REFERENCES
  1. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTER- MACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011; 57:1890-1898.
  2. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score: a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008; 51:2163-2172.
  3. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34: 1123-1130.
  4. Dang NC, Topkara VK, Mercando M, et al. Right heart fail- ure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006; 25:1-6.
  5. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010; 139:1316-1324.
  6. Fitzpatrick JR, Frederick JR, Hsu VM, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008; 27:1286-1292.
  7. Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35: 67-73.
  8. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant 2013;32(2):157–87.
  9. Nguyen AB, Uriel N, Adatya S. New challenges in the treatment of patients with left ventricular support: LVAD thrombosis. Curr Heart Fail Rep 2016;13 (6):302–9
  10. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol 2012;60(18):1764–75.
  11. Uriel N, Levin AP, Sayer GT, Mody KP, Thomas SS, Adatya S, et al. Left ventricular decompression during speed optimization ramps in patients supported by continuous-flow left ventricular assist devices: device-specific performance characteristics and impact on diagnostic algorithms. J Card Fail 2015;21(10):785–91.
  12. Uriel N, Sayer G, Addetia K, Fedson S, Kim GH, Rodgers D, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail 2016; 4(3):208–17.
  13. Suwa H, Seguchi O, Fujita T, Murata Y, Hieda M, Watanabe T, et al. Paracorporeal ventricular assist device as a bridge to transplant candidacy in the era of implantable continuous-flow ventricular assist device. J Artif Organs 2014;17 (1):16–22.
  14. Imamura T, Burkhoff D, Rodgers D, Atadya S, Sarswat N, Kim G, et al. Repeated ramp tests on stable LVAD patients reveal patient-specific hemodynamic fingerprint. ASAIO J 2017. http://dx.doi.org/10.1097/MAT.
  15. Jung MH, Gustafsson F, Houston B, Russell SD. Ramp study hemodynamics, functional capacity, and outcome in heart failure patients with continuous- flow left ventricular assist devices. ASAIO J 2016;62(4):442–6.
  16. Couperus LE, Delgado V, Khidir MJH, Vester MPM, Palmen M, Fiocco M, et al. Pump speed optimization in stable patients with a left ventricular assist device. ASAIO J 2017;63(3):266–72.
  17. Burke MA, Givertz MM. Assessment and management of heart failure after left ventricular assist device implantation. Circulation 2014;129: 1161-6.
  18. Fitzpatrick JR III, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg 2009;137:971-7.
  19. Koji Takeda, MD, PhD,a Hiroo Takayama, MD, PhD,a Paolo C. Colombo, MD,b Melana Yuzefpolskaya, MD,b Shinichi Fukuhara, MD,a Jiho Han, BS,acPaul Kurlansky, MD,a Donna M. Mancini, MD,b and Yoshifumi Naka, MD, PhDa Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant 2015; 34:1024–1032
  20. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 2010; 139:1316-24.
  21. Lietz K, Long JW, Kfoury AG, et al : outcomes of left ventricular assist device implantation as destination therapy in the post- REMATCH era: Implications for patient selection.Circulation 116: 497–505, 2007.
  22. Topilsky y, Hasin T, oh JK, et al : Echocardiographic variables after left ventricular assist device implantation associated with adverse outcome. Circ Cardiovasc Imaging 4: 648–661, 2011.
  23. Noor MR, Bowles C, banner NR: Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: Influence of residual left ventricular function. Eur J Heart Fail 14: 613–620, 2012.
  24. Mudd Jo, Cuda JD, Halushka M, Soderlund KA, Conte JV, Russell SD: Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant 27: 1269–1274, 2008.
  25. Uriel N, Takayama H, et al : prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant 29: 1172–1176, 2010.