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Abstract

The Rayleigh distribution is used to model the lifetime of an object
or a service time. In this paper, a new distribution with two parameters
(Power Rayleigh distribution) is introduced. Statistical properties of the
distribution such as density function, survival function, hazard function,
moments, quantile function, residual life, order statistic and extreme value
distribution are discussed. Maximum likelihood method is used to esti-
mate the unknown parameters.Simulation Schemes are produced. Finally,
an application of the model to real data set is presented to show the su-
periority of this new distribution by comparing the �tness with its special
cases.

KeyWords: Rayleigh distribution, Hazard function, Mean residual
life, Entropy, Maximum likelihood estimation.

1 Introduction

The Rayleigh distribution is considered to be a useful lifetime distribution. It
was �rst introduced by Rayleigh [1]. It serves as an important model in com-
munication theory, physical science, engineering and medical imaging science.
In engineering, Rayleigh distribution measure the lifetime of an object where
the lifetime depends on the object�s age for example resistor, transformer and
capacitors in aircrafts. It is a special case of the two parameter Weibull distrib-
ution with the shape parameter equal to 2. A random variable Y is said to have
the Rayleigh distribution with parameter � if its probability density function
(PDF) is given by:

f(y) =
y

�2
e
�y2
2�2 , y > 0 (1)

Inference for model of Rayleigh distribution has been introduced by Sinha
and Howlader [2], Mishra et al. [3] and Abd Elfattah et al. [4] Over the years
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the family of Rayleigh distribution is formed such as Generalized Rayleigh dis-
tribution is introduced by Kundu and Raqab [5], Rivet et al. [6] discussed the
Log Rayleigh distribution, Cordeiro et al. [7] derived Beta Generalized Rayleigh
distribution, Weibull Rayleigh distribution is introduced by Merovci and Elbatal
[8], Mahmoud and Ghazal [9] introduced exponentiated Rayleigh distribution.
Several authors have considered extentions of Rayleigh distribution such as

Inverse Rayleigh by Voda [10], Weighted Inverse Rayleigh distribution by Fatima
and Ahmed [11] and Transmuted Rayleigh distribution by Merovci [12].
The quality of the procedures used in statistical analysis depends heavily on

the assumed probability model or distribution. The Rayleigh distribution has
been extended in this paper by using the power transformation x = y

1
� :The

cumulative distribution function (CDF) of the X is given by

F (x) = P (X � x) = P (Y � x�) = Fy(x�)

Thus, the PDF of Power Rayleigh (PR) distribution is obtained as

f(x) =
d

dx
Fy(x

�)

=
�

�2
x2��1e

�x2�
2�2 (2)

Where � is a scale parameter and � is a shape parameter. The corresponding
cumulative CDF is given by

F (x) = 1� e
�x2�
2�2 (3)

This paper is outlined as follows: In Section 2, statistical properties and reli-
ability measures are discussed such as shapes of probability density function,
shapes of hazard function, the moments and some associated measures, the
quantile function, skweness and kurtosis, mean residual life , shannon entropy
and stress-strength parameter. In Section 3, the maximum likelihood method
and con�dence interval are used to estimate the two-parameter. In Section 4, the
distribution of order statistic is derived and limiting distribution. A simulation
study is produced to generate random samples follow PR distribution. Appli-
cation of the distribution to data set is used and compared to the �t attained
by some other distributions.

2 Statistical Properties and Reliability Measures

In this section some statistical properities and reliability measures for the PR
distribution are derived and studied.
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2.1 Shapes of Probability Density Function

The behavior of PDF of the PR distribution f(x) at x = 0 and x = 1 is given
by

f(0) =

8<: 1 if � < 1
2

1
�2 if � = 1

2
0 if � > 1

2

; f(1) = 0:

The following theorem shows the shape of the PDF of PR distribution.

Theorem 1 For all � > 0 the PDF of Power Rayleigh distribution is

(i) Decreasing if � � 1
2 :

(ii) Unimodal if � > 1
2 .

Proof. The �rst derivative of f(x) is given by

f�(x) = g(x)
x f(x);

where,
g(x) = ��

�2 x
2� + 2� � 1:

(i) If � = 1
2 , then g(x) =

�1
2�2x < 0 and f

�(x) < 0. Hence, f(x) is decreasing.
Also, if � < 1

2 ,then g(x) < 0 and f�(x) < 0 for all � > 0: Hence f(x) is
decreasing.
(ii) 8� > 0; f�(x) = 0 iff g(x) = 0 which occurs at the point

x0 = (
2�2���2

� )
1
2�

Since,

f�
�

(x0) =
�2�

1
�
+1
(2��1)1�

1
�

�
2
3

< 0

So f(x) has a local maximum at x0 . Figure1 shows the behavior of PDF of
PR distribution for some selected choices of � and �:

Fig1:Density function of the Power Rayleigh distribution.
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2.2 Survival and Hazard Rate Functions

The event of interest has not yet occured by time x. Thus the survival function
S(x) denotes probability of surviving beyond time x which is de�ned by

S(x) = 1� F (x) = e
�x2�
2�2 (4)

The hazard rate function is the conditional rate of failure at time x, given
that an individual has survived until at least time x. The hazard rate function
of PR distribution is given by

h(x) =
f(x)

S(x)
=
x2��1

�2
� (5)

The behavior of h(x) of the PR distribution is discussed in the following
theorem

Theorem 2 For all � > 0 the hazard rate function of power Rayleigh distribu-
tion is

(i) Decreasing if � � 1
2 :

(ii) Increasing if � > 1
2 :

Proof. the �rst derivative of h(x) is given by
h�(x) = �

�2x
2��2(2� � 1)

So,
(i) if � � 1

2 ; then h
�(x) � 0 and this means that h(x) is decreasing.

(ii) if � > 1
2 ; then h�(x) > 0 and h(x) is increasing.

Figure2 shows the shapes of hazard rate function of PR distribution.

Fig2: Plots of hazard rate function of the Power Rayleigh distribution
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2.3 Mean Residual Life Function

Let X be a continuous random variable with survival function S(x), the mean
residual life function is de�ned as the expected value of the remaining lifetimes
after a �xed time point x. The mean residual life of the PR distribution is given
as follows

�(x) = E(X � x p X > x) = 1
S(x)

1Z
x

yf(y)dy � x

= e
x2�

2�2

1Z
x

y � �
�2 y

2��1e
�y2�
2�2 dy � x

= 2�2x1�2� x > 0:
Calabria and Pulcini 1987 [13] showed that the behavior of mean residual life

function.The following lemma is useful to determine the shape of mean residual
life function �(x):

Lemma 3 (Bryson and siddique [14]) Let X be a non-negative continuous ran-
dom variable with hazard rate function h(x) and mean residual life function
�(x):If h(x) is increasing (decreasing), then �(x) is increasing(decreasing).

Theorem 4 The mean residual life function �(x) of the PR distribution is in-
creasing if � � 1

2and decreasing if � > 1
2 for all � > 0:

Figure3 shows that the shapes of mean residual life of the PR distribution.

Fig3: Plots of mean residual life of the Power Rayleigh distribution

2.4 Moments

A raw moment of order k is the average of all numbers in the set, with each
number raised to the kth power before you average it. The �rst raw moment
and the second raw moment provides some information about the location,
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variability and appearance of the distribution .The third and the forth raw
moments provide some information on the shape of distribution. In this section
we introduce the kth moments: The kth moment of Power Rayleigh distribution
is de�ned by
��1 = 2

1
2� ( 1�2 )

�1
2� �(1 + 1

2� )

��2 = 2
1
� ( 1�2 )

�1
� �(1 + 1

� )
.
.
.
.
��n = 2

n
2� ( 1�2 )

�n
2� �(1 + n

2� )
The central moments about the mean are given by

�2 =
2
1
� ( 1

�2
)
�1
� [�� �(1+ 1

2� )
2 + �( 1� )]

� :

�3 =
2
�2+ 3

2� ( 1
�2
)
�3
2� [ �( 1

2� )
3�6 � �( 1

2� ) �(
1
� ) + 6�2�( 3

2� )]

�3
:

�4 =
4
�2+ 3

2� ( 1
�2
)
�2
� [�3�( 1

2� )
4+24� �( 1� ) � 48�2�( 3

2� ) + 32�3�( 2� )]

�4

Hence, the standard deviation (SD) of the PR distribution is

SD =
p
�2 =

vuut2
1
� ( 1�2 )

�1
� [�� �(1 + 1

2� )
2 + �( 1� )]

�
: 8� > 0

The coe¢ cient of variation represents the ratio of the standard deviation to
the mean, and it is a useful statistic for comparing the degree of variation from
one data series to another, even if the means are drastically di¤erent from one
another. Thus, the coe¢ cient of variation of the PR distribution is given by

� =
SD

�
=
2
�1
2� ( 1�2 )

1
2�

s
2
1
� ( 1

�2
)

�1
� [�� �(1+ 1

2�
)2 + �( 1

�
)]

�

�(1 + 1
2� )

: 8� > 0

The skewness and kurtosis statistics are very dependent on the sample size.
Smaller sample sizes can give results that are very deceptive. Skewness measures
the relative size of the two tails. Skewness of the PR distribution can be obtained
as follows :

S =

s
�23
�32
=
1

4

vuut [ �( 1� )
3 � 6��( 12� )�(

1
� ) � 6�2�( 32� )]

2

�3(�� �(1 + 1
2� )

2 + �( 1� ))
3

: 8� > 0

Kurtosis is the measure of the a mount probability in two tails. The kurtosis
of the PR distribution is given by
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K =
�4
�22
=
�3 �( 12� )

4 + 24� �( 12� )
2 �( 1� ) � 48 �2�( 12� ) �(

3
2� ) + 32�( 2� )

16�2 [�� �(1 + 1
2� )

2 � �( 1� )]2
: 8� > 0

Let X be a random variable from Power Rayleigh distribution then the
moment generating function of power Rayleigh distribution is de�ned by

MX(t) =

Z 1

0

etxf(x)dx

= 1 +
1X
r=1

tr

r!
2

r
2� (

1

�2
)
�r
2� �(1 +

r

2�
)

Similarly the characteristic function of PR distribution can be derived as
follows:

�X(t) =

Z 1

0

eitxf(x)dx

=
1

1 +
X
r=1

(it)r

r!
2

r
2� (

1

�2
)
�r
2� �(1 +

r

2�
)

2.5 Quantile Function

The quantile function of the power rayleigh distribution is given by
F�1(u) = (�2�2 ln(1� u))

1
2� :

Quantile is useful measure because it is less susceptible to long tailed distri-
bution and it may be more useful descriptive statistics than means and other
moments-related statistics. Some quantiles have special names (see Ghitany
2013[15] ) :

� if u = 1
2 then the quantile function is called median, so the median of the

PR distribution is given by

Q1 = F
�1( 12 ) = (�2�

2 ln( 12 ))
1
2�

� if u = 1
4 then the quantiles are called the �rst quartile, so the �rst quartile

of the PR distribution is given by

Q2 = F
�1( 14 ) = (�2�

2 ln( 34 ))
1
2�

� if u = 3
4 then the quantiles are called the third quartile, so the third

quartile of the PR distribution is given by

Q3 = F
�1( 34 ) = (�2�

2 ln( 14 ))
1
2�
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Figure 4 shows the quantiles at � = 1 for the PR distribution.

Fig4:Plots of quantile function of Power Rayleigh distribution for �=1.

2.6 Shannon Entropy

An entropy is interpreted as the degree of randomness in the system and it
can be used in many �elds such as chemistry, physics and biology as a driving
force for protein un�oding or catalysis enzymes.The shannon entropy of random
variable X is de�ned by
SH = �

R1
0
f(x) log f(x)dx

Shannnon entropy for the PR distribution is given by

SH = �
R1
0

�
�2x

2��1e
�x2�
2�2 log( ��2x

2��1e
�x2�
2�2 )dx

= � 1
2� log(

1
�2 )

1
2� �(2� 1

2� ): 8 � > 1
4 :
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3 Methods of Estimations

In ihis section, we consider the maximum likelihood method to estimate the
involved parameters of PR distribution. Moreover, the interval estimation is
discussed based on Fisher information matrix.

3.1 Maximum likelihood estimation

Let x1; x2; ::::::::; xn be arandom sample of size n from PR distribution, then
the sample likelihood function of this model can be given by

L(�; �; x) =
1Y
i=1

f(xi;�;�)

= ( ��2 )
n

1Y
i=1

x2��1i e
�

nX
i=1

x
2�
i

2�2

with respective sample log-likelihood function

l(�; �; x) = n ln(�)� n ln(�2) + 2�
nX
i=1

lnxi �
nX
i=1

lnxi �

nX
i=1

x2�i

2�2
(6)

The maximum likelihood estimators
^
� and

^
� are obtained by solving the

following equations

n

�
+ 2

nX
i=1

lnxi �

nX
i=1

x2�i lnxi

�2
= 0 (7)

�2n
�

+

nX
i=1

x2�i

�3
= 0 (8)

From Eqs (7) and (8) we have

^
� =

vuuut nX
i=1

x2�i

2n
(9)

By substituding �2 in Eq (7), then we have

2�

nX
i=1

x2�i lnxi

nX
i=1

x2�i

� 2�
n

nX
i=1

lnxi = 1 (10)
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Taking log-function for Eq (10), we obtain

f(�) = lnn[
nX
i=1

(x2�i lnxi � x2�i � lnxi)] = 0 (11)

The estimation of � can obtained by solving Eq (11) in one-variable Newton-
Raphson optimization algorithm as follows

�k+1 = �k �
f(�k)

f�(�k)
where k = 0; 1; 2; :::: (12)

3.2 Interval Estimation

For �nding the interval estimation of (�; �), we consider the Fisher information
matrix I = [Iij ]; i; j = 1; 2 where the elements of I are given by

I11 = �E(@
2 ln f(x)
@�2 ) = 2

�2 �
2
1
2 ( 1

�2
)
�1
� �(1+ 1

� )

�4

I22 = �E(@
2 ln f(x)
@�2

) = �4� 1
�2

I12 = �E(@
2 ln f(x)
@�@� ) = 4 ln x

�
Applying the large-sample theory of maximum likelihood estimators gives

p
n
�^���
^
���

�
d�! N2(0; I

�1);

where d�! denotes convergence in distribution and I�1 is the inverse of the
matrix I. The asymototic variances and covariances of � and � are given by

var(
^
�) = I22

nM var(
^
�) = I11

nM cov(
^
�) = �I12

nM
where M= I11I22 � I212 is the determinant of matrix I: The corresponding

asymptotic 100(1 � �)% con�dence interval of
^
� and

^
�, respectively, are given

by

^
�� Z�

2

q
var(

^
�);

^
� � Z�

2

q
var(

^
�);

whereZ�
2
is the upper �

2 quantile of the standard normal distribution.

4 Order Statistic and Extreme Values

4.1 Distribution of Order Statistic

The distribution of order statistic is used to known sometimes about how the or-
der of the data behaved. For a sample of independent observation x1; x2; :::::; xn
from the Power Rayleigh distribution , the ordered sample values x(1:n) � x(2:n)
� :::::::: � x(n:n) are called the order statistic. Let Y = Xj:n then the probability
density function is given by
fy(y) =

n!
(j�1)!(n�j)! � F

j�1(y)� f1� F (y)gn�j � f(y)
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= (e
� y2�

2�2 )n�j+1�(1�e�
y2�

2�2 )j�1y2��n
�2(j�1)!(n�j)! ; y > 0

the cumulative distribution function of the order statistic is given by

Fy(y) =
nX

m=j

�
n
m

�
� Fm(y)� f1� F (y)gn�m

= (e
� y2�

2�2 )n�j�(1�e�
y2�

2�2 )j�n�2F1[1;j�n;1+j;1�e�
y2�

2�2 ]
j!(n�j)! ; y > 0

where 2F1 is the hypergeometric function (see [16 ]).

4.2 Limiting Distribution of Extreme Values

LetMn = X(n:n) = max[X1; X2::::::::::; Xn];mn = X(1:n) = min[X1; X2; ::::::::; Xn]
from the Power Rayleigh distribution. The limiting distributions ofMn and mn

can be introduced in the following theorem.

Theorem 5 Let Mn and mnbe the maximum and the minimum of a random
sample from the Power Rayleigh distribution, then

(i) lim
n!1

P (Mn�an
bn

� x) = exp(�e�x); �1 < x <1
(ii) lim

n!1
P (mn�cn

dn
� x) = 1� exp(�x2�); x > 0

where

an = F
�1(1� 1

n ); bn =
1

nf(an)
; cn = 0; dn =

1
F�1(n)

Proof. For the PR distribution we have
(i) lim

x!1
d
dxf

1
h(x)g =

�2

� lim
x!1

d
dxfx

1�2�g = �2

� lim
x!1

(1� 2�)x�2�

= �2

� (
1�2�
1 ) = 0

Therefore, by Theorm 8.3.3 of Arnold et al. [17], the maximal domain of
attraction of the PR distribution is the standard Gumbel distribution providing
part (i).
(ii) Using L�Hospital rule , we have

lim
"!o

F (F�1(0)+"x)
F (F�1(0)+") =lim"!0

F ("x)
F (") =lim"!0

x2�e
� (�x)2�

2�2

e
� x2�

2�2

= x2�

Therefore by Theorem 8.3.6 of Arnold et al. [17], the minimal domain of
attraction of the PR distribution is the standard Weibull distribution providing
part (ii).

5 Simulation Study

The equation F (x)�u = 0, where u is an observation of the uniform distribution
(0; 1) and F (X) is the cumulative distribution function of the PR distribution,
is used to implement the simulation study by creating random samples follow
PR distribution. The simulation expriment was repeated 1000 times each with
sample sizes: 30, 50, 70, 90 for (�; �) = (0:5; 5) and (0:7; 10): The following
measurs are calculated:
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(i) Average bias of
^
� and

^
� of the parameters � and � are respectively:

1
N

NX
i=1

(
^
�� �) and 1

N

NX
i=1

(
^
� � �)

(ii) The Mean square error (MSE) of
^
� and

^
� of the parameters � and � are

respectively:

1
N

NX
i=1

(
^
�� �)2 and 1

N

NX
i=1

(
^
� � �)2

Table1 shows the average bias and the MSE of the estimates. The values
of the bias are small, possitive and the values of the MSEs decreases while the
sample size increases.

Table1 : Bias and MSE for parameters �; �:
� � n Bias(�) MSE(�) Bias(�) MSE(�)
1 0.5 30 0.03288 0.02128 0.03052 0.00787

50 0.01486 0.01006 0.01459 0.00354
70 0.00901 0.00720 0.01025 0.00242
90 0.00432 0.00532 0.00452 0.00169

0:7 10 30 0.00490 0.00551 0.61042 3.14893
50 0.00186 0.00297 0.29198 1.41796
70 0.00028 0.00214 0.20501 0.96660
90 0.00011 0.00165 0.09048 0.67990

6 Application

This section is devoted to illustrate the proposed distribution, PR distribution,
by �tting it to real set data. A 34 storm events was observed from a watersheds
. The data set as reported in Kang et al. (2013) [18] describes the water
runo¤ (mm) of a study storms, which represents to one of the hydrological
characteristics observed from a mall watershed in Korea (west of city of Suwon),
the observations being available since 1996. The data are as follows: 0.9, 0.6,
16.8, 59.3, 2, 78.2, 30.7, 146.8, 1.8, 3.4, 1.1, 0.8, 2.5, 6.1, 17, 5.1, 216.2, 8.1, 1.6,
2, 2, 0.8, 0.8, 2.9, 7.3, 13.3, 181.7, 20.5, 24.1, 33.5, 89.1, 7.2, 6, 75.9.
A number of probability distribution models viz., Gumbel, Pareto, Gener-

alized Extreme Value (GEV) and Generalized Logistic (GL) distribution are in
use in the hydrological data analysis. Hydrological studies are useful in design-
ing, planning, and managing water resources. The selection of the most suitable
probability distribution and associated parameter estimation procedure are the
fundamental step in hydrology analysis.
The PR distribution was �tted to runo¤ data using MLE, Kolmogorov�

Smirnov test statistics and compared via goodness of �t criteria among the
following well-known distributions which �tted to these data,
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� Gumbel distribution with density function

f(x) = e�e
� x��

� � x��
�

� ;�1 < x <1;�1 < � <1; � > 0;

� Pareto distribution with density function

f(x) = ���

(x+�)�+1 ; x > 0; �; � m 0;

� Generalized Pareto (GP) distribution with density function

f(x) =

8<: (1+k( x��� ))�
1
k
�1

� ;

e
�( x��� )

� ;

k 6= 0
k = 0

for x � � when k � 0; and � � x � � � �
k when k < 0; where

�1 < �; k <1; � > 0;

� Generalized Extreme Value distribution (GEV) with density function

f(x) =

8>><>>:
(1+k( x��� ))�

1
k
�1e

�(1+k( x��� ))
�1
k

� ;

e
�

0@ x��
�

�e
�( x��� )

1A
� ;

k 6= 0; 1 + k
�
x��
�

�
> 0, � > 0

k = 0; -1 < x <1, � > 0

� Generalized Logistic distribution (GL) with density function

f(x) =

8>>>><>>>>:
(1+k( x��� ))�

1
k
�1

�

�
(1+(1+k( x��� ))

�1
k

�2 ;
e
�( x��� )

�

�
1+e

�( x��� )
�2 ;

k 6= 0; 1 + k
�
x��
�

�
> 0, � > 0

k = 0; -1 < x <1, � > 0

Table 2: The Measures AIC, BIC, AICC, HQIC and CAIC for the runo¤ data.

Distributions -log L AIC BIC AICC HQIC CAIC
Gumbel (�; �) 169:564 343:127 346:18 343:514 344:168 343:514
Pareto (�; �) 145:389 294:778 297:831 295:165 295:819 295:165
GP (�; �; k) 148:974 303:948 308:527 304:748 305:51 304:748
GEV (�; �; k) 150:814 307:628 312:207 308:428 309:189 308:428
GL (�; �; k) 151:498 308:996 313:575 309:796 310:557 309:796
PR (�; �) 140:349 284:698 287:75 285:085 285:739 285:085

Table 3: Estimates of the parameters for runo¤ data

Distributions Estimates
Gumbel (�; �) 12:194 25:186
Pareto (�; �) 0:3862 0:6
GP (�; �; k) �3:1511 16:411 0:52449
GEV (�; �; k) 6:4599 12:399 0:59636
GL (�; �; k) 11:726 11:298 0:61583
PR (�; �) 1:6997 0:2957
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Table 4: K-S goodness of �t test and P-Value for runo¤ data

Distributions K-S P-Value
Gumbel (�; �) 0:47722 0:0000003
Pareto (�; �) 0:15072 0:38418
GP (�; �; k) 0:19416 0:13453
GEV (�; �; k) 0:17514 0:22048
GL (�; �; k) 0:18030 0:19381
PR (�; �) 0:13869 0:52756

We use the criteria AIC (Akaike information criterion), BIC (Bayesian in-
formation criterion ), AICC ( Corrected Akaike information criterion), CAIC
(consistent Akaike information criteria) and HQIC(Hannan-Quinn information
criterion) (see Chen 1995 [19] )to compare PR distribution with other models
. The model with minimum AIC, BIC, AICC, CAIC and HQIC value is chosen
as the best model to �t the data. From Table 2, we conclude that the power
Rayleigh distribution is the best comparable to the other models.
The maximum likelihood method is used for estimating the parameters of all

the compared distributions and the parameter estimates are given in Tables 3.
Further, Kolmogrov -Simrnov (K-S) goodness of �t test statistics used to test the
�tting model of data set. The K-S statistics are determined for each distribution
and listed in Table 4. It can be observed that the PR distribution has the
smallest statistics and the largest p -Value. Accordingly, we can conclude that
the PR distribution represents the best �t among the compared distributions
for the runo¤ data.

7 Conclusion

A new distribution with two parameters called the Power Rayleigh distribution is
proposed by power transformation .This model is more �ixeble than the Rayleigh
distribution in the area of reliability studies. In terms of the probability density,
hazard rate and mean residual life functions are studied. An application to real
data to show that the superiority of this new distribution by comparing it to
other distributions.
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