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Abstract

In this paper, an asynchronous periodic sampling consensus method is proposed

for second-order continuous-time multi-agent systems with event-triggered mech-

anism. Stochastic matrix theory is employed successfully to analyze the consen-

sus of the closed-loop multi-agent systems. By appropriately choosing param-

eters of the proposed consensus control protocol, it is proved that states of all

agents can reach consensus and the Zeno behaviour is excluded if the topology

graph contains a directed spanning tree. Finally, a numerical simulation exam-

ple is given to illustrate the advantages of the asynchronous periodic sampling

consensus method.

Keywords: Multi-agent systems, asynchronous periodic sampling consensus,

event-triggered mechanism.

1. Introduction

In the past decades, a large amount of attention is devoted to the consensus

problems of multi-agent systems (see survey papers [1] and [2]). For the reason

that traditional analog controllers are replaced widely by the digital ones, one

of the main challenging problems in this filed is how to design the sampling con-

sensus protocols. Comparing with the analog consensus scheme, the sampling

consensus scheme has some advantages such as reducing the computing loads
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of controller and saving communication traffics among agents. Thus, lots of

interesting works [3]-[8] on sampling consensus have been done at present stage.

According to sampling mechanism, to the best of our knowledge, the existing

works on sampling consensus methods for multi-agent systems can be classified

as two categories: synchronous ones and asynchronous ones. The synchronous

sampling consensus is that the sampling instants are same for all agents [3]-

[6]. In the asynchronous sampling consensus, the sampling instants are different

from the others [7]-[8]. However, these works require each agent to communicate

with its neighbors in all sampling instants.

To reduce unnecessary communication in limited bandwidth constraints,

event-triggered communication schemes [9]-[12] are introduced into sampling

consensus design of multi-agent systems, where communication occurs only

when some detected conditions are satisfied. In [13]-[16], several event-triggered

synchronous periodic sampling consensus schemes are developed. Then, these

schemes are further extended to the asynchronous periodic sampling case [17]-

[19]. In [17]-[18], the sampling period for each agent is same and edge event-

driven techniques are studied. And the value of edge depends on the information

of the corresponding two neighboring agents. Therefore, asynchronous means

that the event-triggered action over each edge is independent of others. In [22],

a novel distributed event-triggered sampling scheme, where agents exchange in-

formation via a limited communication medium, is investigated for second-order

multi-agent systems. Event-based synchronization of linear dynamical network-

s is proposed in [23] which adopts synchronous sampling method. In [24], the

authors investigate an event-triggered rendezvous control method for multiple

two-wheeled mobile robots while the controllers are designed with equivalent

event-checking periods and time-varying communication delays. For the multi-

agent linear system in [25], the sampling periods and the triggering conditions

of the input and output are asynchronous. In [19], asynchronous means that

the sampling period and the event-triggered instant for each agent are different

from others’. It is pointed out that the consensus scheme in [19] has more ad-

vantages such as flexible sampling periods. However, the consensus scheme in

2



[19] is developed just for first-order multi-agent systems and it is worth further

exploring and generalization.

In this paper, we study the event-triggered asynchronous periodic sampling

consensus for second-order multi-agent systems. It is nontrivial to extend the

results from first-order multi-agent systems to second-order ones. For example,

it is more difficult to design the parameters in consensus protocols, triggering

conditions and sampling periods, for the reason that the closed-loop system

matrix is more complex than one in the first-order case. Fortunately, we solve

these difficulties by developing some new techniques. The main contributions

of this paper are summarized as follows.

(i) This paper is the first study to focus on the event-triggered asynchronous

periodic sampling consensus problem for second-order continuous-time

multi-agent systems. This work further generalizes the classes of multi-

agent systems to which event-triggered asynchronous periodic sampling

consensus scheme can be applied.

(ii) By using some vital technics, it is ensured that the closed-loop system

matrix is still stochastic, which plays the key role in proving the consensus

of positions and velocities of multi-agent systems.

(iii) We get that the states of all agents achieve consensus with exponential

rate and it is proved that the proposed event-triggered scheme is better

than sample-data scheme from the theoretical perspective in this paper.

Notations: Let m be a nonzero constant, R denotes the set of real numbers,

Z denotes the set of the nonnegative integers, RN denotes N real vector space,

RN×N denotes N ×N real matrix space, the symbol bxc means floor function

of the real number x and V = {1, 2, · · · , N}. 1n = (1, 1, · · · , 1)T ∈ Rn.

2. Preliminaries

In this section, we will introduce some knowledge on algebraic graph theory

and stochastic matrix theory that will be used in the following sections.
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In this paper, the network topology of N agents is modeled as a weighted

directed graph G = (V, E ,A), in which V = {v1, v2, ..., vN} is the set of the finite

nodes, E ⊆ V × V is the set of the edges, and A = [aij ] ∈ RN×N with aij ≥ 0

and aii = 0 is the weighted adjacency matrix of G. The neighbor set of node i

is denoted with Ni = {j ∈ V : (j, i) ∈ E}. Define the weighted Laplacian matrix

as L = Q−A, where Q = diag{q1, q2, ..., qN}, with qi = ΣNj=1aij . The row sums

of L are zero. i.e. L · 1N = 0.

The following definitions are from [20]. A matrix A is called a nonnegative

matrix if all its elements are equal to or greater than zero. A nonnegative

matrix A ∈ Rn×n is said to be a row stochastic matrix, if it satisfies that

A · 1N = 1N . For a row stochastic matrix A ∈ RN×N , define the quantity

J (A) = 1
2max
i,j

∑
k

| aik−ajk |= 1−min
i,j

∑
k

min{aik, ajk}. If J (A) < 1, the matrix

A is called scrambling.

The operatorD for a vector x = [x1, · · · , xN ]T is defined asD(x) = max
i∈V
{xi}−

min
i∈V
{xi}.

Lemma 1. [20] For arbitrary vectors v and w, D(v + w) ≤ D(v) +D(w). For

a arbitrary row stochastic matrices A and a vector, D(Av) ≤ J (A)D(v). For

arbitrary row stochastic matrices A and B, J (AB) ≤ J (A)J (B).

3. Problem description and consensus protocol design

3.1. Problem description

Consider a class of second-order multi-agent systems with N agents. The

system dynamics of the ith agent is described as follows ẋi(t) = vi(t),

v̇i(t) = ui(t), i = 1, 2, · · · , N,
(1)

where xi(t) ∈ R represents the position, vi(t) ∈ R is the velocity and ui(t) ∈ R

is the control protocol to be designed below.
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The objective of this paper is to design ui for agent i ∈ V such that the

closed-loop multi-agent system satisfies
lim
t→∞

xi(t)− xj(t) = 0, j ∈ V,

lim
t→∞

vi(t) = 0
(2)

for arbitrary initial conditions. That is, (1) achieves the static consensus of the

positions.

In this paper, we consider the asynchronous sampling periodic setting. Let

hi be the sampling period of agent i, and define the sampling instants as Si =

{khi}k∈Z . Denote the event instants as Ti = {tik}k∈Z with ti0 = 0, where the

event instants are the time when agents communicate with others. Obviously,

Ti ⊆ Si for all i ∈ V . According to the above illustration, we can define


x̂i(t) = xi(t

i
k), for t ∈ [tik, t

i
k+1),

x̄i(t) = xi(khi), for t ∈ [khi, khi + hi),

v̄i(t) = vi(khi). for t ∈ [khi, khi + hi).

Remark 1. Distributed problem solving depends extensively on agents being

able to communicate shared data. Generally, the global information for each

agent can not be obtained. Thus, it is meaningful that each agent is able to

determine its own sampling period and detection parameters without knowledge

of any global information.

3.2. Event-triggered asynchronous periodic sampling consensus protocol

In this subsection, to achieve the static consensus of positions shown in (2),

we propose the following asynchronous periodic sampling consensus protocol

with an event-triggered communication scheme

ui(t) =− γivi(khi) +
ρi
dihi

Σj∈Ni(x̂j(khi)−x̂i(khi)) (3)

for t∈ [khi, khi + hi) and khi ∈ Si, where γi and ρi are the positive design

parameters, and di = qi. Especially, if di = 0, ui(t) ≡ 0 for all t.
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Remark 2. For (3), we do not design the term ρi
dihi

Σj∈Ni(v̂j(khi) − v̂i(khi)).

Thus, information exchanging can be reduced.

The measurement errors of positions between the sampling instants and their

corresponding event-triggered instants are designed as follows

ei(t) = x̂i(t)− x̄i(t), i ∈ V. (4)

Design the event-triggering condition as follows

fi(ei(t), gi(t)) = gi(t)− | ei(t) |, t ∈ Si, (5)

where gi(t) ≥ 0 is a time-varying threshold and it is given as

gi(khi + hi) = βigi(khi), gi(0) = αi (6)

with αi > 0, 0 < βi < 1, and gi(t) = gi(khi) for t ∈ [khi, khi + hi).

Now, we can get a series of event instants

tik+1 = inf{t : t ∈ Si, t > tik, fi(ei(t), gi(t)) < 0}. (7)

Remark 3. The physical mechanism of the protocol is described as follows.

For each agent, there exists a buffer recording the latest broadcasted state in-

formation from its neighbors, which works in such a way that the old data will

be erased by the new data if they are from the same agent, and the other buffer

records sampling instants of the states. Agent i may receive several broadcasted

information from its neighbor j before the instant khi, but only the latest one

is kept. Noted that if the current state satisfies (7), agent i will not update

its value instantly until its sampling instants to read the data from the buffer.

Agent i will read the data from the buffer until its next sampling instant occurs.
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4. Main results

4.1. Building a precise discrete model

We discretize the second-order multi-agent systems. Choosing t = khi + hi,

we have

xi((k + 1)hi) =xi(khi)+hivi(khi)−
1

2
γihi

2vi(khi)

+
1

2
ρid
−1
i hiΣj∈Ni(x̂j(khi)− x̂i(khi)), (8)

vi((k + 1)hi) =vi(khi)− γihivi(khi)

+ ρid
−1
i Σj∈Ni(x̂j(khi)−x̂i(khi)). (9)

The sampling instants of all the agents are collected together as a set ∪i∈V ∪kkhi,

and rewrite it by using {τk}k∈Z in ascending order. That is, ∪i∈V ∪k khi =

{τk}k∈Z . Then, we can rewrite (8) and (9) at the sampling instant τk as follows

ξi(k + 1)=


ξi(k), ifτk+1 /∈ Si;

ξi(k) + hiηi(k)− 1

2
γihi

2ηi(k)

+
1

2
ρid
−1
i hiΣj∈Ni(ξ̂j(k)− ξ̂i(k)), if τk+1∈Si;

(10)

and

ηi(k + 1)=


ηi(k), if τk+1 /∈ Si;

ηi(k)−γihiηi(k)+ρid
−1
i Σj∈Ni(ξ̂j(k)− ξ̂i(k)),

if τk+1 ∈ Si,

(11)

where

ξ̂i(k + 1) =

 ξi(k + 1), if τk+1 ∈ Ti;

ξ̂i(k), if τk+1 /∈ Ti,

where ξ̂i(k) represents the position at event-triggered instants. They remain

unchanged until they step into the next event instant. We have ξi(k) = xi(τk)

and ηi(k) = vi(τk) if τk ∈ Si; Otherwise, ξi(k) 6= xi(τk) and ηi(k) 6= vi(k).
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When τk ∈ Si, the current measurement errors between the sampling states and

the triggered states are defined as

εi(k) = ξ̂i(k)− ξi(k), i ∈ V. (12)

Substituting (12) into (10) and (11), we get ξ(k + 1)

η(k + 1)

 = Ak

 ξ(k)

η(k)

+Bkε(k),

where

Ak =

 I − 1
2ρD

−1HkLk Hk − 1
2γH

2
k

−ρD−1Lk I − γHk

 ,

Bk =

− 1
2ρD

−1HkLk
−ρD−1Lk


with ρ = diag{ρ1, · · · , ρN}, D = diag{d1, · · · , dN}, γ = diag{γ1, · · · , γN} and

H = diag{h1, · · · , hN}.

Remark 4. For the ith system, if τk+1 ∈ Si, the elements of ith row in matrix

Hk and Lk are the same as matrix H and Laplacian matrix L, respectively;

Otherwise, the elements of the ith row in matrix Hk and Lk are zero. Obviously,

it is possible that more than one agent is sampled at the instant τk+1.

By coordinate transformation, we have θ(k)

φ(k)

 =

 I 0

I I

 ξ(k)

η(k)

 ,

and θ(k + 1)

φ(k + 1)

=

 I 0

I I

Ak

 I 0

−I I

θ(k)

φ(k)


+

 I 0

I I

Bkε(k).
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Then, we can get the following closed-loop multi-agent systems θ(k + 1)

φ(k + 1)

 = Ek

 θ(k)

φ(k)

+Fkε(k), (13)

where

Ek =

 a b

c d

 , Fk=

 − 1
2ρD

−1HkLk
−1

2ρD
−1HkLk−ρD−1Lk

 ,

a= I− 1
2ρD

−1HkLk−Hk+ 1
2γH

2
k , b = Hk − 1

2γH
2
k , c = −Hk + 1

2γH
2
k + γHk −

1
2ρD

−1HkLk − ρD−1Lk and d = I +Hk − 1
2γH

2
k − γHk.

As shown in [19], the system matrix Ek plays a key role in the consensus

analysis. The following lemma tells us that the matrix Ek can be a stochastic

matrix if the positive control parameters γi, ρi and the sampling periods hi are

chosen appropriately, i ∈ V .

Lemma 2. Consider the systems (1), the consensus protocol (3) and the event-

triggering condition (5). There exist the design parameters γi and the sampling

period hi , i ∈ V such that Ek is a stochastic matrix.

Proof. See the Appendices.

Remark 5. Lemma 2 shows us the existence of control parameters for achieving

consensus. However, from the proof we can see how to choose such parameters.

For example, we choose 2ρi ≤ γi ≤ 1
2 and 0 < hi ≤ 2+ρi−

√
∆1

2γi
, where ∆1 =

(ρi + 2)2 − 8γi, which ensures that Ek is stochastic matrix.

4.2. Consensus analysis

Define an integer J =
∑N
i=1d

H
hi
e, where H = maxi∈V {hi}. Based on [20],

the following lemma is introduced.

Lemma 3. [20] Assume that the graph contains a directed spanning tree and Ek

is a stochastic matrix. There exists a constant 0 < µ < 1 such that J (Φ[lM +

M, lM ]) < µ for any finite integer M > (N − 1)2J and l ∈ Z, where Φ[lM +

M, lM ] = Φ[lM +M, j] = ElM+M−1 · · ·ElMEj.
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Now, we rewrite (13) as follows θ(lM +M)

φ(lM +M)

 = Φ[lM +M, lM ]

 θ(lM)

φ(lM)


+

lM+M−1∑
j=lM

Φ[lM+M, j+1]Fjε(j), (14)

where the transition matrix Φ[lM + M, j] is the same as the one in Lemma 3.

For convenience, define s(lM + M) =

 θ(lM +M)

φ(lM +M)

. In what follows, we

will give the main result of this paper.

Theorem 4. Consider the system (1) with the consensus protocol (3), and

the event-triggering condition (5). If the communication topology contains a

directed spanning tree, for arbitrary αi > 0 and 0 < βi < 1, there exist the

design parameters γi, ρi and the sampling periods hi, i ∈ V , such that the states

of all the agents reach static consensus given by (2).

Proof. From the analysis above, we have

s(k) = Φ[k, 0]s(0) +

k−1∑
j=0

Φ[k, j + 1]Fjε(j), (15)

where s(k) = [θT (k), φT (k)]T . Consider D(s(k)) as a Lyapunov function can-

didate. Based on Lemmas 1 and 2, we know that Ek is a stochastic matrix if

ρi > 0 and γi > 0 are chosen appropriately. Based on Lemma 3 and Theorem 9

in [19], we get that D(s(k)) converges to 0 as k →∞. Then, D(ξ(k))→ 0 and

D(η(k))→ 0 as k →∞.

In this position, we will discuss the convergence of ηi(k). We claim that ηi(k)

converges to zero. In order to seek a contradiction, we assume that there are

two cases: (1) ηi(k) converges to a nonzero constant a, e.g., a 6=0. (2) the value

of ηi(k) is always changing. As for the former case, for any small value ε1 > 0,

there exists a natural number N1, such that for each natural number k > N1,

we have that | ηi(k) |≤ a + ε1, | ηi(k) − ηj(k) |< ε1, and | ξ̂i(k) − ξ̂j(k) |< ε1,

i, j ∈ V . From (11), for the situation that τk+1 ∈ Si and τk+1 ∈ Sj , it can be
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seen that

|γihiηi(k)−γjhjηj(k)|

≤ |−ηi(k + 1) + ηj(k + 1) |

+ |−ηi(k)+ηj(k) |

+|ρid−1
i Σj∈Ni(ξ̂j(k)−ξ̂i(k))|

≤2ε1 + (ρi + ρj)ε1. (16)

Because ηi(k) converges to a constant a, we obtain

|γihiηi(k)−γjhjηj(k)|

= | γihiηi(k)− γjhjηi(k)

+γjhjηi(k)− γjhjηj(k) |

≥|γihi−γjhi | (|a |−ε1)−|γjhj |ε1. (17)

When l → ∞, we have ε1 → 0. However, by comparing (22) with (23), we

know that there appears the contradiction between (22) and (23). Therefore,

the former assumption does not hold. As for the latter case, the proof is similar

to the former, which also yields a contradiction. Hence, ηi(k) converges to zero.

Therefore, for arbitrary small positive number ε2, there exists a natural number

N2, such that for each natural number k > N2, we have that | ηi(k) |< ε2,

by the definition of ηi(k), we have | ηi(k) |< ε2. According to the definition

of operator D, for arbitrary small positive number ε3, there exists a natural

number N3 such that for each natural number k > N3, | ξi(k) − ξj(k) |< ε3.

By the definition of measurement error, for arbitrary small positive number ε4,

there exists a natural number N4, such that | ξi(k)− ξ̂i(k) |≤ gi(τk) < ε4, i ∈ V .

Define N = max{N1, N2, N3, N4}. For each k > N , we have

| ξi(k)− ξ̂j(k) | =| ξi(k)− ξj(k) + ξj(k)− ξ̂j(k) |

≤| ξi(k)− ξj(k) | + | ξj(k)− ξ̂j(k) |

< ε3 + ε4, (18)

11



From (24), it is easy to get that

| ξ̂i(k)− ξ̂j(k) | =| ξ̂i(k)− ξi(k) + ξi(k)− ξ̂j(k) |

≤| ξ̂i(k)− ξi(k) | + | ξi(k)− ξ̂j(k) |

≤ ε3 + 2ε4.

When the time t is large enough, there exist k > max{N3, N4} and l > max{N1, N2}

such that τk = lhi, t ∈ [lhi, lhi + hi) with τk ∈ Si. It follows from (8) and (9)

that

| xi(t)− ξi(k) |≤hi | vi(lhi) | +
1

2
γih

2
i | vi(lhi) |

+
ρihi
2di

∑
j∈Ni

| x̂j(lhi)− x̂i(lhi) |

≤(hi +
1

2
γih

2
i )ε2 +

1

2
ρihi(ε3 + 2ε4).

For any large enough t, we have

|xi(t)−xj(t) |≤|xi(t)−ξi(k) |+|ξj(k)−xj(t) |+ |ξi(k)−ξj(k) |

≤(hi + hj +
1

2
γih

2
i +

1

2
γih

2
j )ε2

+
1

2
(ρihi + ρjhj)(ε3 + 2ε4) + ε3.

According to (9), it can be seen that

|vi(t)|≤|vi(khi)|+γihi|vi(khi)|+ρid−1
i hiΣj∈Ni|x̂j(khi)−x̂i(khi)|

≤(1 + γihi)ε2 + ρihi(ε3 + 2ε4).

Obviously, hi, ρi and γi, i ∈ V are constants and γi > 0. When N =

max{N1, N2, N3, N3} → +∞, according to the above results, ε2, ε3 and ε4

tend to zero. Thus, we get that | xi(t)− xj(t) |→ 0 and vi(t)→ 0 as t→∞ for

i, j ∈ V . The proof is completed.

4.3. Some important results

In this section, we show that there is no case where all sample-data points

are event-triggered points, we are supposed to prove that the inter-event time
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has a positive lower bound τ0 such that tik+1 − tik > τ0 > 0, k = 0, 1, · · · ,

i =, 1, 2, · · · , N .

For simplicity of presentation, denote `i = [c1, · · · , ci−1, ci, ci+1, · · · , cN ]

with ci = γi, where cj = 0, j ∈ V/{i}. Denote ρ= diag{ρ1, · · · , ρN}, D−1=

diag{d−1
1 , · · · , d−1

N }, γ = diag{γ1, · · · , γN} and H−1 = diag{h−1
1 , · · · , h−1

N }.

Define x = [x1, · · · , xN ]T and v = [v1, · · · , vN ]T , then rewrite the second-order

multi-agent systems (1) and (3), i = 1, 2, · · · , N , as
ẋ(t) = v(t),

v̇(t) =−Σj∈Nì jv(kjthj)−ρD−1H−1Σj∈NiLjx(kjthj)

+ ρD−1H−1Le(t),

where the jth row in matrix Lj is the same as Laplacian matrix L, e(t) =

[e1(t), · · · , eN (t)]T and t ∈ [kjthj , k
j
thj + hj) with kjt = b thj c.

Based on the Newton-Leibnitz formula, it is easy to obtain that

χ(t− τj(t)) = χ(t)−
∫ t

t−τj(t)
χ̇(s)ds.

Then, we arrive at

v̇(t) =− γv(t)− ρD−1H−1Lx(t) + Σj∈Ni`j

∫ t

t−τj(t)
v̇(s)ds

+ ρD−1H−1Σj∈NiLj
∫ t

t−τj(t)
ẋ(s)ds+Be(t),

where τj(t) = t − kjthj . Choose a matrix Q = [q1, · · · , qN−1] ∈ RN×(N−1)

such that 1√
N
1 and the column vectors of Q form an orthonormal basis of

RN . And we have the following relationships, QT1 = 0, QTQ = IN−1 and

QQT = IN − 1
N 11T .

Define ~x = QTx. Then, we have

~̇x(t) = QT v(t),

v̇(t) =−γv(t)−ρD−1H−1LQ~x(t)+Σj∈Ni`j

∫ t

t−τj(t)
v̇(s)ds

+ρD−1H−1Σj∈NiLjQ
∫ t

t−τj(t)
~̇x(s)ds+Be(t),
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Denote y = (~xT , vT )T . Then, we have

ẏ(t) = Fy + Σj∈NiWj

∫ t

t−τj(t)
ẏ(s)ds+ Be(t), (19)

and

ẏ(t) = My(t)− Σj∈NiWjy(kjt ) + Be(t), (20)

where

F=

 0N×(N−1) QT

−ρD−1H−1LQ −γ

 ,Wj=

 0N×(N−1) 0(N−1)×N

ρD−1H−1LjQ `j

 ,

B=

0(N−1)×1

B

 and M=

0N×(N−1) QT

0N×(N−1) 0N×N)

 .

We introduce a useful lemma as follows.

Lemma 5. [21] For the matrix F
′

=

0N×(N−1) QT

−LQ −kIN

 and k is a positive

constant, assume that k satisfies that k > max
µi∈Λ+(L)

{ Im(µi)√
Re(µi)

}, where µi is the

ith eigenvalue of L and Λ+(L) is the set of the nonzero eigenvalues of L. Then,

F
′

is stable if and only if G contains a spanning tree.

Lemma 6. Take γi = γj = r > 0, i, j ∈ {1, 2, · · · , N}. Based on the above

lemma, we can get that if r> max
µi∈Λ+(ρD−1H−1L)

{ Im(µi)√
Re(µi)

}, F is stable if and only if

G has a spanning tree in this paper, where µi is the ith eigenvalue of ρD−1H−1L

and Λ+(ρD−1H−1L) is the set of the nonzero eigenvalues of ρD−1H−1L.

Proof. It is easy to be proved.

Lemma 7. [22] Assume that all the eigenvalues of matrix P are in the open

left half plane. Then there exist positive constants µ1 > 1 and µ2 > 0 such that∥∥ePt∥∥ ≤ µ1e
−µ2t, t ≥ 0.

Theorem 8. Consider the dynamical systems (1). If the communication topol-

ogy contains a directed spanning tree, for arbitrary αi > 0 and 0 < βi < 1, it

is solved that there is no case where all sample-data points are event-triggered

points.
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Proof. See the Appendices.

Remark 6. Theorem 1 with the consensus protocol (3) proves that the posi-

tions achieve static consensus of (1). For the dynamic consensus situation, we

can design a virtual leader described as follows ẋN+1(t) = vd,

v̇N+1(t) = 0,
(21)

where vd is a nonzero constant. Therefore, the topology contains N + 1 agents.

Let the leader be the (N + 1)th agent. Thus, the adjacency matrix in the

dynamic consensus situation is denoted as AN+1. We define the positions and

the velocities at the sampling instants, respectively. The consensus protocol is

designed as

ui(t) =
σ1

ΣN+1
j=1 aij

ΣNj=1aij(x̂j(t)− x̂i(t))

+
σ1

ΣN+1
j=1 aij

ai(N+1)(xN+1(k
′
hN+1)− xi(khi))

+
σ2

ΣN+1
j=1 aij

ΣNj=1aij(v̂j(t)− v̂i(t))

+
σ1

ΣN+1
j=1 aij

ai(N+1)(vN+1(k
′
hN+1)− vi(khi)),

where aij is the (i, j) entry of the adjacency matrix AN+1, t ∈ [khi, khi + hi),

k
′

= b t
hN
c, khi ∈ Si and k

′
hN+1 ∈ SN+1, where σi > 0, i = 1, 2. By using

the Lyapunov’s stability theorem, we can prove that there exist two positive

constants ε and T , for any t > T , such that the closed loop system satisfies,

vi(t)−vj(t)<ε and xi(t)−xj(t)< ε, t > T,

for arbitrary initial conditions. Thus, the states achieve bounded consensus.

5. Simulation example

In this section, a simulation example is given to verify the effectiveness of

the proposed consensus scheme. Consider the multi-agent system (1) with 6

nodes, and the communication topology among nodes is shown in Fig. 1.
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Figure 1: A graph contains a directed spanning tree.

In the simulation, we employ the consensus protocol (3) with the even-

triggering function (6). Based on Remark 3, the triggering parameters in (3)

are chosen as ρ = 0.01 ∗ 16, γ = {0.12, 0.22, 0.32, 0.16, 0.09, 0.32}, and H =

[1.35, 1.395, 1.26, 1.44, 1.62, 1.26]. The triggering parameters in (6) are selected

as αi = 10 and βi = exp(−0.03 × hi). The simulations results are shown in

Figs.2-4 where the initial conditions are set to be x(0) = [5, 4, 1, 7, 4, 1] and

v(0) = [2, 8, 5, 8, 10, 20].
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Figure 2: (a) Position curves of all agents; (b) Velocities curves of all agents.

It can be seen from Fig.2 that the positions of all agents quickly converge

to a common constant and the velocities of all agents converge to zero. The

triggering instants of all six agents are shown in Fig. 3. Fig. 4 depicts the

trajectories of the measurement error e(t) and the threshold g(t).

The above simulation results are based on Theorem 1, which indeed verifies

the effectiveness of the proposed consensus protocol.
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Figure 3: Event instants of all agents.
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Figure 4: Trajectories of ei(t) and gi(t).

Remark 7. Because if the current state satisfies (7), agent i will not update

its value instantly until its sampling instants to read the data from the buffer.

Agent i will read the data from the buffer until its next sampling instant occurs.

Thus, it can be seen that there are some instants that ei(t) > gi(t) in Fig.4.

6. Conclusion

The asynchronous periodic sampling static consensus of second-order multi-

agent systems is achieved in this paper by using event-triggered communication

scheme. By comparing with the synchronous periodic sampling method, the

asynchronous period method is more flexible and easier to be implemented.
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Moreover, the use of event-triggered mechanism reduces the communication

loads, which further saves the system energy.
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8. Appendices

Proof of Lemma 2 According to the definition of the stochastic matrix,

we can know that a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 and Eki1 + Eki2 + · · ·+ Eki2n = 1.

At the sampling instants τk+1 ∈ Si, the following inequalities hold



0 < ρi, γihi ≤ 2,

γih
2
i − (2 + ρi)hi + 2 ≥ 0,

γih
2
i − (2 + ρi − 2γi)hi − 2ρi ≤ 0,

γih
2
i +(2γi − 2)hi − 2 ≤ 0.

(A.1)
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Without loss of generality, we assume that ρi > 0, and γi > 0. From (A.1), we

have



(1)hi ≤
2

γi
;

(2)hi ≤
2 + ρi −

√
∆1

2γi
or hi ≥

2 + ρi +
√

∆1

2γi
;

(3)
2 + ρi − 2γi −

√
∆2

2γi
≤ hi ≤

2 + ρi − 2γi +
√

∆2

2γi
;

(4)
2− 2γi −

√
∆3

2γi
≤ hi ≤

2− 2γi +
√

∆3

2γi
,

where ∆1 = (ρi+2)2−8γi, ∆2 = (ρi+2−2γi)
2+8γiρi and ∆3 = 4γ2

i +4. One of

the solutions is that if 2ρi ≤ γi ≤ 1
2 , we obtain that 0 < hi ≤ 2+ρi−

√
∆1

2γi
. Hence,

Ek is a stochastic matrix and there exists an upper bound of the sampling period

for each agent. The proof is completed.

Proof of Theorem 2 First, we prove to that the states of the second-order

multi-agent systems (1) achieve consensus with an exponential rate. By the

numerical integration of (19), we have

y(t) =eFty(0)+

∫ t

0

eF (t−θ){Be(θ)+
N∑
j=1

Wj

∫ θ

θ−τj(θ)
ẏ(s)ds}dθ.

It follows from the definitions of gi(t) that we can choose βi = e−αh, where α and

h are positive constants. Then, we can get that there exist positive constants

µ3 and ω such that

‖ei(t)‖ ≤ gi(t) ≤ µ3e
−ωt, i ∈ V.

There is no loss of generality in assuming that the norm is 2-norm. Then, it can

be seen that

‖e(t)‖ ≤
√
Nµ3e

−ωt.

According to Lemma 5, all of the eigenvalues of the matrix F have negative real

parts. It follows from Lemma 3 that there exist positive constants µ1 and µ2,
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where µ2 > ω, such that

‖y(t)‖≤µ1e
−µ2t‖η(0)‖+µ1

∫ t

0

e−ω(t−θ){
√
Nµ3‖B‖e−µ2θ

+‖
N∑
j=1

Wj

∫ θ

θ−τj(θ)
[My(s)−

N∑
j=1

Wjy(s−τj(s))+Be(s)]ds‖}dθ.

Denote m1 =
√
Nµ3‖B‖, m2 = ‖

∑N
j=1WjM‖ and m4 =

√
N‖
∑N
j=1Wj‖B‖.

We have

‖y(t)‖≤µ1e
−µ2t‖y(0)‖+µ1

∫ t

0

e−µ2(t−θ){m1e
−ωθ+

∫ θ

θ−τj(θ)
[m2‖y(s)‖

+ ‖
N∑
j=1

Wj‖2‖y(s− τj(s))‖+m4e
−ωs]ds}dθ. (22)

Next, we can prove that there exist two constants λ ∈ (0, µ2) and ω ∈ (0, µ2),

where λ > ω, satisfying

α(m2 +m3e
λd)(eλd − 1)

λ(µ2 − λ)
< 1 (23)

and

δ =
µ1{m1ω +m4(eωd − 1)}

ω(µ2 − ω)− µ1(m2 +m3eωd)(eωd − 1)
> 0. (24)

Then, the following inequality holds

‖y(t)‖ <µ1‖y(0)‖e−λt + δe−ωt , ∆(t), t ≥ 0. (25)

Therefore, the consensus for the states of all agents can be achieved.

Now construct a function

f(λ) = α(m2 +m3e
λd)(eλd − 1)− λ(µ2 − λ)

to prove (23) and (24). Clearly, we can obtain that f(0) = 0 and ḟ(0) =

α(m2+m3)d−µ2. When d is bounded and λ ∈ (0, µ2), we can get that ḟ(0) < 0.

As a result, the inequality (23) holds. Similarly, (24) can be proved. We will

show that (25) holds. In order to seek a contradiction, we assume that (25)
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does not hold. Hence, there exist some instants t ≥ 0 such that the following

inequality holds

‖y(t)‖ ≥ ∆(t).

According to the continuity of η(t) and ω(t), there exists a constant t∗ > 0 such

that  ‖y(t∗)‖ = µ1‖y(0)‖e−λt
∗

+ δe−ωt
∗
,

‖y(t)‖ < ∆(t∗), 0 ≤ t < t∗.
(26)

Denote m3 = ‖
∑N
j=1Wj‖2‖. Obviously, t− τj(t) is bounded, j ∈ V . Thus, one

can find a constant d which satisfies maxj∈V |t− τj(t)| ≤ d. Substitute (25) into

(22)

‖y(t∗)‖<µ1e
−µ2t

∗
‖y(0)‖+µ1

∫ t∗

0

e−µ2(t∗−θ){m1e
−ωθ+δm2e

−ωs)

+

∫ θ

θ−d
[µ1m2‖y(0)‖e−λs + µ1m3‖y(0)‖e−λ(s−d)

+ δm3e
−ω(s−d) +m4e

−ωs]ds‖}dθ.

It is easy to be seen that

‖y(t∗)‖<µ1‖y(0)‖{e−µ2t
∗

+µ1

∫ t∗

0

e−µ2(t∗−θ)
∫ θ

θ−d
(m3e

−λs+m4e
−λ(s−d)dsdθ}

+µ1

∫ t∗

0

{m1e
−ωθ+

∫ θ

θ−d
(m2δe

−ωs+δm3e
−ω(s−d)+m4e

−ωs)ds}dθ.

By using the integral algorithm, the following inequality holds

‖y(t∗)‖<µ1‖y(0)‖{e−µ2t
∗
+(e−λt

∗
−e−µ2t

∗
)
µ1(m2+m3e

λd)(eλd−1)

λ(r − λ)
}

+µ1{
m1

µ2−ω
+
m2δ+m3δe

ωd+m4

ω(µ2−ω)
+(eωd−1)

m2δ+m3δe
ωd+m4

ω(µ2−ω)
}

× (e−ωt
∗
−e−µ2t

∗
)

=µ1‖y(0)‖e−λt
∗

+ δe−ωt
∗
.

This result contradicts (26). That is, (25) holds. Therefore, we get that

‖v(t)‖ <µ1‖y(0)‖e−λt + δe−ωt, t ≥ 0, (27)
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where λ > ω.

In this position, we prove that the inter-event time has a positive lower

bound τ0 such that tik+1 − tik > τ0 > 0, k = 0, 1, · · · , i =, 1, 2, · · · , N .

For t ∈ [tik, t
i
k+1) and t ∈ [lhi, lhi+hi), where tik = lhi, based on the definition

of ei(t), we have

|ei(t)|= 0.

Because of the fact that the next event happens as soon as

fi(ei(t), gi(t)) = gi(t)− | ei(t) |, t ∈ Si,

crosses zero, that is, it is not triggered before ‖ei(t)‖= µ3e
−ωt. Therefore, the

event is not triggered in the interval [lhi, lhi + hi).

When t ∈ [lhi + hi, lhi + 2hi), based on (11), we have

|ei(t)|≤
∫ lhi+hi

lhi

[µ1‖y(0)‖e−λs + δe−ωs]ds

≤
∫ t

tik

[µ5e
−λtik + δe−ωt

i
k ]ds

≤[µ5e
−λtik + δe−ωt

i
k ](t− tik).

Denote a lower bound on inter-event intervals as τi = t− tik. Then, we solve the

following equation

[µ5e
(ω−λ)tik + δ](t− tik) = µ3e

−ωτi .

Because 0 < ω < λ, then we have that µ5e
(ω−λ)tik + δ ≤ µ5 + δ. For any tik > 0,

the solution τi(t
i
k) is greater than or equal to τ∗i given by [µ5 + δ]τi = µ3e

−ωτi .

Similarly as in [23], we get that τ∗i is strictly positive. As a result, all inter-

event times are lower-bounded by a positive constant, i.e., tik+1 − tik > τ0 > 0,

i = 1, 2, · · · , N .

As is stated in Remark 3 in this paper, for each agent i, it will not update

its value instantly until its sampling instants to read the data from the buffer.

And the agent will read the data from the buffer until its next sampling instant
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occurs. Thus, when we choose the sampling period hi such that hi < τ0, it

is solved that there is no case where all sample-data points are event-triggered

points.
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