https://doi.org/10.1081/CSS-120001102
Clyde, M. (2017). BAS: Bayesian Adaptive Sampling for Bayesian Model Averaging. R Package Version 1.4.6. Available online: https://CRAN.R--project.org/web/packages/BAS.
Farifteh, J., van der Meer, F., Atzberger, C. & Carranza, E. J.M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods PLSR and ANN. Remote Sensing of Environment, 110, 59–78. https://doi.org/10.1016/j.rse.2007.02.005
Felicísimo, Á. M., Cuartero, A., Remondo, J. & Quirós, E. (2012). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslide, 10 , 175–189. https://doi.org/10.1007/s10346-012-0320-1
Filgueiras, P. R., Sad, C. M. S., Loureiro, A. R., Santos, M. F. P., Castro, E. V. R., Dias, J. C. M. & Poppi, R. J. (2014). Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 116, 123–130. http://dx.doi.org/10.1016/j.fuel.2013.07.122
Friedman, J. H.(1991). Multivariate adaptive regressions splines.Annals of Statistics , 19 , 1–67.
Gaikwad, B. (2020). Using hyperspectral remote sensing to monitor the properties of salt-affected soils (Doctoral dissertation, National Institute of Abiotic Stress Management, India).
Geladi, P. & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta , 185 , 1-17.