REFERENCES
1. Hueb AC, Jatene FB, Moreira LF, Pomerantzeff PM, Kallas E, de
Oliveira SA. Ventricular remodeling and mitral valve modifications in
dilated cardiomyopathy: new insights from anatomic study. J Thorac
Cardiovasc Surg 2002;124:1216-24.
2. Grande-Allen KJ, Borowski AG, Troughton RW, et al. Apparently normal
mitral valves in patients with heart failure demonstrate biochemical and
structural derangements: an extracellular matrix and echocardiographic
study. J Am Coll Cardiol 2005;45:54-61.
3. Grande-Allen KJ, Barber JE, Klatka KM, et al. Mitral valve stiffening
in end-stage heart failure: evidence of an organic contribution to
functional mitral regurgitation. J Thorac Cardiovasc Surg
2005;130:783-90.
4. Hynes RO. Integrins: bidirectional, allosteric signaling machines.
Cell 2002;110:673-87.
5. Aikawa E, Nahrendorf M, Sosnovik D, et al. Multimodality molecular
imaging identifies proteolytic and osteogenic activities in early aortic
valve disease. Circulation 2007;115:377-86.
6. Dal-Bianco JP, Aikawa E, Bischoff J, et al. Myocardial Infarction
Alters Adaptation of the Tethered Mitral Valve. J Am Coll Cardiol
2016;67:275-87.
7. Millington-Sanders C, Meir A, Lawrence L, Stolinski C. Structure of
chordae tendineae in the left ventricle of the human heart. J Anat
1998;192 ( Pt 4):573-81.
8. Mahmoud MM, Serbanovic-Canic J, Feng S, et al. Shear stress induces
endothelial-to-mesenchymal transition via the transcription factor
Snail. Sci Rep 2017;7:3375.
9. Yu CH, Suriguga, Gong M, et al. High glucose induced endothelial to
mesenchymal transition in human umbilical vein endothelial cell. Exp Mol
Pathol 2017;102:377-83.
10. Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived
endothelin-1 promotes cardiac fibrosis in diabetic hearts through
stimulation of endothelial-to-mesenchymal transition. Circulation
2010;121:2407-18.
11. Tang RN, Lv LL, Zhang JD, et al. Effects of angiotensin II receptor
blocker on myocardial endothelial-to-mesenchymal transition in diabetic
rats. Int J Cardiol 2013;162:92-9.
12. Gu S, Kay MA. How do miRNAs mediate translational repression?
Silence 2010;1:11.
13. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta
activation. J Cell Sci 2003;116:217-24.
14. Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K,
Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015;47:44-53.
15. Feng XH, Derynck R. Specificity and versatility in tgf-beta
signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659-93.
16. Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the
decrease in cellularity during the transition between granulation tissue
and scar. Am J Pathol 1995;146:56-66.
17. Desmouliere A, Gabbiani G. The role of the myofibroblast in wound
healing and fibrocontractive diseases. In: Clark RAF, ed. The Molecular
and Cellular Biology of Wound Repair. New York, NY: Plenum Press; 1996
18. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac
remodeling. Cardiovasc Res 2004;63:423-32.
19. Chen K, Mehta JL, Li D, Joseph L, Joseph J. Transforming growth
factor beta receptor endoglin is expressed in cardiac fibroblasts and
modulates profibrogenic actions of angiotensin II. Circ Res
2004;95:1167-73.
20. Pierlot CM, Lee JM, Amini R, Sacks MS, Wells SM. Pregnancy-induced
remodeling of collagen architecture and content in the mitral valve. Ann
Biomed Eng 2014;42:2058-71.
21. Chaput M, Handschumacher MD, Tournoux F, et al. Mitral leaflet
adaptation to ventricular remodeling: occurrence and adequacy in
patients with functional mitral regurgitation. Circulation
2008;118:845-52.
22. Pierlot CM, Moeller AD, Lee JM, Wells SM. Pregnancy-induced
remodeling of heart valves. Am J Physiol Heart Circ Physiol
2015;309:H1565-78.
23. Rego BV, Wells SM, Lee CH, Sacks MS. Mitral valve leaflet
remodelling during pregnancy: insights into cell-mediated recovery of
tissue homeostasis. J R Soc Interface 2016;13.
24. Ayoub S, Lee CH, Driesbaugh KH, et al. Regulation of valve
interstitial cell homeostasis by mechanical deformation: implications
for heart valve disease and surgical repair. J R Soc Interface 2017;14.
25. Beaudoin J, Handschumacher MD, Zeng X, et al. Mitral valve
enlargement in chronic aortic regurgitation as a compensatory mechanism
to prevent functional mitral regurgitation in the dilated left
ventricle. J Am Coll Cardiol 2013;61:1809-16.
26. Dal-Bianco JP, Aikawa E, Bischoff J, et al. Active adaptation of the
tethered mitral valve: insights into a compensatory mechanism for
functional mitral regurgitation. Circulation 2009;120:334-42.
27. Salgo IS, Gorman JH, 3rd, Gorman RC, et al. Effect of annular shape
on leaflet curvature in reducing mitral leaflet stress. Circulation
2002;106:711-7.
28. Stephens EH, Timek TA, Daughters GT, et al. Significant changes in
mitral valve leaflet matrix composition and turnover with
tachycardia-induced cardiomyopathy. Circulation 2009;120:S112-9.
29. Timek TA, Lai DT, Dagum P, et al. Mitral leaflet remodeling in
dilated cardiomyopathy. Circulation 2006;114:I518-23.
30. Stephens EH, Nguyen TC, Itoh A, Ingels NB, Jr., Miller DC,
Grande-Allen KJ. The effects of mitral regurgitation alone are
sufficient for leaflet remodeling. Circulation 2008;118:S243-9.
31. Quick DW, Kunzelman KS, Kneebone JM, Cochran RP. Collagen synthesis
is upregulated in mitral valves subjected to altered stress. ASAIO J
1997;43:181-6.
32. Avila-Vanzzini N, Michelena HI, Fritche Salazar JF, et al. Clinical
and echocardiographic factors associated with mitral plasticity in
patients with chronic inferior myocardial infarction. Eur Heart J
Cardiovasc Imaging 2018;19:508-15.
33. Yoshida S, Fukushima S, Miyagawa S, et al. The Adaptive Remodeling
of the Anterior Mitral Leaflet and Chordae Tendineae Is Associated with
Mitral Valve Function in Advanced Ischemic and Nonischemic Dilated
Cardiomyopathy. Int Heart J 2018;59:959-67.
34. Beaudoin J, Dal-Bianco JP, Aikawa E, et al. Mitral Leaflet Changes
Following Myocardial Infarction: Clinical Evidence for Maladaptive
Valvular Remodeling. Circ Cardiovasc Imaging 2017;10.
35. Obase K, Weinert L, Hollatz A, et al. Elongation of chordae
tendineae as an adaptive process to reduce mitral regurgitation in
functional mitral regurgitation. Eur Heart J Cardiovasc Imaging
2016;17:500-9.
36. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular
myofibroblast activation by transforming growth factor-beta:
implications for pathological extracellular matrix remodeling in heart
valve disease. Circ Res 2004;95:253-60.
37. Wylie-Sears J, Levine RA, Bischoff J. Losartan inhibits
endothelial-to-mesenchymal transformation in mitral valve endothelial
cells by blocking transforming growth factor-beta-induced
phosphorylation of ERK. Biochem Biophys Res Commun 2014;446:870-5.
38. Bartko PE, Dal-Bianco JP, Guerrero JL, et al. Effect of Losartan on
Mitral Valve Changes After Myocardial Infarction. J Am Coll Cardiol
2017;70:1232-44.
39. Peng H, Carretero OA, Vuljaj N, et al. Angiotensin-converting enzyme
inhibitors: a new mechanism of action. Circulation 2005;112:2436-45.
40. Leask A. Potential therapeutic targets for cardiac fibrosis:
TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast
activation. Circ Res 2010;106:1675-80.
41. Shibasaki Y, Nishiue T, Masaki H, et al. Impact of the angiotensin
II receptor antagonist, losartan, on myocardial fibrosis in patients
with end-stage renal disease: assessment by ultrasonic integrated
backscatter and biochemical markers. Hypertens Res 2005;28:787-95.
42. Yoshida S, Fukushima S, Miyagawa S, et al. Mitral Valve Structure in
Addition to Myocardial Viability Determines the Outcome of Functional
Mitral Regurgitation After Coronary Artery Bypass Grafting. Circ J
2017;81:1620-7.
43. Suh YJ, Chang BC, Im DJ, et al. Assessment of mitral annuloplasty
ring by cardiac computed tomography: Correlation with echocardiographic
parameters and comparison between two different ring types. J Thorac
Cardiovasc Surg 2015;150:1082-90.
44. Sielicka A, Sarin EL, Shi W, et al. Pathological Remodeling of
Mitral Valve Leaflets from Unphysiologic Leaflet Mechanics after
Undersized Mitral Annuloplasty to Repair Ischemic Mitral Regurgitation.
J Am Heart Assoc 2018;7:e009777.
45. Calafiore AM, Totaro A, De Amicis V, et al. Surgical mitral
plasticity for chronic ischemic mitral regurgitation. J Card Surg 2020.
46. Calafiore AM, Totaro A, Testa N, Sacra C, Calvo E, Di Mauro M.
Association of tethering of the second-order chords and prolapse of the
first-order chords of the anterior leaflet: A risk factor for early and
late repair failure. J Card Surg 2020.
47. Levine RA, Hagege AA, Judge DP, et al. Mitral valve
disease–morphology and mechanisms. Nat Rev Cardiol 2015;12:689-710.
48. Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal
Transition: Role in Physiology and in the Pathogenesis of Human
Diseases. Physiol Rev 2019;99:1281-324.
49. Schroer AK, Merryman WD. Mechanobiology of myofibroblast adhesion in
fibrotic cardiac disease. J Cell Sci 2015;128:1865-75.
50. Calafiore AM, Totaro A, Paparella D, et al. Mimicking natural mitral
adaptation to ischaemic regurgitation: a proposed change in the surgical
paradigm. Eur J Cardiothorac Surg 2020;58:35-9.