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1 Introduction

In Mathematical Analysis of PDEs a major role plays so called LP-maximal regularity. A result
with a Functional Analysis approach for maximal LP-regularity has recently been achieved in
[8] using the R-boundedness of a family of integral operators (see also [23] for details). Results
of this form using a Functional Analytic approach were until recently only known in the Hilbert
space case for p = 2 (see [21,22], and [35]).

The main goal of this paper is to introduce weighted grand Lebesgue spaces of functions
valued in Banach spaces and to explore these spaces in view of the boundedness of vector-valued
integral operators, in particular, maximal functions, singular integrals and their commutators,
fractional-type integrals, etc. The function spaces under our consideration are defined, generally
speaking, on quasi-metric measure spaces with doubling measure.

It is known that the singular integrals are not extended to Banach-valued operators, if
the Banach space is arbitrary. Bukholder and Burgain showed that Hilbert transform extends
boundedly to LP(B), 1 < p < oo, if and only if the target Banach space B have the so cold
UMD property i. e. the following inequality

n
D cud
k=1

n
<c
Lr(B)

dy,
k=1

LP(B).
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holds, where (dy)7_, is a martingale difference sequence in L?(B) and ¢ = 1. The works of
aforementioned authors on the UMD property had extremely important impact on Harmonic
Analysis for Banach-space valued functions.

The above-mentioned statement makes for a convenient definition for UMD: A Banach space
B has the UMD property if and only if the Hilbert transform extends to a bounded operator
on LP(B), 1 < p < 0.

Nowadays the concept of UMD has become the central notion in vector-valued Harmonic
Analysis. There were established that a series of results from the classical and modern Littlewood-
Paley and Calderén-Zygmund theories remain valid in the context of B-valued functions if and
only if the Banach spaces have UMD properties. The theory of Banach-valued function spaces
and integral operators in the context of UMD property was intensively studied in [1], [2], [3],
(4], [5], [10], [11], [32], [33], [34], [36].

For scalar functions grand Lebesgue spaces L?) were introduced by T. Iwaniec and C. Sbor-
done in 1992 [12]. The theory of Iwaniec-Sbordone space is nowadays one of intensively devel-
oping directions in modern analysis. The necessity of introducing and studying these spaces
grew because of their rather essential role in various fields. It turned out that in the theory of
PDEs the grand Lebesgue spaces are appropriate to the solution of existence and uniqueness,
and, also, the regularity problem for various nonlinear differential equation. The boundedness
problems for fundamental integral operators of Harmonic Analysis were intensively studied in
[13], [14], [15], [16], [17], [18], [20], [24], [25], [26], [27], [28], [29], [30] (see also the monograph
[31], Chapter 14 and references therein). In this paper the analogous problem is treated in
Banach-valued weighted grand Lebesgue spaces.

2 Preliminaries

Let (X,d, u) be a a quasi-metric measure space, i.e., X is an abstract set and d is a function
d: X x X +— [0,00) satisfying the conditions:

i) d(z,y) = 0 if and only if z = y;

1) d(x,y) = d(y, z) for all z,y € X

i4i) there exist a constant 1 > 1 such that for all x,y, 2z € X,

d(z,y) < nld(x, 2) + d(2,y)];

A Dball with center z and radius r in (X, d, i) is denoted by B(z,r). It is also assumed that
all balls are measurable with positive finite © measure.

We say that p is doubling measure if it satisfies the following condition: there is a positive
constant A such that for all x € X and r > 0,

w(B(z,2r)) < Au(B(z,r)). (1)

Given a Banach space B with a norm ||-|| and an almost everywhere positive locally integrable
function (weight) w : X — R, we denote by L2 (X, B), 1 < p < oo, the Bochner-Lebesgue
space consisting of all B-valued strongly measurable functions f defined on X such that

1/p
llezoes = | [ 1@t | <.

By light abuse of notation in future sometimes LP (X, B) will be denoted by L2

w w

(B).

2.1 'Weighted grand Bochner-Lebesgue spaces

On the base of the space L, (B) we introduce the weighted grand Bochner spaces. Let &,,, where
1 < p < o0, be the collection of all nondecreasing, bounded functions ¢ : (0,p — 1] — R such
that ¢(0+) = 0.
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Let X be a bounded set (i.e. it is contained in some ball B) and let 1 < p < oo and ¢ € P,,.
By v #(X,B) (or simply v "¥(B)) we denote the set of all B-valued strongly measurable

functions for which the norm

gy = | S0 (PN W g

<p—1

is finite.
Together with the space Lﬁ,) #(X,B) we consider the weighted grand Bochner-Lebesgue

spaces in definition of which a weight function participates as a multiplier in norms.

D).p

It should be noted that even for the classical case the spaces Lﬁ,) # and L.}, are different,

while || f|lz» = || fw/P||L» (see [13] for the details).

By Eﬁ;) "#(X, B) is denoted the collection of all B-valued strongly measurable functions for
which the norm

1
g =, 52 (PN T fwlloccm)
is finite.

Both these spaces L&) (X, B) and ch) (X, B) are non-reflexive, non-separable Banach
function spaces.

Denote by @, the set of positive, measurable functions ¢ defined on (0, ), where 0 < o <
p— 1, which are non-decreasing, bounded with the condition lim,_, ¢(z) = 0. It is noteworthy
that all the results of this paper are true also in the case of unbounded sets if the norm of the
space is defined by the following way:

1
Hf”Lp),%a(X By — Sup (p(e))r—= ||fHLfU—E(X7B)'
w ’ 0<e<o

Analogously it is defined the space Eﬁ,)’w’g(B). Notice that in these definitions o appears as
an additional parameter defining the norm.

If p(z) = 2%, where 6 > 0, then we denote
L7)#(B) = LE)*(B); L0)#(B) = LL)’(B); LE)¥°(B)=L:)"°(B); LD)*¥°(B)=L})""(B),

w

For structural properties and Koéthe dual space for grand Bochner-Lebesgue spaces we refer
to [19].

In the sequel we will essentially need the following definition.

A weight function w is said to be a weight of Muckenhoupt class A,(X) (or simply A,) if
there exists a constant C' such that for all balls B C X,

=5 [eown | | 5 [o ) <c

B B

We will also need the following class of weights: let (X, d, 1) be a quasi—-metric measure space
with doubling measure. We say that u- a.e. positive function u belongs to the Muckenhoupt—
Wheeden class A, ,(X) (or simply A, ,) if there is a positive constant C such that

4
I

=5 [ | (o5 [urome | <c

B B

It is easy to check that u € A, 4(X) if and only if u? € Ay 4/ (X).
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2.2 Banach lattices

Definition 1. A real Banach lattice B is a real vector space with a partial ordering < such
that

(i) If c <y forx,y € B, then x +y <y + 2z for all z € B;

(ii) ax > 0 for all x € X with x > 0 and o € R with a > 0;

(iii) for all x,y € B, there exists supremum x V y and an infimum x Ay;

(iv) there is defined a norm ||| on B satisfying the condition if |z| < |y|, then ||z||p < ||ly|lB
for all x,y € X, where |x| is defined as follows: |x| =z V —x for all x € B.

If Banach lattice is considered on the space of measurable function LY({2, u) defined on a
measure space ({2, X, u), then f < g means f(w) < g(w) for u- almost every w € 2.

Definition 2. Let (£2, 1) be a measure space. Denote by L°(£2) the set of all measurable func-
tions on 2. A subspace B of L°(02) equipped with a complete norm || - || is called a Banach
function lattice over 2 if the following properties hold:

(i) there exists ¢ € B with ¢ >0 u— a.e.;

(ii) if 0 < fn * f with {fn}22, a sequence in B, f € L°(£2), and sup,cn fr < 00, then
f e B and| f||p=sup,en || fnllB (this property is called Fatou property);

(i) if | € I°(2), g € B, and || < |g,then f € B and | {5 < lgll5.

Definition 3. /23] Let B be a Banach lattice and let 1 < p,q < co.
(i) we say that B is p— convez if there exists a positive constant ¢ such that

1/p

2 1/p n
[ ) ], < e Stets) o

1/p
for all x1,---,x, € B, where under the symbol (22:1 |ij|p) we mean:
- 1/p - 11
(lek\p) = sup Y agwp, -+ =1
=1 lall,pr <1523 PP

(i) we say that B is q— concave if the inverse of (2) holds.

The absolute value function € B on 2 is defined by |h|(w) = |h(w)], w € 2. We identify a
function f € LP (X, B) defined on {2 with a function defined on the product X x 2 by setting
f(z)(w) = f(z,w). We denote by LP (X, B) ® B the set of all vector-valued functions f of the

k
type f = Y fja; for a; € B, f; € LY (X, B) and for some integer k > 1. This set is a dense
j=1

subspace of L (X, B) for 1 < p < oo and any weight w. Given an operator 7" in L%, (X, B), we
define its extension T to L? (X, B) ® E (see, e.g., [32]) by

Tf(z,w)=T(f(,w)(x), (r,w)€ X x N.
For further properties of Banach lattices and Bochner—Lebesgue integrals we refer, e.g., to
23], [10], [32).
2.3 Lattice Hardy-Littlewood maximal operator

Let B be a Banach lattice and let F be a finite collection of dyadic cubes in R™. We introduce
the lattice Hardy-Littlewood maximal function (see e.g., [23], [9]). For any f € L} .(R", B)
first we define dyadic lattice maximal function

Mz f(z) = sup(|f[)oxq(z), = €R",

in which the modulus and supremum are taken in the Banach lattice B.
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Definition 4. A Banach lattice B has the Hardy-Littlewood property (HL property), if there
is r € (1,00) such that for all finite collection of cubes F and all f € L"(R"™; B),

IMr £l sy < Crnllf s ®)

with a constant Cp . > 0.
If we need to mention that B has the HL property with estimate (3), then we say that B
has the HL,.

Remark 1. Tt is known (see, e.g., [23]) that if a Banach lattice B has HL property, then B is
g— convex for some ¢ € (1,00).

The extension of M. #f to infinite collections of cubes F may be not well-defined, as it is
a priori not clear whether this supremum exists. Moreover, Mxf might not be strongly u-
measurable. On those Banach lattices, where the supremum is well-defined, the dyadic lattice
Hardy-Littlewood maximal function for a dyadic system D is defined as

Mpf = sup(|f[)xq
Q€D
and the lattice Hardy—Littlewood maximal function as
Mf = sup (|f)xq;
QCRW,
where the supremum is taken over all cubes in R™ with sides parallel to the axis.

Now we introduce the following definition:

Definition 5. Let a Banach lattice B have H L, property. We say that B has HL, property if
the following holds for the constant Cg . in (3):

sup Cpr—en < 00 (4)
O0<e<o

for some constant o € (0,7 —1).

Example 1. Let B = L*(£2), s € (1,00). Then B has H L, property.
Indeed, by using the value of the bound of the norm of the Hardy—-Littlewood maximal
operator ||Mp||rsr») in Lebesgue spaces

||M’D||L3(Rn) S S/, S/ = s — 17

(see e.g., [23], Sec. 5.1) and Fubini’s theorem, we find that

1M1 (o 1) = NATEF ) ey
N 1/s
= ([ [ @zt ian)
2 R"
1/s
<o( [ [urwonasn) =11, o)

N Rn

Thus,

||Mff||Ls(Rn7Ls(m) < s'||f] Lo (R Lo (2)

which means that B = L*(2) has HL, property.
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Lemma 1. Let B be a Banach lattice with the HL, property, 1 < r < co. Then M]: has weak
(1,1) type with the bound for which the estimate

”A[F”LK>S(j(BaTﬂw
holds with a constant C(B,r,n) satisfying condition (4) for some positive constant o.

Proof. Suppose that B has HL, property. Then (3) holds together with condition (4). For the
same r we have (see [23], P.102)

IMEll1,00 < 27| M|} +1. (5)
Since B satisfies HL, property we are done.

The next statement is Buckley-type theorem (see [6] for the classical case) for lattice Hardy—
Littlewood maximal functions.

Proposition 1. Let B be a g— conver Banach lattice for some q > 1. Assume that B has the
HL, property for some r € (1,00) and that Mf is well-defined for any f € L}, .(R™; B). Then
there exists a positive constant Cp p q.rn such that for any p € (1,00), for all w € A, and
f e LE,(R", B),

mmdp o5

”MfHLp(R" B) <Cqu7“n[w}A ||fHLP(Rn B) (6)

where the constant Cp p q.rn Satisfies the condition

sup CBp—e,qrn < 00 (7)
O<e<o

for some small positive constant o.

Remark 2. If p = r in the previous theorem, then we denote Cp , g.rn by CB p.q,n, and conse-
quently, estimate (7) reads as follows:

sup CBp—c,qn < 00.
O<e<o

Remark 3. It was shown in [23] (see Theorem 5.6.4) that the exponent of [w],, is sharp in the
sense that we can not replace it with smaller one.

For the next statement we refer e.g., to [23]

Lemma 2. Let B be a Banach lattice. If B is qo— convez, 1 < qy < 00, then it is q— convez
for all 1 < g < qo < 00. Moreover, for the appropriate convexity constants we have

M@ (B) < M (90) (B).

Proof of Proposition 1 is given in [23] (p. 100) but we are interested in the value of the
constant Cg p, 4.rn in (6) which enables us to conclude that (7) holds.

Taking Lemma 2 into account, without of generality we can assume that p # ¢. Suppose also

that r # p. Let F be a finite collection of cubes. Taking (5) into account we have the estimate

IMF|l1,00 < 2| MFlg+1. (8)

In fact, this estimate enables us to conclude that Mz is of weak (1,1) type with a bound

||M 7|l1,00 independent of F. Further, the following pointwise inequality holds (see [23], pp.101-
103)

INEf ()l < 2MD(B)| M1 o5 (1115 (),
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where M(9(B) is the ¢— convexity constant of the Banach lattice B, the constant ||]/\\4/]:||17OO
does not depend on p and the operator A, s is defined as follows:

Asi= (% <|f|>zgm>1/q

QES
with sparse family of dyadic intervals S.
Since the estimate (see [23], p.98)
1
1.5l g oy < Calwl 42, 171l gy

holds with the constant
g+ 1\ (a+1)/q
) (9)

we conclude that by the sharp variant of Rubio de Francia’s weighted extrapolation theorem
(see Theorem 3.1 of [7]),

Cy =211(

Val max{——,L
||-Aq,5fHL§L(R") < Cpﬁq[w] 7= “}HfHLfU(R")»

where

6p,q = Cymax {2q+1_p(p/)q+1_p7 QP;E;IPP;EIl }a (10)

with C, defined by (9).
Summarizing these estimates we find that

M fllLe mr,5) < 2M ) (B)||Mx |25 (B)
1 1

< 2M D (B)||Mr|1,00Cp.q[w]™ 7T | | 12, )

1oo[[Ags

with C), , defined by (10). Thus, we have the desired result.

If 7 = p, then we have the same conclusion by the assumption that B has HL, property
and Lemma 1.

The statement has been proved.

3 Main results

In this section we formulate the main results of this paper.
Let G be a bounded domain in R™ and let B be a Banach lattice. For f € L'(G, B) we
define

QCR"

Mof(z) = sup <22| / f<y>|dy)xGmQ<x>,
GNQ

where as before, () denotes cube in R™ with sides parallel to the coordinate exes.

Theorem 1. Let G be a bounded domain in R". Assume that a Banach function lattice B has
the HL, property for some r € (1,00) and that Mqf is well-defined for any f € L} (G;B).

loc

Suppose that w is a weight function on R™. Then the operator MG is bounded in Lﬁ,)’w(G, B)
forallp € (1,00), p € &, and w € A,(R™).

The next statements are formulated for a quasi-metric measure space with doubling measure
(X,d, ).

Theorem 2. Let (X,d, ) be an SHT with bounded X. Then every linear operator K bounded

in L7 (B) for arbitrary r € (1,00) and w € A.(X), is also bounded in Lﬂ)’“"(X,B) for every
p € (1,00), ¢ € P, and w € A,(X).
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Theorem 3. Let (X,d,u) be an SHT with bounded X. Every linear operator K bounded in
LI (X, B) for arbitrary r € (1,00) and for any w” € A.(X), is also bounded in L',{)U)’SO(X, B)
for every p € (1,00), all p € Y, and wP € A,(X) .

The next statement treats with the off-diagonal case.

Theorem 4. Let (X,d,pn) be an SHT, where X is bounded, and let 1 < p < q¢ < co. We set

%—% = «. Let w be a weight function on X. Suppose that for the linear operator K the following
wnequality

[ K (fw®)] LI9(X,B) <C|fl L7 (X,B)
holds for all pg and qo satisfying the condition 1 < py < qo < oo and p%) - q%) = «, and all

w € Aiyq/(po) (X), where a positive constant C' does not depend on f. Then for every ¢ € &,
and v defined by

a(g—e)+1
) , O<e<qg—1

q—¢
P(e) 3:90( —m

and all w € Ay1qy (X) the inequality
||K(fwa)||qu)vw(XyB) < CHfHLﬁ))#’(X’B)
holds with a positive constant C independent of f.

The next statement concerns the case when a weight function appears as a multiplier in the
norm of grand Lebesgue space.

Theorem 5. Let (X,d,pn) be an SHT with bounded X, and let 1 < p < ¢ < oo. We set
1 % = «. Let u be a u— a.e. positive function on X. Suppose that for the linear operator K

P
the following inequality
[uK fllLao(x,5) < CllufllLeo(x,B)

holds for all py and qqg satisfying the condition 1 < py < qo < oo and p%) - qio = «, and all

u € Apy.q0(X), where a positive constant C does not depend on f. Then for every ¢ € &, and
¥ defined by
)a(q—6)+1

o) = o(p— T

- , O0<e<qg—1
1+a(g—e) !

and all u € Ay, 4(X) the inequality
||UKf||L‘1)v¢(X,B) < CHufHLP)W(X,B)
holds with a positive constant C' independent of f.

Corollary 1. Suppose that (X, d, u) be an SHT, where X is bounded. Let 1 < p < q < oo. We

set L — 1 = . Let w be a weight function on X. Suppose that for the linear operator K the

following inequality

[ K (fw®)] LI (X,B) <C|fl L9 (X,B)
1

holds for all pg and qo satisfying the condition 1 < py < gy < oo and p% W T and all

w € Ai4q/(po) (X), where a positive constant C' does not depend on f. Then the inequality

| K (fw™) ”L?,;)’qg/p(X’B) < CHf”Lﬁ,)’Q(X,B)

holds and all w € A4 4/ (X) with a positive constant C independent of f.
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Corollary 2. Suppose that (X,d, u) be an SHT with bounded X, and that 1 < p < g < co. We
set % — L — . Let u be a pu- almost everywhere positive function on X. Suppose that for the

linear operator K the following inequality

|uK £l Lo (x,5) < ClluflLro(x,B)

holds for all py and qo satisfying the condition 1 < pg < gg < o0 and p% - q% = «, and all

w € Apy 40 (X), where a positive constant C' does not depend on f. Then the inequality

K fll paraorv(x,8) < CllufllLemox,p)
holds and all w € A, 4(X) with a positive constant C' independent of f.

4 Proofs of the main results

We begin this section with the proof of Theorem 4.

4.1 Proof of Theorem 1

Let 1 < p < oo. Suppose also that B has HL, property for some r € (1,00). Taking Remark
1 into account we have that B is ¢— convex for some ¢ € (1,00). Thus, taking Remark 2 and
Lemma 2 into account, without loss of generality we can assume that ¢ # p and r # p. Let
w € Ap. Then by the openness property of the A, class, there is a positive constant ¢ such that
w € Ap_,. By the monotonicity property of A, classes we have that w € A,_. for 0 < e < 0.
Applying Proposition 1 we have the estimate

1 1
max{piii1 e

> }
”Mf”Lgff(B) < CB,p—E,q,r,n[w]Ap,E ||f||LﬁjE(B)v

with the constant Cp ,—. 4., satisfying (7). Consequently, by using the fact that [w]s > 1 (this
is a consequence of Lebesgue differentiation theorem ) and monotonicity property of Mucken-
houpt classes we find that

max{—1 L

-M =o=103)
90(5)1/@ )”MfHLf;E(B) < CB,p,U,q,n[w]Ap_(,p b Hf”Lﬁ))W(B)a 0<e<o.

Thus,

Lo
Ii= s (@) IM Sl ey < Ml g ()

Fix € € (o,p—1) so that 7;%‘; > 1. Using the Holder inequality with respect to the exponent

(p—o0)/(p—€) and observing that (%), = =2 we have
M fll e ) < IMfll o) - (wG) /2= @=L, (12)
Further, since 0 < p—1 and ¢ € (o,p — 1) we have
09 p-l-0 (p—1o 77 > 1.

(p—o)p—e) p—o

From the boundedness of M in LP~=7(B) and (12) we deduce (without loss of generality we
can assume that w(G) > 1)

1
I:= sup [p(e)]7—= MfHL;fE(B)
o<e<p—1

1 1 = 0 . _
< sup [p(e)]7E (o)) T [ M| oo gy lw(@)] 7 Pmo)leme)
o<e<p—1

1 __1 s o) (p—
<c sup [P TE[P(0)] 7Tl gy gy [w( G =)
o<le<p—1 w

< cp(p — V(o)) 77 1F 1 e gy (@) P22 (=),
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Finally summarizing the estimates of I; and I we conclude
”Mf”Lﬁ))*P(B) < CHf”Lg))W(B)

with a positive constant C independent of f.
Thus the theorem has been proved.

4.2 Proofs of Theorems 2 and 3

The vector space for all equivalence classes of strongly measurable functions from a o-finite
measure space ({2, A, u) into a Banach space B, identifying functions which are equal almost
everywhere is denoted by L°(§2, B). L°(§2, B) is a complete metric space.

Theorem A. [10]. Let By and By be complex Banach spaces, let 1 < po,p1;qo0,q1 < 00,
and let (£20, Ao, o) and (21, A1, 1) be measure spaces. Let T : LPo(£2y, Bo) + LP*(£29, By) —
LO($21, By) be a linear operator which maps LP°(£2y, By) into L% (§21, By) and LP* ({2, By) into
L ($21, By).

If

1T 1l 295 (21,80) < AjllfllLri 00,80y Y € L7 (820, Bo), (j=0,1)

then for all 0, 0 < 6 < 1 the operator T maps LP?(§2y, By) into L% ({21, B1) and, moreover,
IT fll oo (2. 5) < A5~ A0 fllLro (20,80 Vf € LP?(£20, Bo),

where
1 1-0 0 1 1-06 0

9

Do bo b1 q6 qo q1

Proof of Theorem 2. Let w € A,(X). Since the class A,(X) is open with respect to p, there
exists some o, such that 0 < 0 <p—1and w € A,_,(X). Applying interpolation Theorem A
we infer that

K f]

o) < fllp-< ) (13)

with a constant ¢ independent on ¢, 0 < ¢ < ¢. Consequently,

_1
= s (PP I g o) < el o
The estimate for
I := sup (p(e)7—=|[|Kf] Ly ¢
o<e<p—1

is similar to that of I5 from the proof of Theorem 1; therefore we omit the details.
Finally we have the desired result.

Proof of Theorem 3. By the condition of the Theorem w? € A,(X). Let us show that then
there exists such o, 0 < ¢ < p— 1 that wP~7 € A,_,(X). Since w? € A,(X) and A,(X) is
open with respect to p, there exists such o, 0 < o < p—1 that w? € A,_,(X). By the Jensen’s
inequality with the exponent pra we get for all balls B:

s T
1 1 ,
= p—0o . (p—o)(1—p—0)
5 / WP (2)dp(z) 5 / w (2)dp(z)
B B
p—o—1 1
1 1 , »
< il P — p(1—(p—0)) < C.
_[ 5 [w@an | (5 [ (@)du(a) <c
B B

Hence, wP=7 € A, ().
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Now consider the operator
f — wa

wa:wK(j;).

Note that the boundedness of K,, in L?(X, B) is equivalent to the boundedness of K in
L%, (X, B). On other hand, since w? € A,(u) and w?~7 € A,_,(X) we have that by the condi-
tion of the theorem, the operator K is bounded in L}, (X, B) and L 7 (X, B) simultaneously.

Therefore the operator K,, is bounded in LP(X, B) and LP~?(X, B). Taking interpolation The-
orem A into account we conclude that for arbitrary e € (0,0),

where

| KwfllLe—<(x,8) < cllfllr—<(x,B)
with some constant ¢ independent of f and . Hence,
1 a1
I = sup (p(e)) 7= |KufllLr-=x,8) < ¢ sup (p(e))7== | fllr-<(x,B) < cllfllwe(x,m)-
0<e<o 0<e<o

Further, repeated the arguments of the proof of Theorem 1, we find that

1
L= sup (€))7 [Kufllpp-e < cllflloex.)-
o<e<p—1

We proved that the operator K, in bounded in LP)""(X,B); bsut it is equivalent to the
boundedness of operator K in cr) ?(X, B). Indeed, let f = % Then we have

1

1K e =, s ()7 | [UKS@)ote) (o)
= sw ele) ™ | [ (L) P -aute)
X
<e s (@(@)7 | [ 0P

=c sup (p(e)7= /(Ilf(w)\lw(w))pfedu(w)

O<e<p—1

= CHfHLIZJ)v‘P(X’B)'

4.3 Proofs of Theorems 4 and 5.

of Theorem 4. First observe that ¢ € 4. Take o such that 0 < ¢ < ¢ — 1. Holder’s inequality
and the fact that w is integrable on X yield the following inequality

e—a

I (F) | e gy < K (F0™)| oo ) w(X) T2

for 0 < o <e < q— 1. Hence,

< C sup P(e)T=

K(fw®
H (f ) L?U)W(')(B) O<e<o

K(fw®) ; (15)

Ly °(B)

where a positive constant C' is independent of f.
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Let w € A4/, - Then by the openness property of Muckenhoupt classes, w € A1 (q/p)—s(X)

for some s > 0. Hence, there are positive constants o1 and o9 such that w € A1+ a-o1 (X)
(p—o2)’

b

and
1 1

p—02 qg—o01

=a. (16)
By the assumption the operator
K.f =K(fw®)

is bounded from L? (B) to L% (B) and from L2-72(B) to L% 7' (B).
By the Riesz-Thorin interpolation theorem (see Theorem A) we get that K, is bounded
from L2"(B) to L1 -¢(B) for n and ¢ satisfying

1 t 1—-t 1 t 1—-1¢
= -+ , = -+ , telo,1].
p—=n p P—02 q—¢€ q q—01
Moreover,
t 1—t
I, <|x. K. a7
Ly "(B)— L °(B) L3, (B)— L, (B) Ly 72(B)—L3 7' (B)

It is easy to see that

Hence,

Consequently,
1 o 1
sup ()T K (Fu ) my < sup 9(&) Tl 1y s
0<e<oy 0<e<o,

1
= Ssup 90(77)p7n|‘f||L$’”(B)
0<n<oz

Consequently, taking into account these estimates and (15) we find that

<C sup ¥(e)T
qu)’d’(B) 0<e<oi

HK(fw“)

K(fw®)

Li°(B)
1
=

1
<C sup P(E)T= | fllpp-—np =C sup @(n)?
0<n<o2 0<n<os2

< CHfHL{L)W(B)'

Flo=np)

Proof of Theorem 5 is similar to that of Theorem 4. We will check only the interpolation
argument. Suppose that v € A, ((X). Then u? € Ay44/,(X) and, hence, by the openness
property of Muckenhoupt classes, u? € A1 4/,—s(X) for some small positive constant s. Con-
sequently, we can choose small positive constants o7 and o5 such that that u? € A1+ a—o1 (X)

(p—o2)’
and condition (16) is satisfied.

Further, applying Holder’s inequality with respect to the exponent
wl™ €A a—oy (X). Thus, u € Ap—y g-0,(X).

(p—0o2)

9
q—0o1

we see that
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From the assumption of the theorem we have that, I?uf = uK(f/u) is bounded from
L?(X,B) to LY(X,B) and from LP~?2(X, B) to L7 71(X, B). By virtue of the Riesz-Thorin

interpolation Theorem A we find that K., is bounded from LP~7(X, B) to L?~(X, B) for 5 and
¢ satisfying the condition:

1 1

p—m gqg—¢

= Q.

Since the estimate similar to (17) holds for the norm of the operator K., arguing as in
the proof of Theorem 4 (see also the proofs of other theorems ) we conclude that we have the
desired result.

The theorem has been proved.

Corollaries 1 and 2 are a direct consequences of Theorems 4 and 5 respectively. Indeed,
keeping the notation of Theorem 4 observe that if ¢(x) = ¥, then +(x) ~ x%%/P for small
positive z.

5 Weighted norm inequalities for integral operators

Let B be a Banach lattice of real-valued measurable functions on a o-finite measure space
(£2,v). The following theorem was proved in [32].

Theorem B. Let T be the torus and B be a UMD lattice. Let T' be an operator bounded
Lt (T, B) for allw € A,(T), 1 <p < co. Then T is bounded in LP(T,B), 1 < p < 00.

Applying this theorem and known results [13], [15], [20] we deduce the boundedness in
LE)#(T, B) for w € A,(T) of the following operators (see [32]):

1) The conjugate function
[ t—0
flt)y == /f(e”’) ctg ——db
s 2

—T

i7) Carleson’s maximal partial sum operator of Fourier series

Y fk)e™

|k|<n

Sft) = sup |y f ()| = sup

n

ii1) The Cauchy singular integral operator

B f(s)ds
Cft) = W-P[ t—s+i(p(t) — @(s))

where ¢ is a Lipschitz function in R.
iv) Any convolution operator T'f(xz) = K * f(z) in R™ such that : |K(z)| < C|z|™™ and also

|K(z)dz| <C (0<e<R<o0)

e<|z|<R

|K(z —y) — K(x)|de < CR™®

|z[>R>|y]

for some fixed ¢ > 0.
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6 More on singular integrals

In this section we will follow some definitions from [36]. We are going to discuss Banach-valued
extensions of operators for functions defined on a homogeneous type space X and with values
in a UMD Banach lattice.

Let G be a locally compact Hausdorff topological group with unit element e, H a compact
subgroup of G, and 7 : G — G/H the canonical map. Let dg denote a left Haar measure on
G, which we assume to be normalized in the case of G compact. If A is a Borel subset of G, we
denote by |A| the Haar measure of A. The homogeneous space X = G/H is the set of all left
cosets m(g) = gH, g € G, provided with the quotient topology. The Haar measure dg induces a
measure p on the Borel o-filed on X. For f € L}(X),

[ t@dnt) = [ song)as.
X G

The measure p on X is invariant under the action of G, that is, if f € L'(X), g € G and
Ryf(x) = f(g~ '), then

[ t@duto) = [ Ry f@nto).
X X

A quasi-distance on X is a map d: X x X — [0, 00) satisfying conditions (i)- (iii) listed in
the beginning of Section 2, and moreover,

i) d(gx,gy) = d(z,y) for all g € G, z,y € X

v) the balls B(z,l) = {y € X : d(z,y) <}, x € X, 1 > 0, are relatively compact and
measurable, and the balls B(1,1), I > 0, form a basis of neighborhoods of 1 = x(e).

If 11 satisfies doubling condition (1), then (X,d, u) is called homogeneous type space.

We say that a linear operator T' defined on LS°(X) and with values in the space of all
measurable functions, is a singular integral operator if the following conditions hold:

i) T has a bounded extension on L"(X) for some r, 1 < r < oo;

ii) there exists a kernel K € L} (X x X\ A), A = {(z,7) : # € X}, such that

loc

Tf(x) = / K(z,9)f(4)du(y)
X

for all f € L°(X) and almost all x ¢ suppf.

Let T be a singular integral operator with a kernel K. We say that K satisfies the condition
(Hoo) if
d(y, 1)

K@, y) = K@, 1) < Cor=5 B, d@.1))

whenever d(x,1) > 2d(y,1), 1 = w(e).
Basing on Theorem 1.7 of [36] and Theorem 3.1 we infer the following statement:

Theorem 6. Let B be a Banach lattice of real-valued measurable functions with the UMD
property, let 1 < p < oo, w € A,(X), and let T be a singular integral operator. Assume that the
kernels K (z,y) and K (y,x) satisfy (Hs) condition and K (gx,gy) = K(x,y) for all z,y € X,

g € G. Then the operator T is bounded in L{)U)’“J(B).

Theorem 7. Let B be a Banach space with the UMD property and with a normalized uncon-

ditional basis (e;); > 1. Let 1 <p < 0o, w € Ap(X), and let T be a singular integral operator.

Assume that the kernels K(x,y) and K(y,x) satisfy (Hoo) condition and K(gz, gy) = K(z,y)

forallz,y € X, g € G. Then for all f =) fje; € L]ZU)’“O(B) the series > T fje; converges in
J J

Lﬁ;)’“o(B) and there exists a positive constant Cp such that

> Ttie > fieg
Jj=1 j=1

<G :
L) #(B) L) (B)
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7 The case of unbounded space

In this section we will assume that (X,d,u) is a quasi-metric measure space with doubling
measure 4 such that X is unbounded, i.e., there is no a ball containing X. Observe that in this
case it might be happened that w(X) = co. Let o be a number such that 0 < o < p — 1.

We will see that the statements proved above are also true for the case pX = oo if we
replace the spaces Lﬁ,)"p(B) by Lﬁ,)’“o’U(B).

Let w be a weight on X and let and p € (1,00), denote by o, the constant such that
w € Ay, , Whenever w € Ay. By the openness property of Muckenhoupt’s A, class, such a
constant always exists.

Theorem 8. Let X = R", d be the Euclidean metric and let p be the Lebesque measure on
R™. Suppose that 1 < p < oo and let w € Ap,(R"™). Assume that B has the HL, property for

some r € (1,00) and that Mf is well-defined for any f € L}, .(R™; B). Then the operator M is
bounded in LE)¥77 (R™, B) for all ¢ € D, -

Proof of this statement is similar to that of Theorem 1. In this case we do not have the term
Is.

Analogously, we have the next statements:

Theorem 9. Let (X,d,p) be an SHT and let a linear operator K be bounded in LI (X, B)

for arbitrary r, 1 < r < oo, and w € A.(X). Then K is bounded in Lf’u)’“o’”p'“’ (B) for every
p € (l,00), allw e Ay(X) and ¢ €

Ip,w*

Theorem 10. Let (X,d, u) be an SHT. Suppose that a linear operator K is bounded in LY (X, B)
for arbitrary r, 1 < r < oo, and for any w" € A,(X). Then K is also bounded in L2777 (B)
for every p € (1,00), for allw € Ap(X) and ¢ €

Op,w "

To formulate the next statement we need to introduce the notation. Let 1 < p < ¢ < co. Let

us set % - % =a. Let w € Ay 4/ (X). We denote by o and § are constants defined as follows:
€A (X) ! ! (18)
w =5 ; -—— =a.
o=y p—o q—20

By the openness property of the Muckenhoupt’s A,(X) weights such constants exist (see the
proof of Theorem 4) for details.
Now we can formulate the next statement:

Theorem 11. Let (X,d,u) be an SHT. Suppose that 1 < p < q < oo. We set zl) — % = a.
Suppose that for the linear operator K, the following inequality

HK(fwa)”LZ?(X,B) < CllfHLfUU(X,B)
holds for all py and qo satisfying the condition 1 < py < qo < 00, = — + =, and for all w €

’ po qo0

At q0/(po) (X), where a positive constant C' does not depend on f. Then for allw € A4 g/, (X)
and ¢ € @, the inequality

HK(fwa)”L;lv)vw’d(X’B) < O”fHLfU)W"’(X,B)

holds with a positive constant C independent of f, where o and § are defined in (18), and ¢ is
given by
o B q—c¢ )a(qfs)Jrl

Theorem 11 can be obtained by using the arguments of the proof of Theorem 4. We only
emphasize that since ¢ € &, we have that ¢ € ®;.
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Corollary 3. Let (X,d,u) be an SHT. Suppose that 1 < p < g < oco. We set % — % = a.
Suppose that for a linear operator K the following inequality

K (fw ) Lo x,8y < Cllfllpro x,m)
holds for all pg and qo satisfying the condition 1 < pg < o0, p% — qio = «a, and for all w €

At qo/(po) (X), where a positive constant C' does not depend on f. Then for all 0 > 0 and
w € Ay4q/p (X) the inequality

) payaorms gy < CllFl pproe x gy

holds with a positive constant C' independent of f.
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