REFERENCES
Akihama, K., Takatori, Y. & Nakakita, K. (2002). Effect of Hydrocarbon
Molecular Structure on diesel Exhaust Emissions, A Research Report, R&D
Review of Toyota CSDL, 37: 3.
Arzamendi, G., Campo, I., Arguinarena, E., Sanchez, M., Montes, M., &
Gandia, L. M. (2007). Synthesis of biodiesel with heterogeneous
NaOH/alumina catalysts: comparison with homogeneous NaOH. Chemical
Engineering Journal, 134: 123–130
Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality
biodiesel and its diesel engine application: A review. Renewable
and Sustainable Energy Reviews, 14: 1999-2008.
Banani, R., Youssef, S., Bezzarga, M., & Abderrabba, M. (2015). Waste
Frying Oil with High Levels of Free Fatty Acids as one of the prominent
sources of Biodiesel Production. Journal of Materials and
Environmental Science, 6(4): 1178-85.
Canakci, M., & Van Gerpen, J.
(1999). Biodiesel production via acid catalysis. Transactions of
the ASAE, 42(5): 1203–10
Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C.
(2007). Biodiesel production by esterification of palm fatty acid
distillate. Biomass and Bioenergy, 31(8) 563-568.
Della, V P., Kühn, I., & Hotza, D. (2002). Rice husk ash as an
alternate source for active silica production. Materials Letters,
57 (4): 818-821.
Fadhil, A. B., Dheyab, M. M., Ahmed, K. M., & Yahya, M. H. (2012)
Biodiesel production from spent fish frying oil through acid-base
catalyzed transesterification. Pakistan Journal of Analytical &
Environmental Chemistry, 13: 9-15
Fu, Z., Wan, H., Cui, Q., Xie, J., Tang, Y., & Guan, G. (2011).
Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid
acid. Reaction Kinetics, Mechanisms, and Catalysis, 104(2):
313-21.
Fu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and
catalytic performance of a carbon-based solid acid catalyst with high
specific surface area. Reaction Kinetics, Mechanisms, and
Catalysis,. 107(1): 203-13.
Huang, D., Zhou H., & Lin, L. (2012). Biodiesel: An Alternative to
Conventional Fuel. Energy Procedia . 16: 1874 – 1885
Gole, V. L. & Gogate, P. R. (2012). A review on intensification of
synthesis of biodiesel from sustainable feed stock using sonochemical
reactors. Chemical Engineering and Processing, 53: 1-9
Jacobson, K., Gopinath, R., Meher, L. C., & Dalai, A. K. (2008). Solid
acid catalyzed biodiesel production from waste cooking oil.Applied Catalysis B: Environmental, 85: 86-91.
Janaun, J. & Ellis, N. (2011). Role of silica template in the
preparation of sulfonated mesoporous carbon catalysts. Applied
Catalysis A: General , 394(1): 25-31.
Kumar, S., Sangwan, P., Dhankhar, R. M. V., & Bidra, S. (2013).
Utilization of Rice Husk and Their Ash: A Review. Research Journal
of Chemical and Environmental Sciences, 1(5): 126-29.
Lang, X., Dalai, A., Bakhshi, N., Reaney, M., & Hertz, P. (2001).
Preparation and characterization of biodiesels from various bio-oils.Bioresource Technology, 80: 53-62.
Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel
production using catalyzed transesterification. Applied Energy,87(4): 1083-95.
Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review,Bioresource Technology, 70; 1-15.
Mabena, L. F., Ray, S. S., Mhlanga, S. D., & Coville, N. J .(2011).
Nitrogen-doped carbon nanotubes as a metal catalyst support.Applied Nanoscience , 1(2): 67-77.
Mbaraka, I. K., & Shanks, B. H. (2006). Conversion of oils and fats
using advanced mesoporous heterogeneous catalysts, Journal of the
American Oil Chemists’ Society, 83(2): 79-91.
Meher, L. C., Dharmagadda, V. S., & Naik, S. N. (2006). Optimization of
alkali catalyzed transesterification of Pongamia pinnata oil for
production of biodiesel. Bioresource Technology, 97(12):
1392-1397.
Moser, B. R. (2009). Biodiesel production, properties, and feedstocks.In Vitro Cellular & Developmental Biology - Plant, 45: 229-266.
Ngaini, Z., Shahrom, F. D., Jamil, N., Wahi, R., & Ahmad, Z. A. (2016).Imperata cylindrica sp as Novel Silica-Based Heterogeneous
catalysts for Transesterification of Palm Oil mill Sludge. Journal
of Oleo Science, 65(6); 507-15
Perrichon, V., & Durupty, M. C. (1988). Thermal Stability of Alkali
Metals Deposited on Oxide Supports and their Influence on the Surface
Area of the Support. Applied Catalysis, 42: 217-27.
Refaat, A. A. (2011). Biodiesel production using solid metal oxide
catalysts, nternational Journal of Environmental Science and
Technology, 8(1): 203-21.
Romero, R., Martinez, S. L., & Natividad, R. (2011). in: M. Manzanera
(Ed.) Biodiesel production by using heterogeneous catalysts, Alternative
fuel 23 ISBN: 978-953-307-372-9, InTech.
Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D., & Wang, J .(2009).
Synthesis of biodiesel from cottonseed oil and methanol using a
carbon-based solid acid catalyst. Fuel Science and Technology,90. 1002-1008.
Sivaramakrishnan, K., & Ravikumar, P. (2012). Determination of cetane
number of biodiesel and its influence on physical properties. ARPN
Journal of Engineering and Applied Sciences, 7(2): 205-211.
Sugiarto, S., Sunarti, T. C., Suryani, A. A., Sutrisno, S., & Yuliasih,
I. (2015). Application of Palm Fatty Acid Distillate as Compatibilizer
On Thermoplasticized Cassava flour-LLDPE Composite Film.International Journal of Research in Engineering and Technology,3(1): 1-10.
Taufiq-Yap, Y. H., Abdullah, N. F., & Basri, M. (2011). Biodiesel
production via transesterification of palm oil using
NaOH/Al2O3 catalysts,Sains Malaysiana , 40: 587-594.
Yong-Ming, D., Kung-Tung, C., Yu-Jie, W., & Chiing-Chang, C. (2014).
Application of peanut husk ash as a low-cost solid catalyst for
biodiesel production. International Journal of Chemical
Engineering and Applications, 5(3): 276-80.
Zabeti, M., Wan Daud, W. M. A., & Aroua, M. K. (2009) Activity of solid
catalysts for biodiesel production: a review, Fuel Processing
Technology, 90(6): 770-77.
Zahan, K. A., & Kano, M. (2018). Biodiesel Production from Palm Oil,
Its By-Products, and Mill Effluent: A Review. Energies, 11, 2132
Zuo, D., Lane, J., Culy, D., Schultz, M., Pullar, A., & Waxman, M.
(2013). Sulfonic acid functionalized mesoporous SBA-15 catalysts for
biodiesel production. Applied Catalysis B: Environmenta, 129:
342-50.