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Abstract

The paper is concerned with what is sometimes called “intrinsic oscillation”, namely originating in the structure of
the differential system itself, and as distinct to “extrinsic oscillation”, whereby the oscillation is “pumped” into the
system through an inhomogeneous term. This is an important distinction, because the two forms of oscillation are
very different. In this paper, we address the highly oscillatory second-order initial value problems of the first type by
extending the methods of the second. the asymptotic-numerical solvers for highly oscillatory second-order problems
are developed, the error bounds are analyzed, and the accuracy is presented by numerical experiments.

Keywords: high oscillation; second-order ordinary differential equation; asymptotic expansions; extrinsic
oscillation; modulated Fourier series.

1. Introduction

The asymptotic-solver for ordinary differential equations with highly oscillatory forcing terms was proved to be
very accurate and affordable [2, 3, 4, 5, 6, 7]. In this paper, the asymptotic-numerical solvers are developed for highly
oscillatory second-order initial value problem of the form{

ẍ(t)+ω2x(t) = g(t,x(t)), t ∈ [0,T ],
x(0) = x0, ẋ(0) = ẋ0,

(1.1)

where x(t) : R+ → Rd , ω ≫ 1 and g(t,x) : R+×Rd → Rd are sufficiently differentiable. This is a model of highly
oscillatory problems, which arise frequently in celestial mechanics, chemistry, biology, classical and quantum me-
chanics, and engineering. The integration of such systems has been a numerical challenge for a long time. The highly
oscillatory nature of the solutions impose a very small step size on standard numerical methods for ODEs, however,
this strategy is not always realistic, since as the step size decreases, the amount of computation will increase rapidly
and the round-off error may accumulate enormously to a disaster. A lot of work has been made in efficient inte-
grators for highly oscillatory problems. We are concerned with the special case of (1.1), where the components of
g(t,x) : R+×Rd → Rd are polynomials in components of x. And we make the important assumption that the bounds
of the functions g(t,x) are independent of ω .

The paper is organized as follows. In Section 2, we reformulate the system (1.1) into a first-order system with
extrinsic oscillation. In Section 3, we construct asymptotic-numerical solver for highly oscillatory linear system, and
in this section, we estimate global error of our proposed solver. In Section 4, we derive the asymptotic method and
discuss bound on the asymptotic-numerical solver for nonlinear system. In Section 5, numerical experiments are
carried out to show the performance of our proposed methods. A conclusion is included in Section 6.
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2. Transformation of the original problem

We first transform (1.1) into a first-order system with extrinsic oscillation.
Let ẋ(t) = ωy(t), and (

x(t)
y(t)

)
=UeiωBtu(t), (2.1)

then we have

u(t) = e−iωBtU∗
(

x(t)
y(t)

)
, (2.2)

with

U =
1√
2

(
1 i
i 1

)
⊗ Id , B =

(
Id 0
0 −Id

)
, (2.3)

Id is a d dimensional unit matrix, and U∗ is the conjugate transpose of U . After the change of variables, we get a
system of first-order ordinary differential equations

u̇(t) =
1√
2

e−iωBtω−1B−1
(

−ig(t,x(t))
−g(t,x(t))

)
=

ω−1
√

2

(
−ie−iωtg(t,x)

eiωtg(t,x)

)
,

(2.4)

with initial values u(0) = u0 =U∗
(

x0
ω−1ẋ0

)
.

Since g(t,x) are polynomials in components of x with sufficiently differentiable t-dependent coefficients, and
x(t) = 1√

2
(eiωt Id , ie−iωt Id)u(t), the functions g(t,x) can be expressed as

g(t,x) = ∑
k

eikωtak(t) fk(u), (2.5)

where ak(t) : R+ → R are sufficiently differentiable functions and fk(u) : R2d → Rd are polynomials in components
of u. Then we can arrange (2.4) into the following initial value problem for u in the form of

u̇(t) = ω−1 ∑
m

eimωtGm(t,u), u(0) =U∗
(

x0
ω−1ẋ0,

)
, (2.6)

where Gm(t,u) : R+ ×R2d → R2d ,m ∈ Z are independent of ω , and the components of them are polynomials in
components of u with sufficiently differentiable t-dependent coefficients and independent of ω .

Thus, the system (1.1) is reformed into the first order ordinary differential equations (2.6), which are forced
oscillations in the sense of Urabe[11]. The efficient and accurate solutions of systems of ordinary differential equations
subject to oscillatory forcing terms have received much attention in recent years [2, 3, 4, 5, 6, 7, 12], and an asymptotic
method has been derived in [4, 6] for systems of ODEs of the form y′(t) = h(y(t))+ gω(t) f (y(t)),y(0) = y0, where
gω(t) can be expressed as a modulated Fourier expansion, that is gω(t) = ∑∞

−∞ am(t)eimωt . This motivates us to derive
asymptotic method for highly oscillatory second-ordinary differential equations (2.6). Integrating (2.6) from 0 to t,
yields

u(t) = u(0)+ω−1
∫ t

0
∑
m

eimωsGm(s,u(s))ds

= u(0)+O(ω−1), ω → ∞.

(2.7)

This gives us the idea to suppose the solution u(t) of (2.6) admits an expansion in inverse powers of the oscillatory
parameter ω

u(t)∼ u0 +
∞

∑
s=1

ω−sψs(t), ω ≫ 1, (2.8)
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where the ψs(t)s may depend on ω , for s ∈ N. Moreover, the solution of the equation (1.1) can be expressed as
a modulated Fourier expansion x(t) = y(t)+∑k,0 eikωtzk(t), where y(t) and zk(t) together with their derivatives are
bounded independent of ω [1, 8, 9]. Given the structure of the ordinary differential equations (2.6), it seems reasonable
to assume that the solution of (2.6) can be written in the form of

u(t)∼ u0 +
∞

∑
s=1

ω−s
∞

∑
m=−∞

eimωt psm(t). (2.9)

In order to satisfy the initial conditions, we impose

∞

∑
m=−∞

psm(0) = 0, s ≥ 1. (2.10)

3. Construction of asymptotic-numerical solver for highly oscillatory linear system

In this section we consider the special case when the perturbation g(t,x) do not depend on x, that is g(t,x) = g(t),
the system (1.1) is linear,

ẍ(t)+ω2x(t) = g(t), x(0) = x0, ẋ(0) = ẋ0, (3.1)

then the transformed equation (2.4) takes the form

u̇(t) =
ω−1
√

2

(
−ie−iωtg(t)

eiωtg(t)

)
=

ω−1
√

2
e−iωt

(
−ig(t)

0

)
+

ω−1
√

2
eiωt

(
0

g(t)

)
, u(0) =U∗

(
x0
ω−1ẋ0,

)
.

(3.2)

As explained in Section 2, we assume that the solution u(t) of the above equation can be written in the form

u(t)∼ u(0)+
∞

∑
s=1

ω−s ∑
m

eimωt psm(t), (3.3)

and
∞

∑
m=−∞

psm(0) = 0, s ≥ 1, (3.4)

in order to match the initial conditions.
Differentiating (3.3) term by term gives, formally

u′(t)∼
∞

∑
s=1

ω−s ∑
m
[eimωt p′sm(t)+ imωeimωt psm(t)],

and inserting it into (3.2), then we can obtain

∞

∑
s=1

ω−s ∑
m
[eimωt p′sm(t)+ imωeimωt psm(t)] =

ω−1
√

2
e−iωt

(
−ig(t)

0

)
+

ω−1
√

2
eiωt

(
0

g(t)

)
. (3.5)

Comparing the coefficients of the same orders of inverse powers of ω , and then eimωt within each order of ω , we
can obtain the following formulas about the coefficients.

For ω0, we have:
∑
m

imeimωt p1m(t) = 0.

Separation of the values of m yields equations

p1m(t) = 0, m , 0. (3.6)
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For ω−1, we have

∑
m
[eimωt p′1m(t)+ imeimωt p2m(t)] =

1√
2

e−iωt
(

−ig(t)
0

)
+

1√
2

eiωt
(

0
g(t)

)
,

comparing the coefficients of eimωt , we can obtain

p2,−1(t) =
1√
2

(
g(t)

0

)
, p2,1(t) =

−i√
2

(
0

g(t)

)
, (3.7)

and
p′1m(t)+ imp2m(t) = 0, m ,−1,1.

Moreover, when m = 0, we have p′1,0(t) = 0, additionally with the initial condition p10(0) = −∑m,0 p1m(0) = 0,
which means p10(t)≡ 0, and

p2m(t) =
−i
m

p′1m(t)≡ 0, m ,−1,0,1. (3.8)

For ω−s, s ≥ 2, we have
p′sm(t)+ imps+1,m(t) = 0,

then we can get the following recursions:
(i) If m , 0:

ps+1,m(t) =
−i
m

p′sm(t); (3.9)

(ii) If m= 0: p′s0(t)= 0, with initial condition ps0(0)=−∑m,0 psm(0). Obviously, it leads to ps0(t)≡−∑m,0 psm(0).
This is the scheme that we could find for each value s ≥ 1, involving all the terms ps,m(t) up to any desired value

of s. In the following, we will analyze the number of terms that we need within each order of ω .

Theorem 3.1. Let θs = max{m ∈ Z : ps,|m| , 0}, we have

θ0 = θ1 = 0, θs = 1, s ≥ 2.

Proof. It can be checked obviously from the above analysis that θ0 = θ1 = 0.
Using (3.8), we can obtain θ2 = 1. For s > 2, we shall use formula (3.9)

ps+1,m(t) =
−i
m

p′sm(t),

because psm(t) = 0 =⇒ p′sm(t) = 0, hence θs = 1,s ≥ 2 hold.

Based on the above analysis, we present the approximations of u(t) up to Rth term:

uAR(t) = u0 +
R

∑
s=2

ω−s[e−iωt ps,−1(t)+ ps,0(t)+ eiωt ps,1(t)], R = 0,1, ...

specifically, uA0(t) = uA1(t) = u0. Then we get the an approximation for the solution of (3.1)

xAR(t) =
1√
2
(eiωt Id , ie−iωt Id)uAR(t), R = 0,1, ... (3.10)

Before presenting the global errors of the asymptotic-numerical solver for (3.1), we first derive bounds of these
coefficients ps,−1(t), ps,0(t), ps,1(t). Here, we mention that all norms in this paper are L∞ norm.

Lemma 3.1. Suppose g(t) and all derivatives of g(t) are bounded by C in [0,T ], then

||ps,−1(t)|| ≤
C√

2
, ||ps,1(t)|| ≤

C√
2
, ||ps,0(t)|| ≤

√
2C, s = 2,3, ...
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Proof. From (3.7),

p2,−1(t) =
1√
2

(
g(t)

0

)
, p2,1(t) =

−i√
2

(
0

g(t)

)
,

then
||p2,−1(t)|| ≤

C√
2
, ||p2,1(t)|| ≤

C√
2
.

For s ≥ 2, by (3.8), we can obtain

ps+1,−1(t) =
is−1
√

2

(
g(s−1)(t)

0

)
, ps+1,1(t) =

(−i)s−1
√

2

(
0

g(s−1)(t)

)
,

thus
||ps+1,−1(t)|| ≤

C√
2
, ||ps+1,1(t)|| ≤

C√
2
, s = 2,3, ...

For ps,0, observing ps0(t)≡−∑m,0 ps,m(0) =−ps,−1(0)− ps,1(0), we have

||ps0(t)|| ≤ ||ps,−1(0)||+ ||ps,1(0)|| ≤
√

2C, s = 2,3, ...

Theorem 3.2. Suppose g(t) and all derivatives of g(t) are bounded by C for t ∈ [0,T ], then the global errors of the
asymptotic-numerical solver up to Rth term for (3.1) are

||x(t)− xAR(t)|| ≤

{
4C ω−2

1−ω−1 , R = 0

4C ω−R−1

1−ω−1 , R = 1,2...

Proof. By Lemma 3.1, the global errors of the asymptotic-numerical solver up to Rth term for (3.2) satisfy

||u(t)−uAR(t)||= ||
∞

∑
s=R+1

ω−s[e−iωt ps,−1(t)+ ps,0(t)+ eiωt ps,1(t)]||

≤
∞

∑
s=R+1

ω−s(||ps,−1(t)||+ ||ps,0(t)||+ ||ps,1(t)||)

≤ 2
√

2C
ω−R−1

1−ω−1 , R = 1,2, ...

(3.11)

for R = 0,

||u(t)−uA0(t)||= ||u(t)−uA1(t)|| ≤ 2
√

2C
ω−2

1−ω−1 . (3.12)

Thus from (3.10), (3.11) and (3.12), we can obtain

||x(t)− xAR(t)||= || 1√
2
(eiωt Id , ie−iωt Id)(u(t)−uAR(t))||

≤ 4C
ω−R−1

1−ω−1 , R = 1,2, ...
(3.13)

and for R = 0,

||x(t)− xA0(t)||= ||x(t)− xA1(t)|| ≤ 4C
ω−2

1−ω−1 .

This theorem shows that the accuracy of the asymptotic-numerical solver for highly oscillatory second-order linear
system (3.1) improves as the frequency ω grows, moreover, when R is chosen as a larger natural number, the method
is expected to behave better.
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4. Construction of the asymptotic-numerical solvers for nonlinear system

In this section, we construct the asymptotic-numerical solver for the general nonlinear system (1.1). Suppose that
the system (1.1) has been transformed into the form of (2.6). And as explained in Section 2, we assume that the
solution u(t) admits an asymptotic expansion in inverse powers of the oscillatory parameter ω

u(t)∼ u0(t)+
∞

∑
s=1

ω−s
∞

∑
m=−∞

eimωt psm(t). (4.1)

Since Gm(t,u) : R+ ×R2d → R2d are sufficiently differential functions, we can expand them into Taylor series
around u(t) = u0(t), denote

G0
m(u0) = Gm(t,u0),

G1
m(u0,θ) =

∂Gm(t,u0)

∂u
θ ,

(G2
m(u0,θ ,θ))r =

2d

∑
i=1

2d

∑
j=1

θi
∂ 2Gm,r(t,u0)

∂ui∂u j
θ j, r = 1,2, · · ·2d,

...

(Gn
m(u0,θ , . . .θ))r =

2d

∑
i1=1

· · ·
2d

∑
in=1

∂ nGm,r(t,u0)

∂ui1 · · ·∂uin
θi1 · · ·θin , r = 1,2, · · ·2d,

...

(4.2)

Inserting (4.1), and grouping all those terms that multiply equal powers of ω , we can obtain

Gm(t,u)∼ Gm(u0)+
∞

∑
s=1

ω−s
s

∑
n=1

1
n! ∑

k∈In,s
Gn

m(u0,χk1 , · · · ,χkn),

where

χk(t) =
∞

∑
m=−∞

eimωt pk,m,

and
In,s = {(k1, · · · ,kn) ∈ Nn : |k|= s},

with the standard notation for multi-indices |k| = k1 + · · ·+ kn. Then collecting all those terms that have the same
frequency(that is, those terms that multiply eimωt ) within each level, we will have the following notation,

Gm(t,u)∼ Gm(u0)+
∞

∑
s=1

ω−s
s

∑
n=1

1
n!

∞

∑
r=−∞

eirωt ∑
k∈In,s

∑
l∈Kn,r

Gn
m(u0, pk1,l1 , · · · , pkn,ln), (4.3)

where
Kn,r = {(l1, · · · , ln) ∈ Zn : |l|= r}.

Differentiating the right side of (4.1) term by term and plugging (4.3) into (2.6), we can equate both sides of the
differential equation:

∞

∑
s=1

ω−s
∞

∑
m=−∞

[eimωt p′s,m(t)+ imωeimωt ps,m(t)]

=ω−1
∞

∑
m=−∞

eimωt [Gm(u0)+
∞

∑
s=1

ω−s
s

∑
n=1

1
n!

∞

∑
r=−∞

eirωt ∑
k∈In,s

∑
l∈Kn,r

Gn
m(u0, pk1,l1 , · · · , pkn,ln)].

(4.4)
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As the same analysis process in Section 3, we can obtain the following scheme.
For ω0, we have

∞

∑
m=−∞

imeimωt p1,m(t) = 0,

separation of the values of m yields
p1,m(t) = 0, m , 0. (4.5)

For ω−1, m ∈ Z, we have
imp2,m + p′1,m = Gm(p0,0),

Then the following formulas hold

p2,m =
−i
m

Gm(u0), m , 0, (4.6)

p′1,0(t) = G0(u0), (4.7)

with the initial condition p1,0(0) =−∑m,0 p1,m(0) = 0 because of (4.5).
For the general ω−s, s ≥ 2, and m ∈ Z, we obtain

p′s,m(t)+ imps+1,m(t) =
∞

∑
r=−∞

s−1

∑
n=1

1
n! ∑

k∈In,s−1

∑
l∈Kn,m−r

Gn
r (u0, pk1,l1 . · · · , pkn,ln),

Then we have on the one hand

p′s,0(t) =
∞

∑
r=−∞

s−1

∑
n=1

1
n! ∑

k∈In,s−1

∑
l∈Kn,−r

Gn
r (u0, pk1,l1 , · · · , pkn,ln), (4.8)

with initial conditionps,0(0) =−∑m,0 ps,m(0). And on the other hand, we get recursions

ps+1,m(t) =
−i
m

[−p′s,m(t)+
∞

∑
r=−∞

s−1

∑
n=1

1
n! ∑

k∈In,s−1

∑
l∈Kn,m−r

Gn
r (u0, pk1,l1 · · · , pkn,ln)], (4.9)

for m , 0. This is the general scheme that we are going to use to deduce the coefficients in the asymptotic expansion
(4.1) up to any desired value of s. From a computational perspective, the scheme only needs very simple computations,
solving nonoscillatory first-order ordinary differential equations. After the approximation of u(t) is obtained, the
asymptotic-numerical solver of x(t) is defined by

xAR(t) =
1√
2
(eiωt Id , ie−iωt Id)uAR(t)

=
1√
2
(eiωt Id , ie−iωt Id)[u0 +

R

∑
s=1

ω−s
∞

∑
m=−∞

eimωt psm(t)], R = 0,1, ...
(4.10)

The following lemma give us the answer how many terms ps,m we need to compute within each order of ω .

Lemma 4.1. Suppose there exists ρ ∈N, such that Gm(t,u)≡ 0, |m| ≥ ρ+1, and denote θs =max{m∈ Z : ps,|m| , 0}.
Then we have

θs =

{ s
2 ρ, i f s is even,
s−1

2 ρ, i f s is odd.

Proof. It can be seen obviously that θ0 = 0, θ1 = 0, and θ2 = ρ . For s ≥ 2, we use the formula (4.9),

ps+1,m(t) =
−i
m

[−p′s,m(t)+
∞

∑
r=−∞

s−1

∑
n=1

1
n! ∑

k∈In,s−1

∑
l∈Kn,m−r

Gn
r (u0, pk1,l1 · · · , pkn,ln)].
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We denote

bs,m[Gr](t) =
s

∑
n=1

1
n! ∑

k∈In,s
∑

l∈Kn,m

Gn
r (u0, pk1,l1 · · · , pkn,ln)],

then

ps+1,m(t) =
−i
m

[−p′s,m(t)+
∞

∑
r=−∞

bs−1,m−r],

we note that the differentiation above does not alter the bandwidth. Let’s make the assumption that s is odd(when s is
even, we can use a similar argument), when m = s+1

2 ρ , r = ρ , then

bs−1, s−1
2 ρ [Gr](t) =

s−1

∑
n=1

1
n! ∑

k∈In,s−1

∑
l∈Kn,m−r

Gn
r (u0, pk1,l1 · · · , pkn,ln)] , 0,

since G
s−1

2
ρ (p2,ρ , · · · p2,ρ) , 0.

If m > s+1
2 ρ, then m− r > s−1

2 ρ , p′s,m(t) = 0, and we have bs−1,m−r = 0 according to the analysis above. We can
prove the conclusion in the same way when m, and r are negative numbers. Therefore, this completes the proof.

In the following, we will show that the coefficients of (4.1) are all bounded under some conditions for 0 ≤ t ≤ T .
Then we analyze the global error bounds of the asymptotic-numerical solver for nonlinear system (1.1). For simplicity,
we take the case of d = 1 in (1.1) in the proof procedure.

Lemma 4.2. Under the assumption g(t,x) are polynomials in components of x, we suppose that there exists N ∈ N
such that ∂ ng(t,0)

∂xn ≡ 0, n ≥ N +1, then

θs =

{ s
2 (N +1), i f s is even,
s−1

2 (N +1), i f s is odd.

Proof. Expanding g(t,x) into Taylor series around x = 0, we have

g(t,x) =
N

∑
n=0

1
n!

∂ ng(t,0)
∂xn xn

=
N

∑
n=0

1
n!

∂ ng(t,0)
∂xn 2−

n
2

n

∑
m=0

Cm
n imei(n−2m)ωtun−m

1 um
2

=
0

∑
k=−N

eikωt
N

∑
n=−k

1
n!

∂ ng(t,0)
∂xn 2−

n
2 C

n−k
2

n i
n−k

2 u
n+k

2
1 u

n−k
2

2

+
N

∑
k=0

eikωt
N

∑
n=k

1
n!

∂ ng(t,0)
∂xn 2−

n
2 C

n−k
2

n i
n−k

2 u
n+k

2
1 u

n−k
2

2 .

Let

Qnk(t,u) =
1
n!

∂ ng(t,0)
∂xn 2−

n
2 C

n−k
2

n i
n−k

2 u
n+k

2
1 u

n−k
2

2 , 0 ≤ n ≤ N,−N ≤ k ≤ N, (4.11)

then we have

g(t,x) =
0

∑
k=−N

eikωt
N

∑
n=−k

Qnk(t,u)+
N

∑
k=0

eikωt
N

∑
n=k

Qnk(t,u)

=
N

∑
k=−N

eikωtLk,

(4.12)

where

Lk(t,u) =
{

∑N
n=−k Qnk(t,u), −N ≤ k < 0,

∑N
n=k Qnk(t,u), 0 ≤ k ≤ N.
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Inserting (4.12) into (2.4), we obtain

u̇ = ω−1
N+1

∑
k=−N−1

eikωt
(

Ek(t,u)
Fk(t,u)

)

= ω−1
N+1

∑
k=−N−1

eikωtGk(t,u),

(4.13)

with Gk(t,u) =
(

Ek(t,u)
Fk(t,u)

)
, and

Ek(t,u) =

{
iLk+1(t,u)√

2
, −N −1 ≤ k < N −1,

0, N −1 ≤ k ≤ N +1.
Fk(t,u) =

{
0, −N −1 ≤ k <−N,
Lk−1(t,u)√

2
, −N +1 ≤ k ≤ N +1.

By Lemma (4.1), the conclusion is proved.

Lemma 4.3. Suppose that there exists N ∈ N such that ∂ ng(t,0)
∂xn ≡ 0, when n ≥ N + 1, and ∂ m+ng(t,0)

∂ tm∂xn are uniformly

bounded for m = 0,1,2..., n = 0,1,2...N. Then ||p(q)s,m(t)|| are bounded for any s ≥ 1, q ≥ 0, 0 ≤ t ≤ T .

Proof. Based on the assumptions, it follows from (4.11) that any order derivatives of Qnk(t,u), Ek(t,u) and Fk(t,u)
with respect to u or t are all uniformly bounded. Moreover, it means that any order derivatives of Gk(t,u) with respect
to u or t are uniformly bounded for any −N −1 ≤ k ≤ N +1. Then we prove the theorem by induction in s.

First we show that the result is true for s = 1. For m , 0, ||p(q)1,m(t)|| ≡ 0, for m = 0, it follows from (4.7) that

||p(q)1,0(t)|| satisfy the result.

Then we consider the case of s = 2. It is easy to check that ||p(q)2,m(t)|| are bounded for m , 0. For m = 0, form
(4.8), we have

p′2,0(t) = G1
0(u0, p1,0),

and obviously the result is true for ||p(q)2,0(t)||.
Next, we suppose that the result holds for ||p(q)l,m(t)|| with any 1 ≤ l ≤ s− 1,q ≥ 0, m ∈ Z and we prove it for

||p(q)s,m(t)||. Taking into account of the assumptions, it follows from (4.8) and (4.9) immediately that ||p(q)s,m(t)|| are
bounded for any q ≥ 0. The proof is completed.

Under the assumptions in Lemma 4.3, we estimate the error x(t)− xAR(t).

Theorem 4.1. Suppose that there exists N ∈ N such that ∂ ng(t,0)
∂xn ≡ 0, when n ≥ N + 1, and ∂ m+ng(t,0)

∂ tm∂xn are uniformly
bounded for m = 0,1,2..., n = 0,1,2...N. Then the global error bounds of the asymptotic-numerical solver up to Rth
term for nonlinear system (1.1) is

||x(t)− xAR(t)||= O(ω−R−1),

where R ≥ 0.

Proof. By construction, the functions psm(t) of uAR(t) satisfy the equation (4.4) up to a defect O(ω−R−1) by the
conclusion of Lemma 4.3. This gives a defect of size O(ω−R−1) when uAR(t) is inserted into (2.6), we denote the
defect ε , i.e.,

u̇AR(t) = ω−1 ∑
m

eimωtGm(t,uAR)+ ε, (4.14)

where ε = O(ω−R−1). We make (4.14)-(2.6), and use mean value theorem, we have

u̇AR(t)− u̇(t) = ω−1 ∑
m

eimωt [Gm(t,uAR)−Gm(t,u)]+ ε

= ω−1 ∑
m

eimωtG1
m(uAR +θ(uAR −u))[uAR(t)−u(t)]+ ε,

9



where 0 < θ < 1. Let Z(t) = uAR(t)−u(t), then

Z′(t) = ω−1 ∑
m

eimωtG1
m(uAR +θ(uAR −u),Z(t))+ ε. (4.15)

Integrating (4.15), we have

Z(t) = Z(0)+
∫ t

0
[ω−1 ∑

m
eimωsG1

m(uAR +θ(uAR −u),Z(s))+ ε]ds

=
∫ t

0
[ω−1 ∑

m
eimωsG1

m(uAR +θ(uAR −u),Z(s))ds+ εt,
(4.16)

because Z(0) = uAR(0)− u(0) = 0. Under the assumption in Lemma 4.3, which means |m| ≤ N + 1 and any order
derivatives of Gk(t,u) with respect to u or t are uniformly bounded, we have

||Z(t)|| ≤ ω−1M
∫ t

0
||Z(s)||ds+ ||ε||t, (4.17)

where M is a constant independent of ω. Then using Gronwall inequality,

||Z(t)|| ≤ ||ε ||t + ||ε||ω−1M
∫ t

0
s · eω−1M(t−s)ds

Hence on a finite time interval [0,T ], ||Z(t)||= ||uAR(t)−u(t)||=O(ω−R−1). It means ||x(t)−xAR(t)||=O(ω−R−1).

The theorem above shows that the accuracy of the asymptotic-numerical solver for highly oscillatory second-order
nonlinear system (1.1) improves as the frequency ω and R grows, as illustrated in the numerical experiments.

5. Numerical experiments

In this section, we present three examples that illustrate the construction and properties of the expansion that we
have presented in previous sections. We denote the approximation for u(t) in (2.6) using up to the Rth term by uAR,
the corresponding approximation for x(t) of the original problems (1.1) by xAR, and the asymptotic-numerical solver
defined by (3.10) or (4.10) using up to the Rth term by AsR. Experiments in this section illustrate the effectiveness of
the methods. In all cases, we will compare the approximation given by the first few terms of the asymptotic-numerical
solver with the exact solution. We use the notation eR = ||x(t)− xAR||,R ≥ 0, for the global errors.

Example 1. Consider the highly oscillatory linear system{
ẍ(t)+ω2x(t) =−cos(t), t > 0,
x(0) = 1, x′(0) = 0.

(5.1)

The exact solution is

x(t) = cos(ωt)+
cos(t)− cos(ωt)

1−ω2 .

The system is transformed into a first ordinary differential equation of u(t):

u̇(t) =
ω−1
√

2
e−iωt

(
i cos(t)

0

)
+

ω−1
√

2
eiωt

(
0

−cos(t)

)
, u(0) =

1√
2

(
1
i

)
. (5.2)

According to the analysis in Section 3, after brief computation, we have

p1m(t) = 0,m ∈ Z, (5.3)
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Figure 1: The first component of the solution u(t) of the equation (5.2) with ω = 100.

and

p2,−1(t) =

(
−cos(t)√

2
0

)
, p2,1(t) =

(
0

icos(t)√
2

)
, p2,0(t) =−[p2,−1(0)+ p2,1(0)] =

( 1√
2

−i√
2

)
. (5.4)

We can see from (5.3) and (5.4) that, the first component of the solution u(t) of the equation (5.2) is superimposed
with tiny oscillatory oscillation of amplitude O(ω−2), this is consistent with what can be seen in Figure1. Obviously,
asymptotic solvers As0, As1 are the same because of p1m(t) = 0,m ∈ Z. We apply the asymptotic-numerical solvers
As0 and As2, respectively to the problem (5.1) in the interval [0,100] and the global errors are shown in Figure 2 for
ω = 102,103,104.

Example 2. Consider the nonlinear Duffing equation{
ẍ(t)+ω2x(t) = 2k2x(t)3 − k2x(t), t > 0,
x(0) = 0, x′(0) = ω.

(5.5)

The analytic solution of this initial problem is given by x(t) = sn(ωt;k/ω), which represents a periodic motion in
term of the Jacobian elliptic function sn.

The system is transformed into

u′(t) = ω−1[e4iωtG4(u)+ e2iωtG2(u)+G0(u)+ e−2iωtG−2(u)+ e−4iωtG−4(u)], (5.6)

with

G4(u) =
k2

2

(
0
u3

1

)
,G2(u) =

k2

2

(
−iu3

1
3iu2

1u2 −u1

)
,G0(u) =

k2

2

(
3u2

1u2 + iu1
−3iu1u2

2 − iu2

)
,
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Figure 2: Logarithmic errors of the methods As0, As2 for the equation (5.1) with different ω .

and

G−2(u) =
k2

2

(
3iu1u2

2 −u2
−iu3

2

)
,G−4(u) =

k2

2

(
−u3

2 + iu1
0

)
.

Then the first few terms of asymptotic-numerical solver for (5.6) are as follows:

p00(t) =
1√
2

(
−i
1

)
, p10(t) =

k2t
4
√

2

(
−1
i

)
, p1m = 0,m , 0,

p2,m(t) =
−i
m

Gm(p0,0), m =−4,−2,2,4,

p20(t) =
k4t2

32
√

2

(
−i
1

)
− [p2,−4(0)+ p2,−2(0)+ p2,2(0)+ p2,4(0)].

We apply the asymptotic-numerical solvers As0, As1 and As2, respectively to problem (5.5) in the interval [0,100].
The global errors are shown in Figures 3, 4 and 5 for ω = 100,1000 and k = 0.01.

From the numerical results of the experiments, it can be observed that a larger values of ω will yield a more
accurate expansion with the same number of terms, and the accuracy improves as the number of terms increases.
Furthermore, the cost of the asymptotic-numerical solvers is essentially independent of ω .

6. Conclusions

We derive asymptotic-numerical solvers for highly oscillatory second-order differential equations (1.1). We first
transform the original problems into first-order differential equations with oscillatory forcing terms. And then derive
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Figure 3: Global errors of the method As0 for the equation (5.5) with ω = 102,103.
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Figure 4: Global errors of the method As1 for the equation (5.5) with ω = 102,103.

the asymptotic-numerical scheme for the system based on asymptotic expansions in inverse powers of the oscillatory
parameter ω , featuring modulated Fourier series in the expansion coefficients. Our proposed methods benefit the
advantages that

• firstly, the coefficients ps,m(t) are easily obtained without solving highly oscillatory equations and highly oscil-
latory integrals.

• secondly, the computational cost of the methods is independent of the size of ω , and the accuracy improves as
ω grows.

• thirdly, once the coefficients have been computed, the equation can be solved easily for different frequencies ω .

The results of the numerical experiments show the outstanding performance of our methods.
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