ∈ CH , ξ0 ∈

D(A1/4), then there exists a bounded linear operator Λ(t, s;φ, ψ) : MH → XH such that
(1) The function Λ(t, s;φ, ψ)(ξ, ξ0) = (Ut, U) is the first variation equation (4.1);
(2) Let AMH

(t) be the D-pullback attractors of evolutionary process S(t, s) to problem (3.6)
in MH , then the operator S(t, s) is uniformly quasi-differentiable on AMH

(t), i.e., for any initial
data (φ, ψ) and (φ0, ψ0) ∈ AMH

(t), the linear operator Λ(t, s;φ, ψ) satisfies that for all t ≥ s,
the following convergence

sup
(φ,ψ)

(φ0,ψ0)
∈A

sup
‖φ−φ0‖CH≤ε
|ψ−ψ0|2≤ε

‖S(t, s)(φ0, ψ0)− S(t, s)(φ, ψ)− Λ(t, s;φ, ψ)(φ0 − φ, ψ0 − ψ)‖MH

‖(φ0 − φ, ψ0 − ψ)‖MH

→ 0

holds as ε tends to 0;
(3) The operator Λ(t, s;φ, ψ) is compact for all t > s, s ∈ [τ − h,+∞)].

7



Proof. (1) By the well-posedness of first variational equation, it is easy to derive the result.
(2) Let u(t) and v(t) be two solutions to problem (3.6) with initial data

u(θ + h) = φ(θ, x), θ ∈ [s− h, s],
u(s) = ψ(x)

and

v(θ + h) = φ0(θ, x), θ ∈ [s− h, s],
v(s) = ψ0(x)

respectively, then U(t, x) = Λ(t, s;φ, ψ)(φ1 − φ, ψ1 − ψ) is the solution to problem (4.1) with
initial data

(U(θ + h, x), U(s, x)) = (φ1 − φ, ψ1 − ψ), θ ∈ [s− h, s].

Denoting w = v − u− U with initial data

w(θ + h, x) = w(θ) = 0, θ ∈ [s− h, s],

then w satisfies

d

dt
w + νAw +B(u,w) +B(w, u) +B(v − u, v − u) = f(t, vt)− f(t, ut)− f ′(t, ut)Ut. (4.2)

By the Talor expansion, it follows that

f(t, vt)− f(t, ut)− f ′(t, ut)Ut = f(t, vt)− f(t, ut)− f ′(t, ut)(vt − ut) + f ′(t, ut)wt

= f ′′(∗)(vt − ut)2 + f ′(t, ut)wt,

where ∗ = λvt + (1− λ)ut with λ ∈ [0, 1].
Multiplying (4.2) by w, denoting z = v − u, we derive that

1

2

d

dt
|w|22 + ν‖w‖2 + b(w, u,w) + b(z, z, w) = (f ′′(∗)(vt − ut)2 + f ′(t, ut)wt, w),

which means

1

2

d

dt
|w|22 + ν‖w‖2 ≤ b(w, u,w) + |b(z, z, w)|+ L|zt|22|w|2 + L|wt|2|w|2. (4.3)

By the property of trilinear operator, we obtain that

|b(w, u,w)| = |b(w,w, u)| ≤ C|w|1/22 ‖w‖3/2 |u|1/22 ‖u‖
1/2 ≤ ν

2
‖w‖2 + C|u|22|w|22 (4.4)

and

|b(z, z, w)| = |b(z, w, z)| ≤ C|z|2 ‖w‖ ‖z‖ ≤
ν

2
‖w‖2 + C|z|22‖z‖2. (4.5)

Thus it follows from (4.3)-(4.5) that

d

dt
|w|22 ≤ C1

(
|z|42 + ‖z‖4CH

)
+ C2

(
|w|22 + |wt|22

)
(4.6)

with C1 = C1(L, ν, λ1) and C2 = C2(|u|22, L, ν, λ1).
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Considering the resulting equation of difference for two solutions u and v, i.e., z = u − v
satisfies

zt + νAz +B(u, z) +B(z, v) = f(t, ut)− f(t, vt), (4.7)

multiplying (4.7) by z, it yields

1

2

d

dt
|z|22 + ν‖z‖2 ≤ |b(z, v, z)|+ |(f(t, ut)− f(t, vt), z)|, (4.8)

and

|b(z, v, z)| = |b(z, z, v)| ≤ C|z|2‖z‖‖v‖ ≤
ν

2
‖z‖2 + C‖v‖2|z|22 (4.9)

and

|(f(t, ut)− f(t, vt), z)| ≤
ν

2
‖z‖2 + Lf |ut − vt|22, (4.10)

hence

|z|22 ≤ |ψ − ψ1|22 + C|v|22
∫ t

τ
|z(s)|22ds+ 2Lf

∫ t

τ
|us − vs|22ds

≤
(
|ψ − ψ1|22 + 2hLf |φ− φ1|2CH

)
+

∫ t

τ
(C‖v‖2 + 2Lf )|z(s)|22ds, (4.11)

which implies

|z|22 ≤
(
|ψ − ψ1|22 + 2hLf‖φ− φ1‖2CH

)
e(C

∫ T
τ ‖v‖

2ds+2Lf (T−τ)) (4.12)

and

‖z‖2CH ≤
(
|ψ − ψ1|22 + 2hLf‖φ− φ1‖2CH

)
e(C

∫ t
τ−h ‖v‖

2ds+2Lf (T−τ+h)). (4.13)

Substituting (4.12) and (4.13) into (4.6), it yields

d

dt
|w|22 ≤ C‖(φ− φ1, ψ − ψ1)‖4MH

eKT + C(|w|22 + |wt|22).

Noting the initial data of w, we know that

|w(t)|22 ≤ C‖(φ− φ1, ψ − ψ1)‖4MH
TeKT + C

∫ t

τ
(|w(s)|22 + |ws|22)ds

and

sup
s∈[t−h,t]

|w(s)|22 ≤ C‖(φ− φ1, ψ − ψ1)‖4MH
TeKT + C

∫ t

τ
sup

r∈[s−h,s]
|w(r)|22dr

with K = C|v|2 + 2Lf is bounded.
Thus by the Gronwall inequality, we obtain that

sup
s∈[t−h,t]

|w(s)|22 ≤ C‖(φ− φ1, ψ − ψ1)‖4MH
TeKT (1 + eKT ),

which means

|w(t)|22 ≤ C(T )‖(φ− φ1, ψ − ψ1)‖4MH
. (4.14)
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From the expression of w, we conclude that

‖S(t, s)(φ0, ψ0)− S(t, s)(φ, ψ)− Λ(t, s;φ, ψ)(φ0 − φ, ψ0 − ψ)‖MH

‖(φ0 − φ, ψ0 − ψ)‖MH

≤ C(T )‖(φ0 − φ, ψ0 − ψ)‖3XV ,

which implies that the uniformly differentiability of process S(t, s) with respect to initial data
on AMH

(t).
(3) Multiplying (4.1) with U , we deduce that

1

2

d

dt
|U |22 + ν‖U‖2 ≤ |b(U, u, U)|+ |(f ′(t, ut)Ut, U)|

≤ |b(U, u, U)|+ L

νλ1
|Ut|22 +

ν

4
‖U‖2

≤ C3|U |2‖U‖‖u||+
L

νλ1
|Ut|22 +

ν

4
‖U‖2

≤ ν

4
‖U‖2 +

4C3

ν2λ1
‖u‖2|U |22 +

L

νλ1
|Ut|22 +

ν

4
‖U‖2, (4.15)

which implies

d

dt
|U |22 + νλ1|U |22 ≤

8C3

ν2λ1
‖u‖2|U |22 +

2L

νλ1
|Ut|22. (4.16)

Integrating (4.16) with time variable from τ to t, by the existence of pullback absorbing ball of
u in H with radius ρ̂H , it yields

|U(t)|22 + νλ1

∫ t

τ
|U(r)|22dr

≤ 8C3

ν2λ1
ρ̂2
H

∫ t

τ
|U(s)|22ds+ |ξ0|22 +

2L

νλ1

∫ t

τ
|Ur|22dr

≤
( 8C3

ν2λ1
ρ̂2
H +

2L

νλ1

)∫ t

τ
|U(r)|22dr + |ξ0|22 +

2L

νλ1
‖φ‖2CH . (4.17)

Based on the hypothesis as following

νλ1 −
2L

νλ1
− 8C3

ν2λ1
ρ̂2
H > 0, (4.18)

by the uniform Gronwall inequality, we derive that

|U(t)|22 ≤ e
−(νλ1− 2L

νλ1
− 8C3
ν2λ1

ρ̂2H)(t−τ)
[
|ξ0|22 +

2L

νλ1
‖φ‖2CH

]
= ρ̃H , (4.19)

here ρ̃H is bounded.
Taking inner product of (4.1) by A1/2U , noting the existence of pullback absorbing ball of

u, we obtain

d

dt
|A1/4U |22 + 2ν|A3/4U |22

≤ 2|b(u, U,A1/2U)|+ 2|b(U, u,A1/2U)|+ 2|(f ′(t, ut)Ut, A1/2U)|
= I1 + I2 + I3.
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Using the estimate ‖w‖L4 ≤ C‖w‖D(A1/4) and |A1/2w|2 ≤ C|A1/4u|1/22 |A3/4w|1/22 , it yields

I1 ≤ C|u|1/22 ‖u‖
1/2|A1/2U |2‖A1/2U‖L4

≤ C|u|1/22 ‖u‖
1/2|A1/4U |1/22 |A

3/4U |3/22

≤ ν

3
|A3/4U |22 +

C

ν
|u|22‖u‖2|A1/4U |22

≤ ν

3
|A3/4U |22 +

C

ν
ρ̂2
H(t)‖u‖2|A1/4U |22, (4.20)

and

I2 ≤ C‖U‖L4 |A1/2u|2‖A1/2U |L4

≤ C|A1/4U |2|A1/2u|2|A3/4U |2

≤ ν

3
|A3/4U |22 +

C

ν
|A1/4U |22‖u‖2, (4.21)

and

I3 ≤
C

νλ
1/2
1

|f ′(t, ut)Ut|22 +
ν

3
|A3/4U |22 ≤

CL

νλ1
|Ut|22 +

ν

3
|A3/4U |22, (4.22)

which means

d

dt
|A1/4U |22 + ν|A3/4U |22 ≤ CL

νλ1
|Ut|22 +

C

ν
ρ̂2
H(t)‖u‖2|A1/4U |22 +

C

ν
|A1/4U |22‖u‖2. (4.23)

Integrating (4.23) with time variable from τ to t, it yields

|A1/4U |22 + νλ
1/2
1

∫ t

τ
|A1/4U(r)|22dr

≤ CL

νλ1

∫ t

τ
|Ut(r)|22dr + |A1/4ξ0|22 +

C

ν

∫ t

τ
(ρ̂2
H + 1)‖u‖2|A1/4U |22dr

≤ CL

νλ1
‖ξ‖2CH + |A1/4ξ0|22 +

C

ν

∫ t

τ
(ρ̂2
H + 1 +

L

λ1
)‖u‖2|A1/4U |22dr. (4.24)

If we give a more hypotheses:
(H) there exists a δ > 0 which will be determined later, such that we can denote

κδ(t, s) =
(
νλ

1/2
1 − δ

)
(t− s)−

C(ρ̂2
H + 1 + L

λ1
)

ν

∫ t

s
‖u(r)‖2dr (4.25)

which satisfies

κδ(0, t)− κδ(0, s) = −κδ(t, s). (4.26)

Denoting

lim sup
τ→−∞

1

t− τ

∫ t

τ
‖u(r)‖2dr = a0 ∈ [0,+∞) (4.27)

for the investigation of uniform boundedness for operator Λ, there exists some δ > 0, such that

C(ρ̂2
H + 1 + L

λ1
)a0

ν
+ δ < νλ

1/2
1 . (4.28)
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Then under the assumption (H), by the uniform Gronwall inequality, we can conclude that

|A1/4U |22 ≤
[CL
νλ1
‖ξ‖2CH + |A1/4ξ0|22

]
e−κδ(t,τ) = ρ̃2

V , (4.29)

here ρ̃V is bounded since νλ1 > 0.
Using the similar uniform estimates as above, we can also derive that

‖A1/4U‖2CH ≤ ρ̃
2
CH
, (4.30)

here we omit the detail.
Since the embeddingD(A1/4) ↪→↪→ H is compact, then the compactness of operator Λ(t, s;φ, ψ)

holds. �

Remark 4.2 By the retard Gronwall inequality, we can derive a more delicate estimate than
(4.19) from (4.17), which is no need so strict restriction as in (4.18), even the variable index in
(4.25).

• The finite fractal dimension of pullback attractors by trace formula
In this subsection, since the Hausdorff dimension of attractor is not large than fractal dimension
if they are finite, we shall use trace formula to estimate the fractal dimension only here.

Theorem 4.3 Under the assumptions in Theorem 4.1 and (H-3’), the fractal dimensions of
AMH

(t) to problem (1.1) has finite dimension as

(1) If πn2(νλ1−1)
2λ1|Ω| > 64κ(n)

ν3λ1
M , then dimF (AMH

(t)) ≤ 2.

(2) If πn2(νλ1−1)
2λ1|Ω| ≤ 64κ(n)

ν3λ1
M , then dimF (AMH

) ≤ Cκ(n)|Ω|
1
2

ν2
G + Ĉ, here G =

‖f‖L∞(−∞,T∗;H)

ν2λ1
is the generalized Grashof number for non-autonomous system.

Proof. • Step 1: The precompactness of the union of fiber for pullback attractors

From the existence of pullback attractors, for a fixed τ∗,
⋃
AMH

(t) is precompact in MH .

• Step 2: Extension of the first variation equation to abstract form with delay

Denoting F (S(t, s)(φ, ψ), t) = −νA − B(u, ·) − B(·, u) + f(t, ut), then F (·, t) is Gateaux
differential in V at (S(t, τ)(φ, ψ)) which satisfies

F ′(S(t, s)(φ, ψ))U = −νAU −B(U(t, τ)ψ,U)−B(U,U(t, τ)ψ) + f(t, ut)Ut (4.31)

and F ′(S(t, s)(φ, ψ), t) ∈ L(V, V ′) is a continuous linear operator. Hence, the problem{
dU
dt = F ′(S(t, τ)(φ, ψ), t)U, (φ, ψ) ∈MH ,
(U(θ + h, x), U(τ, x)) = (ξ, ξ0), θ ∈ [τ − h, τ ]

(4.32)

possesses a unique solution (Ut, U(t)) ∈ XH .
Defining L = −νA−B(u, ·)−B(·, u), we can rewrite (4.1) as

d

dt
U = −νAU −B(u, U)−B(U, u) + f ′(t, ut)Ut

= F ′(S(t, τ)(φ, ψ), t)U

= LU + f ′(t, ut)Ut. (4.33)
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Denoting (ξ, ξ0) = (Ut, U(t)) = W (t), then the projections P1 and P2 can be defined as

P1W (t) = Ut, P2W (t) = U(t).

Based on the well-posedness of (4.1), we define the operator L : D(L) ⊂ XH → XH as

D(L) =
{

(α, β) ∈ XH |α is absolutely continuous in [−h, 0],

dα

dt
∈ C([−h, 0];H) and β = α(0) ∈ D(L)

}
, (4.34)

hence

L(α, β) = (
dα

dt
,Lβ) = (α̇,Lβ) for (α, β) ∈ D(L) (4.35)

with the domain D(L) is dense in XH .
From the definitions above, we can reformulate the first variation equation on XH as{

dW
dt = ΞW = LW + (0, f ′(t, ut)P1W ),
W (0) ∈MH ,

(4.36)

thus, the first variation equation has been extends to delay form naturally which has the similar
form as a ordinary differential equation.

• Step 3: The trace formula

For each (ξ1(t), ξ01(t)), (ξ2(t), ξ02(t)), · · · , (ξn(t), ξ0n(t)) ∈MH , let (Uit(t), Ui(t)) = Λ(t, s;φ, ψ)·
(ξi, ξ0i) with (ξi, ξ0i) ∈MH , and

U1s(s) = U1(s+ h, τ ; ξ1), U2s(s) = U2(s+ h, τ ; ξ2), · · · , Uns(s) = Un(s+ h, τ ; ξn),

U1(s) = U1(s, τ ; ξ01), U2(s) = U2(s, τ ; ξ02), · · · , Un(s) = Un(s, τ ; ξ0n),

be the solution of problem (4.32) with initial data (Ui(θ+h), Ui(τ)) = (ξi(θ), ξ0i))(i = 1, 2, · · · , n)
respectively, Qn(s) denotes the projection from MH to the space

span{(U1s(s), U1(s)), (U2s(s), U2(s)), · · · , (Uns(s), Un(s))}.

In addition, we denote

Û1(s) = (U1s(s), U1(s)), Û2(s) = (U2s(s), U2(s)), · · · , Ûn(s) = (Uns(s), Un(s)) (4.37)

and

ξ̂1 = (ξ1, ξ01), ξ̂2 = (ξ2, ξ02), · · · , ξ̂n = (ξn, ξ0n), (4.38)

then by Lemma 4.19 in [9], it yields

‖Û1(t) ∧ Û2(t) ∧ · · · ∧ Ûn(t)‖∧n(MH)

= ‖ξ̂1 ∧ ξ̂2 ∧ · · · ∧ ξ̂n‖∧n(MH) exp
(∫ t

s
Trn(F ′(S(r, s)(φ, ψ), r) ◦Qn(r)dr)

)
= ‖ξ̂1 ∧ ξ̂2 ∧ · · · ∧ ξ̂n‖∧n(MH) exp

(∫ t

s
Trn(Ξ(r) ◦Qn(r)dr)

)
, (4.39)
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here Tr denotes the trace.

• Step 4: The estimate of finite upper booundedness of pullback attractors
Since the product space MH ⊂ MH , we set {ξ̂1(s) = (ξ1s, ξ1), ξ̂2(s) = (ξ2s, ξ2), · · · , ξ̂n(s) =
(ξns, ξn)} as an orthonormal basis for

span{(U1s(s), U1(s)), (U2s(s), U2(s)), · · · , (Uns(s), Un(s))},

then it follows that

Trn(Ξ(r) ◦Qn(r))

= sup
ξ̂i∈MH ,|ξ̂i|≤1,i≤n

( n∑
i=1

〈F ′(S(r, s)(φ, ψ), r)ξ̂i, ξ̂i〉
)

= sup
ξ̂i∈MH ,|ξ̂i|≤1,i≤n

n∑
i=1

〈(ξ̇ir(r),Lξi(r)) + (0, f ′(t, ur)ξir), (ξir, ξi(r))〉

=

n∑
i=1

[ ∫ 0

−h

( d
dr
ξi(r + θ), ξi(r + θ)

)
dr + (Lξi(r), ξi(r)) + (f ′(t, ur)ξir, ξi(r))

]
=

n∑
i=1

{1

2

[
|ξi(θ)|22 − |ξi(θ − h)|22

]
+ (−νAξi(r)−B(u, ξi(r))−B(ξi(r), u), ξi(r))

+(f ′(t, ur)ξir, ξi(r))
}

= I1 + I2 + I3. (4.40)

Since Ui(s) ∈ L2(τ, T ;V ), then Ui(s) ∈ V for a.e. s ≥ τ , hence ξi(s) ∈ V for a.e. s ≥ τ and
i = 1, 2, · · · , n. Noting that b(u, ξi(s), ξi(s)) = 0, by the property of trilinear operator and the
Lieb-Thirring inequality

‖
n∑
i=1

|ϕi(τ)|2‖2L2 ≤ κ(n)
n∑
i=1

‖Dϕi(τ)‖2L2 ,

it follows from Hölder’s inequality and that
n∑
i=1

|b(ξi(r), u, ξi(r))| ≤ C

∫
Ω
|∇u|

n∑
i=1

|ξi(r)|2dr

≤ 8

νκ(n)
‖u‖2 +

ν

4

n∑
i=1

‖Dξi(r)‖2L2 (4.41)

and

I2 ≤ −ν
n∑
i=1

‖ξi(r)‖2 +
ν

4

n∑
i=1

‖ξi(r)‖2 +
8

νκ(n)
‖u‖2. (4.42)

Using the hypothesis, we have

I3 =

n∑
i=1

(f ′(ut)ξir, ξi(r))

≤
n∑
i=1

L

∫
Ω
|ξir||ξi(r)|dr

≤ ν

4

n∑
i=1

‖ξi(r)‖2 +
8L

νλ1

n∑
i=1

|ξir|22. (4.43)
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Combining (4.40)-(4.43), by the hypothesis that 0 < L << 1 such that 8L
νλ1

< ν
2 , we can derive

that

Trn(Ξ(r) ◦Qn(r))

=
n∑
i=1

1

2

[
|ξi(θ)|22 − |ξi(θ − h)|22

]
− ν

2

n∑
i=1

‖ξi(r)‖2 +
4κ(n)

ν
‖u‖2 +

8L

νλ1

n∑
i=1

|ξir|22

=

n∑
i=1

1

2

[
|ξi(θ)|22 − |ξi(θ − h)|22

]
− ν

2

n∑
i=1

‖ξi(r)‖2 +
4κ(n)

ν
‖U(s, τ)u0‖2 +

8L

νλ1

n∑
i=1

|ξir|22

≤
n∑
i=1

1

2λ1
‖ξi(r)‖2 −

ν

2

n∑
i=1

‖ξi(r)‖2 +
4κ(n)

ν
‖U(s, τ)u0‖2. (4.44)

Using the variational principle and

n∑
i=1

λi ≥
πn2

|Ω|
from [17], choosing −ν

2 + 1
2λ1

< 0, we obtain

Trn(F ′(U(s, τ)v0, s) ◦Qn(s) ≤ −νλ1 − 1

2λ1

n∑
i=1

‖ξi(s)‖2 +
4κ(n)

ν
‖U(s, τ)u0‖2

≤ −νλ1 − 1

2λ1

n∑
i=1

λi +
4κ(n)

ν
‖U(s, τ)u0‖2

≤ −πn
2(νλ1 − 1)

2λ1|Ω|
+

4κ(n)

ν
‖U(s, τ)u0‖2. (4.45)

Defining the averaging term

qn = sup
t∈R

sup
u0∈A(t)

( 1

T

∫ t

t−T
Trn(F ′(U(s, τ)u0, s)

)
ds, (4.46)

q̂n = lim sup
T→+∞

qn, (4.47)

we derive

qn ≤ −
πn2(νλ1 − 1)

2λ1|Ω|
+
C

ν
sup
t∈R

sup
u0∈A(t)

( 1

T

∫ t

t−T
‖U(s, τ)u0‖

)
ds (4.48)

and

q̂n ≤ −
πn2(νλ1 − 1)

2λ1|Ω|
+

4κ(n)

ν
q, (4.49)

where q = lim sup
T→+∞

sup
t∈R

sup
u0∈A(t)

1

T

∫ t

t−T
‖U(s, τ)u0‖2ds.

Multiplying the equation (3.6) by u, using the hypotheses of delay term f(·, ·), using the
estimate of trilinear operator, we derive

|u|22 ≤
[
|u0|22 +

16C2
g

νλ1
‖φ‖2CH

]
e
−(νλ1−

16C2
g

νλ1
)(t−τ)

+
16e
−(νλ1−

16C2
g

νλ1
)(t−τ)

νλ1

∫ t

τ
|g(s)|22ds (4.50)
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and

ν

∫ t

s
‖v(r)‖2dr ≤ |u0|22 +

16C2
g

νλ1
‖φ‖2CH +

16

νλ1

∫ t

τ
|g(s)|22ds

+
16C2

g

νλ1

[
|u0|22 +

16C2
g

νλ1
‖φ‖2CH

]
(t− τ)e

−(νλ1−
16C2

g
νλ1

)(t−τ)

+
256C2

g (t− τ)e
−(νλ1−

16C2
g

νλ1
)(t−τ)

ν2λ2
1

∫ t

τ
|g(s)|22ds.

(4.51)

Setting s = t− T in (4.51), it follows

q ≤ 16

ν2λ1
lim

T→+∞

∫ t

t−T
|g(s)|22ds. (4.52)

Defining M = lim
T→+∞

1

T

∫ t

t−T
|g(r)|22dr, then

q̂n ≤ −
πn2(νλ1 − 1)

2λ1|Ω|
+

64κ(n)

ν3λ1
M. (4.53)

Case 1: If πn2(νλ1−1)
2λ1|Ω| > 64κ(n)

ν3λ1
M , then by Lemma 4.19 in [9], we have dimB(A(t)) ≤ 2.

Case 2: Otherwise, by the theory in Temam [33], and Carvalho, Langa and Robinson [9], we
obtain that the fractal and Hausdorff dimension of pullback attractors proceed as dimF (A(t)) ≤
C|Ω|

1
2

ν q
1
2 + Ĉ.

Denoting M̂ = lim sup
T→+∞

1

T

∫ t

t−T
|g(r)|22dr → ‖g‖2L∞(−∞,T ∗;H), then we derive

dimF (AMH
(t)) ≤ Cκ(n)|Ω|

1
2

ν4λ1
M + Ĉ

≤ Cκ(n)|Ω|
1
2

ν4λ1
‖f‖L∞(−∞,T ∗;H) + Ĉ

≤ Cκ(n)|Ω|
1
2

ν2
G + Ĉ, (4.54)

here G =
‖f‖L∞(−∞,T∗;H)

ν2λ1
. This completes the proof. �

In fact, Wang, Yang and Lu [35] has presented a sufficient condition when the pullback
attractor reduces to a single trajectory as following

Theorem 4.4 Assume that (νλ1−
C2
f

ν )( 3ν
2λ1
− 4C2

f

νλ21
) > 0, the initial data (φ, ϕ) ∈ CH ×H, if g ∈

L2
loc(R;V ′), f satisfies hypothesis above, then the pullback attractors ACH reduces to a single tra-

jectory if G(t) ≤

√
(νλ1−

C2
f
ν

)( 3ν
2λ1
−

4C2
f

νλ21
)

16 , here G2(t) =
〈‖g‖2

V ′ 〉|≤t
ν2λ1

, 〈h〉|≤t = lim sup
s→−∞

1

t− s

∫ t

s
h(r)dr.

Proof. See [35] for more detail. �
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Remark 4.5 The dynamics of 2D Navier-Stokes equation with delay has been investigated by
Caraballo et al, especially the case of variable delay. Our results (Theorem 4.3) is an extended
research of Caraballo and his coauthors’ former existence of pullback attractors, which also gives
a positive revision of [28]. However, since we choose two basis for phase space, it is invalid for
the variable delay f(t, u(t− ρ(t))), which is our next objective.

Moreover, the small enough Lipschitz constant guarantee the delay basis has no influence in
trace formula, one natural question is can we find a more weak condition?

4.2 Further research

In this paper, the fractal dimension for 2D Navier-Stokes model with constant delay in finite
interval has been investigated, but what about the variable and distributed cases? Moreover,
the stability and robustness of pullback attractors as finite delay disappears are still open.
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