References and Notes
1. K. Burke and L. O. Wagner, Int. J. Quantum Chem. ,2013 , 113, 96–101.
2. L. H. Thomas, Math. Proc. Camb. Phil. Soc. , 1927 , 23,
542–548.
3. E. Fermi, Rend. Acc. Naz. Lincei , 1927 , 6, 602–607.
4. P. A. M. Dirac, Math. Proc. Camb. Phil. Soc. , 1930 ,
26, 376–385.
5. N. H. March, Adv. Phys. , 1957 , 6, 1–101.
6. E. Teller, Rev. Mod. Phys. , 1962 , 34, 627–631.
7. P. Hohenberg and W. Kohn, Phys. Rev. , 1964 , 136,
B864–B871.
8. W. Kohn and L. Sham, Phys. Rev. , 1965 , 140,
A1133–A1138.
9. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and
Molecules , Oxford Science Publications, 1994 .
10. T. Helgaker, P. Jørgensen and J. Olsen, Molecular
electronic-structure theory , Wiley, Chichester ; New York,2000 .
11. W. Koch and M. C. Holthausen, A Chemist’s Guide to Density
Functional Theory , Wiley, 1st edn., 2001 .
12. C. Fiolhais, F. Nogueira and M. A. L. Marques, Eds., A Primer
in Density Functional Theory , Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003 , vol. 620.
13. C. J. Cramer, Essentials of computational chemistry: theories
and models , Wiley, Hoboken, N.J., 2013 .
14. E. Engel and R. M. Dreizler, Density Functional Theory An
Advanced Course , Springer Berlin, Berlin, 2013 .
15. F. Jensen, Introduction to computational chemistry , Wiley,
Chichester, UK ; Hoboken, NJ, Third edition., 2017 .
16. H. S. Yu, S. L. Li and D. G. Truhlar, J. Chem. Phys. ,2016 , 145, 130901.
17. J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun and G. I.
Csonka, J. Chem. Theory Comput. , 2009 , 5, 902–908.
18. J. P. Perdew and A. Ruzsinszky, Int. J. Quantum Chem. ,2010 , 110, 2801–2807.
19. K. Burke, J. Chem. Phys. , 2012 , 136, 150901.
20. C. R. Jacob and M. Reiher, Int. J. Quantum Chem. ,2012 , 112, 3661–3684.
21. R. Peverati and D. G. Truhlar, Philos. Trans. R. Soc. Lond.
Ser. A-Math. Phys. Eng. Sci. , 2014 , 372, 20120476.
22. A. D. Becke, J. Chem. Phys. , 2014 , 140, 18A301–19.
23. L. Goerigk and N. Mehta, Aust. J. Chem. , 2019 , 72,
563.
24. X. Xu and W. A. Goddard, J. Phys. Chem. A , 2004 ,
108, 8495–8504.
25. L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi and S.
Grimme, Phys. Chem. Chem. Phys. , 2017 , 19, 32184–32215.
26. N. Mardirossian and M. Head-Gordon, Mol. Phys. ,2017 , 115, 2315–2372.
27. S. Lehtola, C. Steigemann, M. J. T. Oliveira and M. A. L. Marques,SoftwareX , 2018 , 7, 1–5.
28. Y. Zhao, B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A ,2004 , 108, 2715–2719.
29. A. D. Boese and J. M. L. Martin, J. Chem. Phys. ,2004 , 121, 3405–3416.
30. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.
Scuseria, L. A. Constantin, X. Zhou and K. Burke, Phys. Rev.
Lett. , 2008 , 100, 136406.
31. A. D. Becke, Phys. Rev. A , 1988 , 38, 3098–3100.
32. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B , 1988 ,
37, 785–789.
33. A. D. Becke, J. Chem. Phys. , 1993 , 98, 5648–5652.
34. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch,J. Phys. Chem. , 1994 , 98, 11623–11627.
35. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. ,1996 , 77, 3865–3868.
36. H. S. Yu, X. He, S. L. Li and D. G. Truhlar, Chem. Sci. ,2016 , 7, 5032–5051.
37. N. Mardirossian and M. Head-Gordon, J. Chem. Phys. ,2016 , 144, 214110.
38. J. P. Perdew and K. Schmidt, AIP Conference Proceedings ,2001 , 577, 1–20.
39. J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria,Phys. Rev. Lett. , 2003 , 91, 146401.
40. J. Sun, A. Ruzsinszky and J. P. Perdew, Phys. Rev. Lett. ,2015 , 115, 036402.
41. Y. Zhao and D. G. Truhlar, J. Chem. Phys. , 2006 ,
125, 194101.
42. R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. ,2012 , 3, 117–124.
43. H. S. Yu, X. He and D. G. Truhlar, J. Chem. Theory Comput. ,2016 , 12, 1280–1293.
44. N. Mardirossian and M. Head-Gordon, J. Chem. Phys. ,2015 , 142, 074111–32.
45. S. Grimme, J. Chem. Phys. , 2006 , 124, 034108.
46. Y. Zhao, B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A ,2004 , 108, 4786–4791.
47. F. Furche, Phys. Rev. B , 2001 , 64, 195120.
48. F. Furche, J. Chem. Phys. , 2008 , 129, 114105.
49. H. Eshuis, J. E. Bates and F. Furche, Theor Chem Acc ,2012 , 131, 1084.
50. S. Grimme and M. Steinmetz, Phys. Chem. Chem. Phys. ,2016 , 18, 20926–20937.
51. G. P. Chen, V. K. Voora, M. M. Agee, S. G. Balasubramani and F.
Furche, Annu. Rev. Phys. Chem. , 2017 , 68, 421–445.
52. J. Gräfenstein and D. Cremer, Mol. Phys. , 2005 , 103,
279–308.
53. K. Nakata, T. Ukai, S. Yamanaka, T. Takada and K. Yamaguchi,Int. J. Quantum Chem. , 2006 , 106, 3325–3333.
54. G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar
and L. Gagliardi, J. Chem. Theory Comput. , 2014 , 10,
3669–3680.
55. L. Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer
and J. L. Bao, Acc. Chem. Res. , 2017 , 50, 66–73.
56. C. M. Marian, A. Heil and M. Kleinschmidt, WIREs Comput. Mol.
Sci. , 2019 , 9.
57. B. Civalleri, D. Presti, R. Dovesi and A. Savin, in Chemical
Modelling , ed. M. Springborg, Royal Society of Chemistry, Cambridge,2012 , vol. 9, pp. 168–185.
58. F. Tran, J. Stelzl and P. Blaha, J. Chem. Phys. ,2016 , 144, 204120.
59. V. L. Lignères and E. A. Carter, in Handbook of Materials
Modeling , ed. S. Yip, Springer Netherlands, Dordrecht, 2005 ,
pp. 137–148.
60. V. V. Karasiev and S. B. Trickey, Comp. Phys. Commun. ,2012 , 183, 2519–2527.
61. P. E. Blöchl, Phys. Rev. B , 1994 , 50, 17953–17979.
62. G. Kresse and D. Joubert, Phys. Rev. B , 1999 , 59,
1758–1775.
63. P. E. Blöchl, J. Kästner and C. J. Först, in Handbook of
Materials Modeling , ed. S. Yip, Springer Netherlands, Dordrecht,2005 , pp. 93–119.
64. G.-X. Zhang, A. M. Reilly, A. Tkatchenko and M. Scheffler, New
J. Phys. , 2018 , 20, 063020.
65. F. Tran, L. Kalantari, B. Traoré, X. Rocquefelte and P. Blaha,Phys. Rev. Materials , 2019 , 3, 063602.
66. J. Neugebauer and T. Hickel, WIREs Comput. Mol. Sci. ,2013 , 3, 438–448.
67. P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J. Clark
and C. J. Pickard, Phil. Trans. R. Soc. A , 2014 , 372,
20130270.
68. H. Ryu, J. Park, H. K. Kim, J. Y. Park, S.-T. Kim and M.-H. Baik,Organometallics , 2018 , 37, 3228–3239.
69. H. S. Yu, W. Zhang, P. Verma, X. He and D. G. Truhlar, Phys.
Chem. Chem. Phys. , 2015 , 17, 12146–12160.
70. K. H. Hopmann, Organometallics , 2019 , 38, 603–605.
71. A. D. Becke and E. R. Johnson, J. Chem. Phys. , 2005 ,
123, 154101.
72. S. Grimme, J. Comput. Chem. , 2006 , 27, 1787–1799.
73. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. ,2009 , 102, 073005.
74. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem.
Phys. , 2010 , 132, 154104.
75. O. A. Vydrov and T. van Voorhis, J. Chem. Phys. ,2010 , 133, 244103.
76. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C.
Bannwarth and S. Grimme, J. Chem. Phys. , 2019 , 150,
154122.
77. A. D. Becke, J. Chem. Phys. , 2005 , 122, 064101.
78. A. D. Becke, J. Chem. Phys. , 2013 , 138, 074109.
79. B. G. Janesko, Int. J. Quantum Chem. , 2013 , 113,
83–88.
80. J. Kong and E. Proynov, J. Chem. Theory Comput. ,2016 , 12, 133–143.
81. P. Verma and D. G. Truhlar, Phys. Chem. Chem. Phys. ,2017 , 19, 12898–12912.
82. P. Morgante and R. Peverati, J. Comput. Chem. , 2019 ,
40, 839–848.
83. D. Yepes, J. Valenzuela, J. I. Martínez-Araya, P. Pérez and P.
Jaque, Phys. Chem. Chem. Phys. , 2019 , 21, 7412–7428.
84. S. Kristyán and P. Pulay, Chem. Phys. Lett. , 1994 ,
229, 175–180.
85. P. Hobza, J. Sponer and T. Reschel, J. Comput. Chem. ,1995 , 16, 1315–1325.
86. M. J. Allen and D. J. Tozer, J. Chem. Phys. , 2002 ,
117, 11113–11120.
87. A. J. Cohen, P. Mori-Sánchez and W. Yang, Chem. Rev. ,2012 , 112, 289–320.
88. A. Najibi and L. Goerigk, J. Chem. Theory Comput. ,2018 , 14, 5725–5738.
89. N. Mehta, M. Casanova-Páez and L. Goerigk, Phys. Chem. Chem.
Phys. , 2018 , 20, 23175–23194.
90. S. Grimme, S. Ehrlich and L. Goerigk, J. Chem. Theory
Comput. , 2011 , 32, 1456–1465.
91. S. Grimme and M. Steinmetz, Phys. Chem. Chem. Phys. ,2013 , 15, 16031.
92. L. Goerigk, J. Phys. Chem. Lett. , 2015 , 6,
3891–3896.
93. D. Rappoport, N. R. M. Crawford, F. Furche and K. Burke, inEncyclopedia of Inorganic Chemistry , eds. R. B. King, R. H.
Crabtree, C. M. Lukehart, D. A. Atwood and R. A. Scott, John Wiley &
Sons, Ltd, Chichester, UK, 2009 , p. ia615.
94. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. ,1971 , 54, 724–728.
95. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. ,1972 , 56, 2257–2261.
96. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta ,1973 , 28, 213–222.
97. J. D. Dill and J. A. Pople, J. Chem. Phys. , 1975 ,
62, 2921–2923.
98. J. S. Binkley and J. A. Pople, J. Chem. Phys. , 1977 ,
66, 879–880.
99. M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J.
Hehre, J. Am. Chem. Soc. , 1982 , 104, 2797–2803.
100. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S.
Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys. ,1982 , 77, 3654–3665.
101. V. A. Rassolov, J. A. Pople, M. A. Ratner and T. L. Windus,J. Chem. Phys. , 1998 , 109, 1223–1229.
102. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A.
Curtiss, J. Comput. Chem. , 2001 , 22, 976–984.
103. T. H. Dunning, J. Chem. Phys. , 1989 , 90,
1007–1023.
104. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. ,1993 , 98, 1358–1371.
105. D. E. Woon and T. H. Dunning, J. Chem. Phys. , 1994 ,
100, 2975–2988.
106. A. K. Wilson, D. E. Woon, K. A. Peterson and T. H. Dunning,J. Chem. Phys. , 1999 , 110, 7667–7676.
107. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. ,2005 , 7, 3297–3305.
108. F. Jensen, J. Chem. Phys. , 2001 , 115, 9113–9125.
109. F. Jensen, J. Phys. Chem. A , 2007 , 111,
11198–11204.
110. F. Jensen and T. Helgaker, J. Chem. Phys. , 2004 ,
121, 3463–3470.
111. F. Jensen, J. Chem. Phys. , 2012 , 136, 114107.
112. D. Feller, J. Comput. Chem. , 1996 , 17, 1571–1586.
113. R. M. Balabin, J. Chem. Phys. , 2010 , 132, 211103.
114. R. Sure and S. Grimme, J. Comput. Chem. , 2013 , 34,
1672–1685.
115. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt and
J. H. van Lenthe, Chem. Rev. , 1994 , 94, 1873–1885.
116. J. Witte, J. B. Neaton and M. Head-Gordon, J. Chem. Phys. ,2016 , 144, 194306.
117. S. R. Jensen, S. Saha, J. A. Flores-Livas, W. Huhn, V. Blum, S.
Goedecker and L. Frediani, J. Phys. Chem. Lett. , 2017 ,
8, 1449–1457.
118. F. Jensen, J. Phys. Chem. A , 2017 , 121, 6104–6107.
119. D. Feller and D. A. Dixon, J. Phys. Chem. A , 2018 ,
122, 2598–2603.
120. X. Xu and D. G. Truhlar, J. Chem. Theory Comput. ,2012 , 8, 80–90.
121. R. Van Noorden, B. Maher and R. Nuzzo, Nature ,2014 , 514, 550–553.
122. L. Wang, J. Chem. Educ. , 2012 , 89, 360–364.
123. N. J. Hill, M. D. Bowman, B. J. Esselman, S. D. Byron, J.
Kreitinger and N. E. Leadbeater, J. Chem. Educ. , 2014 ,
91, 1054–1057.
124. N. Nassabeh, M. Tran and P. E. Fleming, J. Chem. Educ. ,2014 , 91, 1248–1253.
125. S. M. Hein, R. W. Kopitzke, T. W. Nalli, B. J. Esselman and N. J.
Hill, J. Chem. Educ. , 2015 , 92, 548–552.
126. V. Ugone, E. Garribba, G. Micera and D. Sanna, J. Chem.
Educ. , 2015 , 92, 1098–1102.
127. J. P. Perdew and Y. Wang, Phys. Rev. B , 1992 , 45,
13244–13249.
128. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B ,1992 , 46, 6671–6687.
129. M. Caricato, G. W. Trucks, M. J. Frisch and K. B. Wiberg, J.
Chem. Theory Comput. , 2010 , 6, 370–383.
130. M. Isegawa, R. Peverati and D. G. Truhlar, J. Chem. Phys. ,2012 , 137, 244104.
131. H. Kruse, L. Goerigk and S. Grimme, J. Org. Chem. ,2012 , 77, 10824–10834.
132. A. Migliore, J. Chem. Theory Comput. , 2019 , 15,
4915–4923.
133. J. Paier, M. Marsman and G. Kresse, J. Chem. Phys. ,2007 , 127, 024103.
134. L. F. Holroyd and T. van Mourik, Chem. Phys. Lett. ,2007 , 442, 42–46.
135. S. Grimme, Chem. Eur. J. , 2012 , 18, 9955–9964.
136. T. G. Spiro and P. M. Kozlowski, J. Am. Chem. Soc. ,1998 , 120, 4524–4525.
137. E. Nazarparvar, M. Zahedi and E. Klein, J. Org. Chem. ,2012 , 77, 10093–10104.
138. M. W. Löble, J. M. Keith, A. B. Altman, S. C. E. Stieber, E. R.
Batista, K. S. Boland, S. D. Conradson, D. L. Clark, J. Lezama Pacheco,
S. A. Kozimor, R. L. Martin, S. G. Minasian, A. C. Olson, B. L. Scott,
D. K. Shuh, T. Tyliszczak, M. P. Wilkerson and R. A. Zehnder, J.
Am. Chem. Soc. , 2015 , 137, 2506–2523.
139. B. J. Esselman and N. J. Hill, J. Chem. Educ. ,2016 , 93, 932–936.
140. V. Pelmenschikov, J. A. Birrell, C. C. Pham, N. Mishra, H. Wang, C.
Sommer, E. Reijerse, C. P. Richers, K. Tamasaku, Y. Yoda, T. B.
Rauchfuss, W. Lubitz and S. P. Cramer, J. Am. Chem. Soc. ,2017 , 139, 16894–16902.
141. C. D. Montgomery, J. Chem. Educ. , 2013 , 90,
1396–1400.
142. A. D. Becke, J. Chem. Phys. , 1988 , 88, 2547–2553.
143. V. I. Lebedev, USSR Comput. Math. Math. Phys. ,1975 , 15, 44–51.
144. V. I. Lebedev, USSR Comput. Math. Math. Phys. ,1976 , 16, 10–24.
145. V. I. Lebedev, Sibirsk. Mat. Ž. , 1977 , 18,
132–142.
146. V. I. Lebedev, and D. N. Laĭkov, Dokl. Akad. Nauk ,1999 , 366, 741–745.
147. C. W. Murray, N. C. Handy and G. J. Laming, Mol. Phys. ,1993 , 78, 997–1014.
148. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H.
Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko,
R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.
Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E.
Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N.
Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R.
L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox,Gaussian 16 Revision A.03 , 2016 .
149. S. E. Wheeler and K. N. Houk, J. Chem. Theory Comput. ,2009 , 6, 395–404.
150. N. Mardirossian and M. Head-Gordon, J. Chem. Theory Comput. ,2013 , 9, 4453–4461.
151. N. Mardirossian and M. Head-Gordon, J. Chem. Theory Comput. ,2016 , 12, 4303–4325.
152. A. N. Bootsma and S. E. Wheeler, 2019 , DOI:
10.26434/chemrxiv.8864204.v5, ChemRxiv preprint.
153. H. Shang and J. Yang, J. Phys. Chem. A , 2020 ,
acs.jpca.0c01453.
154. E. R. Johnson, A. D. Becke, C. D. Sherrill and G. A. DiLabio,J. Chem. Phys. , 2009 , 131, 034111.
155. K. T. Tang and J. P. Toennies, J. Chem. Phys. ,2003 , 118, 4976–4983.
156. J. M. L. Martin, C. W. Bauschlicher and A. Ricca, Comput.
Phys. Commun. , 2001 , 133, 189–201.
157. B. N. Papas and H. F. Schaefer, J. Molecu. Struct.:
THEOCHEM , 2006 , 768, 175–181.
158. H. Fukutome, Int. J. Quantum Chem. , 1981 , 20,
955–1065.
159. R. Seeger and J. A. Pople, J. Chem. Phys. , 1977 ,
66, 3045–3050.
160. R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. ,1996 , 104, 9047–9052.
161. A. Karton, WIREs Comput. Mol. Sci. , 2016 , 6,
292–310.
162. W. Zhang, D. G. Truhlar and M. Tang, J. Chem. Theory
Comput. , 2013 , 9, 3965–3977.
163. X. Xu, W. Zhang, M. Tang and D. G. Truhlar, J. Chem. Theory
Comput. , 2015 , 11, 2036–2052.