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1 Introduction

The so-called Lp-maximal regularity plays a major role in Mathematical Analysis of PDEs.
A result for the maximal Lp-regularity has recently been achieved with a Functional Analysis
approach in [8] using the R-boundedness of a family of integral operators (see also [23] for
details). The results of this form obtained by Functional Analytic approach, until recently were
only known in the Hilbert space case (for p = 2) (see [21, 22], and [35]).

The main goal of this paper is to introduce weighted grand Lebesgue spaces of functions
valued in Banach spaces and to explore these spaces with respect to the boundedness of vector-
valued integral operators, in particular, maximal functions, singular integrals and their commu-
tators, fractional–type integrals, etc. The function spaces under our consideration are defined,
generally speaking, on quasi-metric measure spaces with doubling measure.

It is known that the singular integrals are not extended to Banach-valued operators if the
Banach space is arbitrary. Bourgain ([2] and [3]) and Burkholder ([4], [5]) showed that Hilbert
transform is extended boundedly to Lp(B), 1 < p <∞, if and only if the target Banach space
B have the so-called UMD property i. e. the following inequality∥∥∥∥ n∑

k=1

εkdk

∥∥∥∥
Lp(B)

≤ c
∥∥∥∥ n∑
k=1

dk

∥∥∥∥
Lp(B)

holds, where (dk)nk=1 is a martingale difference sequence in Lp(B) and εk = ±1. The works of
aforementioned authors on the UMD property had extremely important impact on Harmonic
Analysis for Banach-space valued functions.
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The above–mentioned statement makes for a convenient definition for UMD: A Banach space
B has the UMD property if and only if the Hilbert transform extends to a bounded operator
on Lp(B), 1 < p <∞.

Nowadays the concept of UMD has become the central notion in vector-valued Harmonic
Analysis. There were established that a series of results from the classical and modern Littlewood-
Paley and Calderón-Zygmund theories remain valid in the context of B-valued functions if and
only if the Banach spaces have UMD properties. The theory of Banach-valued function spaces
and integral operators in the context of UMD property was intensively studied in [1], [2], [3],
[4], [5], [10], [11], [32], [33], [34], [36].

For scalar functions grand Lebesgue spaces Lp) were introduced by T. Iwaniec and C. Sbor-
done in 1992 [12]. The theory of Iwaniec-Sbordone space is nowadays one of intensively develop-
ing directions in modern analysis. The necessity of introducing and studying these spaces grew
because of their rather essential role in various fields. It turned out that in the theory of PDEs
the grand Lebesgue spaces are appropriate to the existence and uniqueness solution, and, also,
the regularity problem for various nonlinear differential equation. The boundedness problems
for fundamental integral operators of Harmonic Analysis were intensively studied in [13], [14],
[15], [16], [17], [18], [20], [24], [25], [26], [27], [28], [29], [30] (see also the monograph [31], Chap-
ter 14 and references therein). In this paper the analogous problem is treated in Banach-valued
weighted grand Lebesgue spaces.

2 Preliminaries

Let (X, d, µ) be a a quasi-metric measure space, i.e., X is an abstract set and d is a function
d : X ×X 7→ [0,∞) satisfying the conditions:

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x) for all x, y ∈ X;
iii) there exist a constant η ≥ 1 such that for all x, y, z ∈ X,

d(x, y) ≤ η[d(x, z) + d(z, y)].

A ball with center x and radius r in (X, d, µ) is denoted by B(x, r). It is also assumed that
all balls are measurable with positive finite µ measure.

We say that µ is doubling measure if it satisfies the following condition: there is a positive
constant A such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Aµ(B(x, r)). (1)

A quasi-metric measure space (X, d, µ) with doubling measure µ is called a space of homo-
geneous type (SHT shortly).

Given a Banach spaceB with a norm ‖·‖ and an almost everywhere positive locally integrable
function (weight) w : X −→ R, we denote by Lpw(X,B), 1 < p < ∞, the Bochner-Lebesgue
space consisting of all B-valued strongly measurable functions f defined on X such that

‖f‖Lpw(X,B) =

∫
X

‖f(x)‖pBw(x)dµ

1/p

< +∞.

By slight abuse of notation in future sometimes Lpw(X,B) will be denoted by Lpw(B).

2.1 Weighted grand Bochner-Lebesgue spaces

On the base of the space Lpw(B) we introduce the weighted grand Bochner spaces. Let Φp, where
1 < p <∞, be the collection of all nondecreasing, bounded functions ϕ : (0, p− 1] −→ R such
that ϕ(0+) = 0.
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Let X be a bounded set (i.e. it is contained in some ball B) and let 1 < p <∞ and ϕ ∈ Φp.
By L

p),ϕ
w (X,B) (or simply L

p),ϕ
w (B)) we denote the set of all B-valued strongly measurable

functions for which the norm

‖f‖
L
p),ϕ
w (X,B)

= sup
0<ε<p−1

(ϕ(ε))
1
p−ε ‖f‖Lp−εw (X,B)

is finite.
Together with the space L

p),ϕ
w (X,B) we consider the weighted grand Bochner-Lebesgue

spaces in definition of which a weight function participates as a multiplier in norms.
The collection of all B-valued strongly measurable functions for which the norm

‖f‖Lp),ϕw (X,B)
= sup

0<ε<p−1
(ϕ(ε))

1
p−ε ‖fw‖Lp−ε(X,B)

is finite is denoted by Lp),ϕw (X,B).

It should be noticed that even for the classical case the spaces L
p),ϕ
w and Lp),ϕ

w1/p are different,

while ‖f‖Lpw = ‖fw1/p‖Lp (see [13] for the details).

Both these spaces L
p),ϕ
w (X,B) and Lp),ϕw (X,B) are non-reflexive, non-separable Banach

function spaces.
Denote by Φσ the set of positive, measurable functions ϕ defined on (0, σ), where 0 < σ <

p− 1, which are non-decreasing, bounded with the condition limx→0 ϕ(x) = 0. It is noteworthy
to mention that all the results of this paper are true also in the case of unbounded set X if the
norms of the grand Lebesgue spaces are defined by the following way:

‖f‖
L
p),ϕ,σ
w (X,B)

:= sup
0<ε<σ

(ϕ(ε))
1
p−ε ‖f‖Lp−εw (X,B),

‖f‖Lp),ϕ,σw (X,B)
:= sup

0<ε<σ
(ϕ(ε))

1
p−ε ‖fw‖Lp−ε(X,B),

where σ is a sufficiently small positive number depending on p. Notice that in these norms σ
appears as an additional parameter.

If ϕ(x) = xθ, where θ > 0, then we denote:

Lp),ϕw (B) = Lp),θw (B); Lp),ϕw (B) = Lp),θw (B); Lp),ϕ,σw (B) = Lp),θ,σw (B); Lp),ϕ,σw (B) = Lp),θ,σw (B).

For structural properties and Köthe dual space for grand Bochner-Lebesgue spaces we refer
to [19].

In the sequel we will essentially need the following definition.
A weight function w is said to be a weight of Muckenhoupt class Ap(X) (or simply Ap) if

there exists a constant C such that for all balls B ⊂ X, 1

µB

∫
B

w(t)dµ(t)

 1

µB

∫
B

w1−p′(t)dµ(t)

p−1

≤ C.

We will also need the following class of weights: let (X, d, µ) be a quasi–metric measure space
with doubling measure. We say that µ-a.e. positive function u belongs to the Muckenhoupt–
Wheeden class Ap,q(X) (or simply Ap,q) if there is a positive constant C such that 1

µB

∫
B

uq(t)dµ(t)

 1
q
 1

µB

∫
B

u−p
′
(t)dµ(t)

 1
p′

≤ C.

It is easy to check that u ∈ Ap,q(X) if and only if uq ∈ A1+q/p′(X).
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2.2 Banach lattices

Definition 1. A real Banach lattice B is a real vector space with a partial ordering ≤ such
that

(i) If x ≤ y for x, y ∈ B, then x+ y ≤ y + z for all z ∈ B;
(ii) αx ≥ 0 for all x ∈ X with x ≥ 0 and α ∈ R with α ≥ 0;
(iii) for all x, y ∈ B, there exists supremum x ∨ y and an infimum x ∧ y;
(iv) there is defined a norm ‖·‖B on B satisfying the condition if |x| ≤ |y|, then ‖x‖B ≤ ‖y‖B

for all x, y ∈ X, where |x| is defined as follows: |x| = x ∨ −x for all x ∈ B.

If Banach lattice is considered on the space of measurable function L0(Ω,µ) defined on a
measure space (Ω,Σ, µ), then f ≤ g means f(ω) ≤ g(ω) for µ- almost every ω ∈ Ω.

Definition 2. Let (Ω,µ) be a measure space. Denote by L0(Ω) the set of all measurable func-
tions on Ω. A subspace B of L0(Ω) equipped with a complete norm ‖ · ‖B is called a Banach
function lattice over Ω if the following properties hold:

(i) there exists ς ∈ B with ς > 0 µ−a.e.;
(ii) if 0 ≤ fn ↑ f with a sequence {fn}∞n=1 in B, f ∈ L0(Ω), and supn∈N ‖fn‖B <∞, then

f ∈ B and ‖f‖B = supn∈N ‖fn‖B (this property is called Fatou property);
(iii) if f ∈ L0(Ω), g ∈ B, and |f | ≤ |g|,then f ∈ B and ‖f‖B ≤ ‖g‖B.

Definition 3. [23] Let B be a Banach lattice and let 1 ≤ p, q ≤ ∞.
(i) we say that B is p−convex if there exists a positive constant c such that∥∥∥( n∑

k=1

|xk|p
)1/p∥∥∥

B
≤ c
( n∑
k=1

‖xk‖pB
)1/p

, (2)

for all x1, · · · , xn ∈ B, where under the symbol
(∑n

k=1 |xk|p
)1/p

we mean:

( n∑
k=1

|xk|p
)1/p

:= sup
‖a‖

`p
′≤1

n∑
k=1

akxk,
1

p
+

1

p′
= 1.

(ii) we say that B is q−concave if the inverse of (2) holds.

The absolute value function h ∈ B on Ω is defined by |h|(ω) = |h(ω)|, ω ∈ Ω. We identify a
function f ∈ Lpw(X,B) defined on X with a function defined on the product X ×Ω by setting
f(x)(ω) = f(x, ω). We denote by Lpw(X,B)⊗ B the set of all vector-valued functions f of the

type f =
k∑
j=1

fj ⊗ aj for fj ∈ Lpw(X,B), aj ∈ B and for some integer k ≥ 1. This set is a dense

subspace of Lpw(X,B) for 1 ≤ p <∞ and any weight w. Given an operator T in Lpw(X,B), we
define its extension T to Lpw(X,B)⊗ E (see, e.g., [32]) by

Tf(x, ω) = T (f(·, ω))(x), (x, ω) ∈ X ×Ω.

For further properties of Banach lattices and Bochner–Lebesgue integrals we refer, e.g., to
[23], [10], [32].

2.3 Lattice Hardy–Littlewood maximal operator

Let B be a Banach lattice and let F be a finite collection of dyadic cubes in Rn. We introduce
the lattice Hardy–Littlewood maximal function (see e.g., [23], [9]). For any f ∈ L1

loc(R
n, B)

first we define dyadic lattice maximal function

M̃Ff(x) = sup〈|f |〉QχQ(x), x ∈ Rn,

in which the modulus and supremum are taken in the Banach lattice B, and the symbol 〈g〉Q
denotes the integral average of a real-valued function g.
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Definition 4. A Banach lattice B has the Hardy–Littlewood property (HL property), if there
is r ∈ (1,∞) such that for all finite collection of cubes F and all f ∈ Lr(Rn;B),

‖M̃Ff‖Lr(Rn;B) ≤ CB,r,n‖f‖Lr(Rn;B) (3)

with a constant CB,r,n > 0.
If we need to mention that B has the HL property with estimate (3), then we say that B

has the HLr property.

Remark 1. It is known (see, e.g., [23]) that if a Banach lattice B has HL property, then B is
q−convex for some q ∈ (1,∞).

The extension of M̃Ff to infinite collections of cubes F may be not well-defined, as it is
a priori not clear whether this supremum exists. Moreover, M̃Ff might not be strongly µ-
measurable. On those Banach lattices, where the supremum is well-defined, the dyadic lattice
Hardy–Littlewood maximal function for a dyadic system D is defined as

M̃Df = sup
Q∈D
〈|f |〉QχQ

and the lattice Hardy–Littlewood maximal function as

M̃f = sup
Q⊂Rn

〈|f |〉QχQ,

where the supremum is taken over all cubes in Rn with sides parallel to the axis.
If B is a Banach function lattice and f : Rn → B is a locally integrable function, then it is

clear that M̃f(x) is a function of ω given by the formula:

M̃f(x)(ω) = sup
Q3x

1

|Q|

∫
Q

|f(y, ω)|dy, x ∈ Rn.

Now we introduce the following definition:

Definition 5. Let a Banach lattice B have HLr property. We say that B has HLr property if
the following holds for the constant CB,r,n in (3):

sup
0<ε<σ

CB,r−ε,n <∞ (4)

for some constant σ ∈ (0, r − 1).

Example 1. Let B = Ls(Ω), s ∈ (1,∞). Then B has HLs property.
Indeed, by using the value of the bound of the norm of the Hardy–Littlewood maximal

operator ‖MD‖Ls(Rn) in Lebesgue spaces

‖M̃D‖Ls(Rn) ≤ s′, s′ =
s

s− 1
,

(see e.g., [23], Sec. 5.1) and Fubini’s theorem, we find that

‖M̃Ff‖
Ls
(
Rn,Ls(Ω)

) = ‖‖M̃Ff(·, ω)‖Ls(Ω)‖Ls(Rn)

=

(∫
Ω

∫
Rn

(M̃Ff(·, ω)(x))sdxdµ

)1/s

≤ s′
(∫
Ω

∫
Rn

(|f(x, ω)|)sdxdµ
)1/s

= s′‖f‖
Ls
(
Rn,Ls(Ω)

).
Thus,

‖M̃Ff‖
Ls
(
Rn,Ls(Ω)

) ≤ s′‖f‖
Ls
(
Rn,Ls(Ω)

)
which means that B = Ls(Ω) has HLs property.
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Lemma 1. Let B be a Banach lattice with the HLr property, 1 < r <∞. Then M̃F has weak
(1, 1) type with the bound for which the estimate

‖M̃F‖1,∞ ≤ C(B, r, n)

holds with a constant C(B, r, n) satisfying condition (4) for some positive constant σ.

Proof. Suppose that B has HLr property. Then (3) holds together with condition (4). For the
same r we have (see [23], P.102)

‖M̃F‖1,∞ ≤ 2r‖M̃F‖rr + 1. (5)

Since B satisfies HLr property we are done.

The next statement is Buckley-type theorem (see [6] for the classical case) for lattice Hardy–
Littlewood maximal functions.

Proposition 1. Let B be a q−convex Banach lattice for some q ≥ 1. Assume that B has the
HLr property for some r ∈ (1,∞) and that M̃f is well-defined for any f ∈ L1

loc(R
n;B). Then

there exists a positive constant CB,p,q,r,n such that for any p ∈ (1,∞), for all w ∈ Ap and
f ∈ Lpw(Rn, B),

‖M̃f‖Lpw(Rn,B) ≤ CB,p,q,r,n[w]
max{ 1

p−1 ,
1
q }

Ap
‖f‖Lpw(Rn,B), (6)

where the constant CB,p,q,r,n satisfies the condition

sup
0<ε<σ

CB,p−ε,q,r,n <∞ (7)

for some small positive constant σ.

Remark 2. If p = r in the previous theorem, then we denote CB,p,q,r,n by CB,p,q,n, and conse-
quently, estimate (7) reads as follows:

sup
0<ε<σ

CB,p−ε,q,n <∞.

Remark 3. It was shown in [23] (see Theorem 5.6.4) that the exponent of [w]Ap is sharp in the
sense that we can not replace it with smaller one.

For the next statement we refer e.g., to [23]

Lemma 2. Let B be a Banach lattice. If B is q0− convex, 1 < q0 < ∞, then it is q− convex
for all 1 < q < q0 <∞. Moreover, for the appropriate convexity constants we have

M (q)(B) ≤M (q0)(B).

Proof of Proposition 1 is given in [23] (p. 100) but we are interested in the value of the
constant CB,p,q,r,n in (6) which enables us to conclude that (7) holds.

Taking Lemma 2 into account, without the loss of generality we can assume that p 6= q.
Suppose also that r 6= p. Let F be a finite collection of cubes. Taking (5) into account we have
the estimate

‖M̃F‖1,∞ ≤ 2q‖M̃F‖qq + 1. (8)

In fact, this estimate enables us to conclude that M̃F is of weak (1, 1) type with a bound

‖M̃F‖1,∞ independent of F . Furthermore, the following pointwise inequality holds (see [23],
pp.101-103)

‖M̃f(x)‖B ≤ 2M (q)(B)‖M̃F‖1,∞Aq,S
(
‖f‖B

)
(x),



On integral operators 7

where M (q)(B) is the q−convexity constant of the Banach lattice B, the constant ‖M̃F‖1,∞
does not depend on p and the operator Aq,S is defined as follows:

Aq,Sf =

(∑
Q∈S
〈|f |〉qQχQ

)1/q

with sparse family of dyadic intervals S.
Since the estimate (see [23], p.98)

‖Aq,Sf‖Lq+1
w (Rn) ≤ Cq[w]

1/q
Aq+1
‖f‖Lq+1

w (Rn),

holds with the constant

Cq = 21/q
(q + 1

q

)(q+1)/q

, (9)

we conclude that by the sharp variant of Rubio de Francia’s weighted extrapolation theorem
(see Theorem 3.1 of [7]),

‖Aq,Sf‖Lpw(Rn) ≤ Cp,q[w]max{ 1
p−1 ,

1
q }‖f‖Lpw(Rn),

where
Cp,q = Cq max

{
2q+1−p(p′)q+1−p, 2

p−q−1
p−1 p

p−q−1
p−1

}
, (10)

with Cq defined by (9).
Summarizing these estimates we find that

‖M̃f‖Lpw(Rn,B) ≤ 2M (q)(B)‖M̃F‖1,∞‖Aq,S‖Lpw(B)

≤ 2M (q)(B)‖M̃F‖1,∞Cp,q[w]max{ 1
p−1 ,

1
q ,}‖f‖Lpw(Rn,B)

with Cp,q defined by (10). Thus, we have the desired result.
If r = p, then we have the same conclusion by the assumption that B has HLp property

and Lemma 1.
The statement has been proved.

3 Main results

In this section we formulate the main results of this paper.
Let G be a bounded open set in Rn and let B be a Banach lattice. For f ∈ L1(G,B), we

define

M̃Gf(x) = sup
Q⊂Rn

(
1

|Q|

∫
G∩Q

|f(y)|dy
)
χG∩Q(x),

where as before, Q denotes cube in Rn with sides parallel to the coordinate axes.

Theorem 1. Let G be a bounded open set in Rn. Assume that a Banach function lattice B has
the HLr property for some r ∈ (1,∞) and that M̃Gf is well-defined for any f ∈ L1

loc(G;B).

Suppose that w is a weight function on Rn. Then the operator M̃G is bounded in L
p),ϕ
w (G,B)

for all p ∈ (1,∞), ϕ ∈ Φp and w ∈ Ap(Rn).

The next statements are formulated for a quasi-metric measure space with doubling measure
(X, d, µ).

Theorem 2. Let (X, d, µ) be an SHT with bounded X. Then every linear operator K bounded

in Lrw(B) for arbitrary r ∈ (1,∞) and w ∈ Ar(X), is also bounded in L
p),ϕ
w (X,B) for every

p ∈ (1,∞), ϕ ∈ Φp and w ∈ Ap(X).
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Theorem 3. Let (X, d, µ) be an SHT with bounded X. Every linear operator K bounded in

Lrwr (X,B) for arbitrary r ∈ (1,∞) and for any wr ∈ Ar(X), is also bounded in Lp),ϕw (X,B)
for every p ∈ (1,∞), all ϕ ∈ Φp and wp ∈ Ap(X) .

The next statement treats with the off-diagonal case.

Theorem 4. Let (X, d, µ) be an SHT, where X is bounded, and let 1 < p < q < ∞. We set
1
p−

1
q = α. Let w be a weight function on X. Suppose that for the linear operator K the following

inequality

‖K(fwα)‖Lq0w (X,B) ≤ C‖f‖Lp0w (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < q0 < ∞ and 1
p0
− 1

q0
= α, and all

w ∈ A1+q0/(p0)′(X), where a positive constant C does not depend on f . Then, for every ϕ ∈ Φp
and ψ defined by

ψ(ε) := ϕ
(
p− q − ε

1 + α(q − ε)

)α(q−ε)+1

, 0 < ε < q − 1

and all w ∈ A1+q/p′(X), the inequality

‖K(fwα)‖
L
q),ψ
w (X,B)

≤ C‖f‖
L
p),ϕ
w (X,B)

holds with a positive constant C independent of f .

The next statement concerns the case when a weight function appears as a multiplier in the
norm of grand Lebesgue space.

Theorem 5. Let (X, d, µ) be an SHT with bounded X, and let 1 < p < q < ∞. We set
1
p −

1
q = α. Let u be a µ−a.e. positive function on X. Suppose that for the linear operator K

the following inequality

‖uKf‖Lq0 (X,B) ≤ C‖uf‖Lp0 (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < q0 < ∞ and 1
p0
− 1

q0
= α, and all

u ∈ Ap0,q0(X), where a positive constant C does not depend on f . Then, for every ϕ ∈ Φp and
ψ defined by

ψ(ε) := ϕ
(
p− q − ε

1 + α(q − ε)

)α(q−ε)+1

, 0 < ε < q − 1

and all u ∈ Ap,q(X), the inequality

‖uKf‖Lq),ψ(X,B) ≤ C‖uf‖Lp),ϕ(X,B)

holds with a positive constant C independent of f .

Corollary 1. Suppose that (X, d, µ) be an SHT, where X is bounded. Let 1 < p < q <∞. We
set 1

p −
1
q = α. Let w be a weight function on X. Suppose that for the linear operator K the

following inequality

‖K(fwα)‖Lq0w (X,B) ≤ C‖f‖Lp0w (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < q0 < ∞ and 1
p0
− 1

q0
= α, and all

w ∈ A1+q0/(p0)′(X), where a positive constant C does not depend on f . Then the inequality

‖K(fwα)‖
L
q),qθ/p
w (X,B)

≤ C‖f‖
L
p),θ
w (X,B)

holds and all w ∈ A1+q/p′(X) with a positive constant C independent of f .
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Corollary 2. Suppose that (X, d, µ) be an SHT with bounded X, and that 1 < p < q <∞. We
set 1

p −
1
q = α. Let u be a µ- almost everywhere positive function on X. Suppose that for the

linear operator K the following inequality

‖uKf‖Lq0 (X,B) ≤ C‖uf‖Lp0 (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < q0 < ∞ and 1
p0
− 1

q0
= α, and all

w ∈ Ap0,q0(X), where a positive constant C does not depend on f . Then the inequality

‖uKf‖Lq),qθ/p(X,B) ≤ C‖uf‖Lp),θ(X,B)

holds and all w ∈ Ap,q(X) with a positive constant C independent of f .

4 Proofs of the main results

This section is devoted to the proofs of the main results.

4.1 Proof of Theorem 1

Let 1 < p < ∞. Suppose also that B has HLr property for some r ∈ (1,∞). Taking Remark
1 into account we have that B is q−convex for some q ∈ (1,∞). Thus, taking Remark 2 and
Lemma 2 into account, without loss of generality we can assume that q 6= p and r 6= p. Let
w ∈ Ap. Then by the openness property of the Ap class, there is a positive constant σ such that
w ∈ Ap−σ. By the monotonicity property of Ap classes we have that w ∈ Ap−ε for 0 < ε < σ.
Applying Proposition 1 we have the estimate

‖M̃f‖Lp−εw (B) ≤ CB,p−ε,q,r,n[w]
max{ 1

p−ε−1 ,
1
q }

Ap−ε
‖f‖Lp−εw (B),

with the constant CB,p−ε,q,r,n satisfying (7). Consequently, by using the fact that [w]s ≥ 1 (this
is a consequence of Lebesgue differentiation theorem) and monotonicity property of Mucken-
houpt classes we find that

ϕ(ε)1/(p−ε)‖M̃f‖Lp−εw (B) ≤ CB,p,σ,q,n[w]
max{ 1

p−σ−1 ,
1
q }

Ap−σ
‖f‖

L
p),ϕ
w (B)

, 0 < ε < σ.

Thus,

I1 = sup
0<r≤σ

(ϕ(ε))
1
p−ε ‖M̃f‖Lp−εw (B) ≤ c‖f‖Lp),ϕw (B)

. (11)

Fix ε ∈ (σ, p−1) so that p−σ
p−ε > 1. Using the Hölder inequality with respect to the exponent

(p− σ)/(p− ε) and observing that
(
p−σ
p−ε

)′
= p−σ

ε−σ we have

‖M̃f‖Lp−εw (B) ≤ ‖M̃f‖Lp−σw (B) · (wG)(ε−σ)/[(p−σ)(p−ε)]. (12)

Further, since σ < p− 1 and ε ∈ (σ, p− 1) we have

0 <
ε− σ

(p− σ)(p− ε)
<
p− 1− σ
p− σ

, (p− 1)σ−
1

p−σ > 1.

From the boundedness of M̃ in Lp−σw (B) and (12) we deduce (without loss of generality we
can assume that w(G) ≥ 1)

I2 := sup
σ<ε<p−1

[ϕ(ε)]
1
p−ε ‖M̃f‖Lp−εw (B)

≤ sup
σ<ε<p−1

[ϕ(ε)]
1
p−ε [ϕ(σ)]−

1
p−σ ‖M̃f‖Lp−σw (B)[w(G)](ε−σ)/(p−σ)(p−ε)

≤ c sup
σ<ε<p−1

[ϕ(ε)]
1
p−ε [ϕ(σ)]−

1
p−σ ‖f‖

L
p),ϕ
w (B)

[w(G)](ε−σ)/(p−σ)(p−ε)

≤ cϕ(p− 1)[ϕ(σ)]−
1

p−σ ‖f‖
L
p),ϕ
w (B)

[w(G)](p−1−σ)/(p−σ).
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Finally summarizing the estimates of I1 and I2 we conclude

‖M̃f‖
L
p),ϕ
w (B)

≤ C‖f‖
L
p),ϕ
w (B)

with a positive constant C independent of f .
Thus the theorem has been proved.

4.2 Proofs of Theorems 2 and 3

The vector space for all equivalence classes of strongly measurable functions from a σ-finite
measure space (Ω,A, µ) into a Banach space B, identifying functions which are equal almost
everywhere, is denoted by L0(Ω,B). L0(Ω,B) is a complete metric space.

Theorem A. [10]. Let B0 and B1 be complex Banach spaces, let 1 ≤ p0, p1; q0, q1 ≤ ∞,
and let (Ω0, A0, µ0) and (Ω1, A1, µ1) be measure spaces. Let T : Lp0(Ω0, B0) +Lp1(Ω0, B0) −→
L0(Ω1, B1) be a linear operator which maps Lp0(Ω0, B0) into Lq0(Ω1, B1) and Lp1(Ω0, B0) into
Lq1(Ω1, B1).

If
‖Tf‖Lqj (Ω1,B1) ≤ Aj‖f‖Lpj (Ω0,B0) ∀f ∈ Lpj (Ω0, B0), (j = 0, 1)

then for all θ, 0 < θ < 1 the operator T maps Lpθ (Ω0, B0) into Lqθ (Ω1, B1) and, moreover,

‖Tf‖Lqθ (Ω1,B1) ≤ A
1−θ
0 Aθq‖f‖Lpθ (Ω0,B0) ∀f ∈ Lpθ (Ω0, B0),

where
1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Proof of Theorem 2. Let w ∈ Ap(X). Since the class Ap(X) is open with respect to p, there
exists some σ, such that 0 < σ < p− 1 and w ∈ Ap−σ(X). Applying interpolation Theorem A
we infer that

‖Kf‖Lp−εw (B) ≤ c‖f‖Lp−εw (B) (13)

with a constant c independent on ε, 0 < ε ≤ σ. Consequently,

I1 := sup
0<r≤σ

(ϕ(ε))
1
p−ε ‖Kf‖Lp−εw (B) ≤ c‖f‖Lp),ϕw (B)

(14)

The estimate for

I2 := sup
σ<ε≤p−1

(ϕ(ε))
1
p−ε ‖Kf‖Lp−εw

is similar to that of I2 from the proof of Theorem 1; therefore we omit the details.
Finally we have the desired result.

Proof of Theorem 3. By the condition of the Theorem wp ∈ Ap(X). Let us show that then
there exists such σ, 0 < σ < p − 1 that wp−σ ∈ Ap−σ(X). Since wp ∈ Ap(X) and Ap(X) is
open with respect to p, there exists such σ, 0 < σ < p− 1 that wp ∈ Ap−σ(X). By the Jensen’s
inequality with the exponent p

p−σ we get for all balls B:

 1

µB

∫
B

wp−σ(x)dµ(x)

 1
p−σ

 1

µB

∫
B

w(p−σ)(1−p−σ)′(x)dµ(x)

 1
(p−σ)′

≤
[ 1

µB

∫
B

wp(x)dµ(x)

 1

µB

∫
B

wp(1−(p−σ))
′
(x)dµ(x)

p−σ−1 ] 1
p

≤ C.

Hence, wp−σ ∈ Ap−σ(µ).
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Now consider the operator
f −→ Kwf

where

Kwf = wK

(
f

w

)
.

Note that the boundedness of Kw in Lp(X,B) is equivalent to the boundedness of K in
Lpwp(X,B). On other hand, since wp ∈ Ap(µ) and wp−σ ∈ Ap−σ(X) we have that by the condi-
tion of the theorem, the operator K is bounded in Lpwp(X,B) and Lp−σwp−σ (X,B) simultaneously.
Therefore the operator Kw is bounded in Lp(X,B) and Lp−σ(X,B). Taking interpolation The-
orem A into account we conclude that for arbitrary ε ∈ (0, σ),

‖Kwf‖Lp−ε(X,B) ≤ c‖f‖Lp−ε(X,B)

with some constant c independent of f and ε. Hence,

I1 = sup
0<ε≤σ

(ϕ(ε))
1
p−ε ‖Kwf‖Lp−ε(X,B) ≤ c sup

0<ε≤σ
(ϕ(ε))

1
p−ε ‖f‖Lp−ε(X,B) ≤ c‖f‖Lp),ϕ(X,B).

Further, repeating the arguments of the proof of Theorem 1, we find that

I2 := sup
σ<ε≤p−1

(ϕ(ε))
1
p−ε ‖Kwf‖Lp−εw

≤ c‖f‖Lp),ϕ(X,B).

We proved that the operator Kw in bounded in Lp),ϕ(X,B); but it is equivalent to the

boundedness of operator K in Lp),ϕw (X,B). Indeed, let f = ψ
w . Then we have

‖Kf‖Lp),ϕw (X,B)
= sup

0<ε<p−1
(ϕ(ε))

1
p−ε

∫
X

(‖Kf(x)‖w(x))p−εdµ(x)

 1
p−ε

= sup
0<ε<p−1

(ϕ(ε))
1
p−ε

∫
X

‖K
(
ψ

w

)
w(x)‖p−εdµ(x)

 1
p−ε

≤ c sup
0<ε<p−1

(ϕ(ε))
1
p−ε

∫
X

‖ψ(x)‖p−εdµ(x)

 1
p−ε

= c sup
0<ε<p−1

(ϕ(ε))
1
p−ε

∫
X

(‖f(x)‖w(x))p−εdµ(x)

 1
p−ε

= c‖f‖Lp),ϕw (X,B)
.

4.3 Proofs of Theorems 4 and 5.

Proof of Theorem 4. First observe that ψ ∈ Φq. Take σ such that 0 < σ < q − 1. Hölder’s
inequality and the fact that w is integrable on X yield the following inequality

‖K(fwα)‖Lq−εw (B) ≤ ‖K(fwα)‖Lq−σw (B) w(X)
ε−σ

(q−σ)(q−ε)

for 0 < σ < ε < q − 1. Hence,∥∥∥∥K(fwα)

∥∥∥∥
L
q),ψ(·)
w (B)

≤ C sup
0<ε<σ

ψ(ε)
1
q−ε

∥∥∥∥K(fwα)

∥∥∥∥
Lq−εw (B)

, (15)

where a positive constant C is independent of f .
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Let w ∈ A1+q/p′ . Then by the openness property of Muckenhoupt classes, w ∈ A1+(q/p′)−s(X)
for some s > 0. Hence, there are positive constants σ1 and σ2 such that w ∈ A

1+
q−σ1

(p−σ2)′
(X),

and
1

p− σ2
− 1

q − σ1
= α. (16)

By the assumption the operator
Kαf = K(fwα)

is bounded from Lpw(B) to Lqw(B) and from Lp−σ2
w (B) to Lq−σ1

w (B).
By the Riesz-Thorin interpolation theorem (see Theorem A) we get that Kα is bounded

from Lp−ηw (B) to Lq−εw (B) for η and ε satisfying

1

p− η
=
t

p
+

1− t
p− σ2

,
1

q − ε
=
t

q
+

1− t
q − σ1

, t ∈ [0, 1].

Moreover,∥∥∥∥Kα

∥∥∥∥
Lp−ηw (B)−→Lq−εw (B)

≤
∥∥∥∥Kα

∥∥∥∥t
Lpw(B)−→Lqw(B)

∥∥∥∥Kα

∥∥∥∥1−t
L
p−σ2
w (B)−→Lq−σ1w (B)

. (17)

It is easy to see that

1

p− η
− 1

q − ε
=
t

p
− t

q
+

1− t
p− σ2

− 1− t
q − σ1

= t

[
1

p
− 1

q

]
+ (1− t)

[
1

p− σ2
− 1

q − σ1

]
= tα+ (1− t)α = α.

Hence,

η = p− q − ε
1 + α(q − ε)

.

Consequently,

sup
0<ε<σ1

ψ(ε)
1
q−ε ‖K(fwα)‖Lq−εw (B) ≤ sup

0<ε<σ1

ψ(ε)
1
q−ε ‖f‖Lp−ηw (B)

= sup
0<η<σ2

ϕ(η)
1

p−η ‖f‖Lp−ηw (B)

Consequently, taking into account these estimates and (15) we find that

∥∥∥∥K(fwα)

∥∥∥∥
L
q),ψ
w (B)

≤ C sup
0<ε<σ1

ψ(ε)
1
q−ε

∥∥∥∥K(fwα)

∥∥∥∥
Lq−εw (B)

≤ C sup
0<η<σ2

ψ(ε)
1
q−ε ‖f‖Lp−ηw (B) = C sup

0<η<σ2

ϕ(η)
1

p−η ‖f‖Lp−ηw (B)

≤ C‖f‖
L
p),ϕ
w (B)

.

Proof of Theorem 5 is similar to that of Theorem 4. We will check only the interpolation
argument. Suppose that u ∈ Ap,q(X). Then uq ∈ A1+q/p′(X) and, hence, by the openness
property of Muckenhoupt classes, uq ∈ A1+q/p′−s(X) for some small positive constant s. Con-
sequently, we can choose small positive constants σ1 and σ2 such that that uq ∈ A

1+
q−σ1

(p−σ2)′
(X)

and condition (16) is satisfied.
Further, applying Hölder’s inequality with respect to the exponent q

q−σ1
we see that

uq−σ1 ∈ A
1+

q−σ1
(p−σ2)′

(X). Thus, u ∈ Ap−σ2,q−σ1(X).
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From the assumption of the theorem we have that, K̃uf = uK(f/u) is bounded from
Lp(X,B) to Lq(X,B) and from Lp−σ2(X,B) to Lq−σ1(X,B). By virtue of the Riesz-Thorin

interpolation Theorem A we find that K̃u is bounded from Lp−η(X,B) to Lq−ε(X,B) for η and
ε satisfying the condition:

1

p− η
− 1

q − ε
= α.

Since the estimate similar to (17) holds for the norm of the operator K̃u, arguing as in
the proof of Theorem 4 (see also the proofs of other theorems ) we conclude that we have the
desired result.

The theorem has been proved.

Corollaries 1 and 2 are a direct consequences of Theorems 4 and 5 respectively. Indeed,
keeping the notation of Theorem 4 observe that if ϕ(x) = xθ, then ψ(x) ≈ xqθ/p for small
positive x.

5 Weighted norm inequalities for integral operators

Let B be a Banach lattice of real-valued measurable functions on a σ-finite measure space
(Ω, ν). The following theorem was proved in [32].

Theorem B. Let T be the torus and B be a UMD lattice. Let T be an operator bounded
Lpw(T, B) for all w ∈ Ap(T), 1 < p <∞. Then T is bounded in Lp(T, B), 1 < p <∞.

Applying this theorem and known results [13], [15], [20], we deduce the boundedness of the

following operators in L
p),ϕ
w (T, B) for w ∈ Ap(T ) (see [32]):

i) The conjugate function

f̃(t) =
1

π

π∫
−π

f

(
eiθ
)
ctg

t− θ
2

dθ;

ii) Carleson’s maximal partial sum operator of Fourier series

Sf(t) = sup
n
|Snf(t)| = sup

n

∣∣∣∣ ∑
|k|≤n

f̂(k)efkt
∣∣∣∣;

iii) The Cauchy singular integral operator

Cf(t) = p.v.

∫
R

f(s)ds

t− s+ i(ϕ(t)− ϕ(s))
;

where ϕ is a Lipschitz function in R.

iv) Any convolution operator Tf(x) = K ∗f(x) in Rn such that : |K(x)| ≤ C|x|−n and also∫
ε<|x|<R

|K(x)dx| ≤ C (0 < ε < R <∞)

∫
|x|>R>|y|

|K(x− y)−K(x)|dx ≤ CR−δ

for some fixed δ > 0.
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6 More on singular integrals

In this section we will follow some definitions from [36]. We are going to discuss Banach-valued
extensions of operators for functions defined on a homogeneous type space X and with values
in a UMD Banach lattice.

Let G be a locally compact Hausdorff topological group with unit element e, H a compact
subgroup of G, and π : G −→ G/H the canonical map. Let dg denote a left Haar measure on
G, which we assume to be normalized in the case of G compact. If A is a Borel subset of G, we
denote by |A| the Haar measure of A. The homogeneous space X = G/H is the set of all left
cosets π(g) = gH, g ∈ G, equipped with the quotient topology. The Haar measure dg induces a
measure µ on the Borel σ-algebra on X. For f ∈ L1(X),∫

X

f(x)dµ(x) =

∫
G

f ◦ π(g)dg.

The measure µ on X is invariant under the action of G, that is, if f ∈ L1(X), g ∈ G and
Rgf(x) = f(g−1x), then ∫

X

f(x)dµ(x) =

∫
X

Rgf(x)dµ(x).

A quasi-distance on X is a map d : X ×X −→ [0,∞) satisfying conditions (i)- (iii) listed in
the beginning of Section 2, and moreover,

iv) d(gx, gy) = d(x, y) for all g ∈ G, x, y ∈ X;
v) the balls B(x, l) = {y ∈ X : d(x, y) < l}, x ∈ X, l > 0, are relatively compact and

measurable, and the balls B(1, l), l > 0, form a basis of neighborhoods of 1 = π(e).
If µ satisfies doubling condition (1), then (X, d, µ) is called homogeneous type space.
We say that a linear operator T defined on L∞c (X) and with values in the space of all

measurable functions, is a singular integral operator if the following conditions hold:
i) T has a bounded extension on Lr(X) for some r, 1 < r ≤ ∞;
ii) there exists a kernel K ∈ L1

loc(X ×X \ 4), 4 = {(x, x) : x ∈ X}, such that

Tf(x) =

∫
X

K(x, y)f(y)dµ(y)

for all f ∈ L∞c (X) and almost all x /∈ suppf .
Let T be a singular integral operator with a kernel K. We say that K satisfies the condition

(H∞) if

|K(x, y)−K(x, 1)| ≤ C d(y, 1)

d(x, 1)µ(B(1, d(x, 1))

whenever d(x, 1) > 2d(y, 1), 1 = π(e).
Basing on Theorem 1.7 of [36] and Theorem 3.1 we infer the following statement:

Theorem 6. Let B be a Banach lattice of real-valued measurable functions with the UMD
property, let 1 < p <∞, w ∈ Ap(X), and let T be a singular integral operator. Assume that the
kernels K(x, y) and K(y, x) satisfy (H∞) condition and K(gx, gy) = K(x, y) for all x, y ∈ X,

g ∈ G. Then the operator T is bounded in L
p),ϕ
w (B).

Theorem 7. Let B be a Banach space with the UMD property and with a normalized uncon-
ditional basis (ej)j≥1. Let 1 < p < ∞, w ∈ Ap(X), and let T be a singular integral operator.
Assume that the kernels K(x, y) and K(y, x) satisfy (H∞) condition and K(gx, gy) = K(x, y)

for all x, y ∈ X, g ∈ G. Then for all f =
∑
j

fjej ∈ Lp),ϕw (B) the series
∑
j

Tfjej converges in

L
p),ϕ
w (B) and there exists a positive constant Cp such that∥∥∥∥ ∞∑

j=1

Tfjej

∥∥∥∥
L
p),ϕ
w (B)

≤ Cp
∥∥∥∥ ∞∑
j=1

fjej

∥∥∥∥
L
p),ϕ
w (B)

.
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7 The case of unbounded space

In this section we will assume that (X, d, µ) is a quasi-metric measure space with doubling
measure µ such that X is unbounded, i.e., there is no ball containing X. Observe that in this
case it might be happened that w(X) =∞. Let σ be a number such that 0 < σ < p− 1.

We will see that the statements proved above are also true for the case µX = ∞ if we

replace the spaces L
p),ϕ
w (B) by L

p),ϕ,σ
w (B).

Let w be a weight on X and let and p ∈ (1,∞). Denote by σp,w constant such that w ∈
Ap−σp,w whenever w ∈ Ap. Because of the openness property of Muckenhoupt’s Ap class, such
a constant always exists.

Theorem 8. Let X = Rn, d be the Euclidean metric and let µ be the Lebesgue measure on
Rn. Suppose that 1 < p < ∞ and let w ∈ Ap(Rn). Assume that B has the HLr property for

some r ∈ (1,∞) and that M̃f is well-defined for any f ∈ L1
loc(R

n;B). Then the operator M is

bounded in L
p),ϕ,σp,w
w (Rn, B) for all ϕ ∈ Φσp,w .

Proof of this statement is similar to that of Theorem 1. In this case we do not have the term
I2.

Analogously, we have the next statements:

Theorem 9. Let (X, d, µ) be an SHT and let a linear operator K be bounded in Lrw(X,B)

for arbitrary r, 1 < r < ∞, and w ∈ Ar(X). Then K is bounded in L
p),ϕ,σp,w
w (B) for every

p ∈ (1,∞), all w ∈ Ap(X) and ϕ ∈ Φσp,w .

Theorem 10. Let (X, d, µ) be an SHT. Suppose that a linear operator K is bounded in Lrw(X,B)
for arbitrary r, 1 < r < ∞, and for any wr ∈ Ar(X). Then K is also bounded in L

ϕ,σp,w
wp (B)

for every p ∈ (1,∞), for all w ∈ Ap(X) and ϕ ∈ Φσp,w .

To formulate the next statement we need to introduce the notation. Let 1 < p < q < ∞.
Let us set 1

p −
1
q = α. Let w ∈ A1+q/p′(X). We denote by σ and δ constants defined as follows:

w ∈ A1+ q−δ
(p−σ)′

(X),
1

p− σ
− 1

q − δ
= α. (18)

By the openness property of the Muckenhoupt’s Ap(X) weights such constants exist (see the
proof of Theorem 4 for details).

Now we can formulate the next statement:

Theorem 11. Let (X, d, µ) be an SHT. Suppose that 1 < p < q < ∞. We set 1
p −

1
q = α.

Suppose that for the linear operator K, the following inequality

‖K(fwα)‖Lq0w (X,B) ≤ C‖f‖Lp0w (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < q0 <∞, 1
p0
− 1

q0
= α, and for all w ∈

A1+q0/(p0)′(X), where a positive constant C does not depend on f . Then for all w ∈ A1+q/p′(X)

and ϕ ∈ Φσ the inequality

‖K(fwα)‖
L
q),ψ,δ
w (X,B)

≤ C‖f‖
L
p),ϕ,σ
w (X,B)

holds with a positive constant C independent of f , where σ and δ are defined in (18), and ψ is
given by

ψ(ε) := ϕ
(
p− q − ε

1 + α(q − ε)

)α(q−ε)+1

.

Theorem 11 can be obtained by using the arguments of the proof of Theorem 4. We only
emphasize that since ϕ ∈ Φσ we have that ψ ∈ Φδ.
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Corollary 3. Let (X, d, µ) be an SHT. Suppose that 1 < p < q < ∞. We set 1
p −

1
q = α.

Suppose that for a linear operator K the following inequality

‖K(fwα)‖Lq0w (X,B) ≤ C‖f‖Lp0w (X,B)

holds for all p0 and q0 satisfying the condition 1 < p0 < ∞, 1
p0
− 1

q0
= α, and for all w ∈

A1+q0/(p0)′(X), where a positive constant C does not depend on f . Then for all θ > 0 and
w ∈ A1+q/p′(X) the inequality

‖K(fwα)‖
L
q),qθ/p,δ
w (X,B)

≤ C‖f‖
L
p),θ,σ
w (X,B)

holds with a positive constant C independent of f .
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