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Abstract

The existing literature discusses different strategies to solve a scalar ordinary dif-
ferential equation using Lie point symmetries. We focus on three of these strategies in
order to frame methods for finding solutions of non-linear systems of ordinary differen-
tial equations. These include Lie’s integration theorem, method of successive reduction
of order and the method of using the invariants of the admitted symmetry generators.
Illustrative examples and those taken from mechanics are presented to highlight the
use of these methods.
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1 Introduction

Invariance of ordinary differential equations (ODEs) under one-parameter Lie groups of transfor-
mations has proved to be successful in reduction of order, linearization, classification into equivalent
classes and finding new solutions of the ODEs [1–16]. These successes lead to different integration
techniques in order to find complete solution and reduction of the ODEs. Applications of these
techniques for non-linear systems of ODEs have been the interest of many researchers during the
past few years. For dynamical systems (systems with Lagrangian), Nöether symmetries provide
first integrals by using Nöether theorem [1, 16–18]. A large class of dynamical systems appears as
geodesic equations for which metric of the spacetime serves as the Lagrangian of the system and the
isometries (Killing vectors) serve as Nöether symmetries [1,19–23]. For non-linear systems of ODEs
with no Lagrangian, neither Nöether symmetries nor Killing vectors exist and many techniques
were established for using Lie point symmetries in order to integrate, linearize or reduce the order
of such systems [24,26–31].

Lie’s integration theorem states that if the r-parameter transitive Lie group of generators in Gr
admitted by the nth-order ODE, with r = n, is solvable, then the solution of the ODE can be found
via quadratures. For a second-order ODE admitting any two-dimensional Lie group, the solution
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Integrability via Lie symmetries

is guaranteed by using either canonical forms of the symmetry generators or differential invariants.
That is true due to the fact that any two-dimensional Lie group is solvable. For a higher-order ODE,
reduction of order depends on the dimension of the solvable Lie group admitted by the ODE. There
are various ways to apply Lie’s integration theorem. Eisenhart proved that any linear homogeneous
first-order PDE in n variables can be integrated via quadratures if it admits a solvable Lie group of
dimension n− 1, provided that the generators of the group are transitive in the space of variables
of the PDE [7]. Stephani used Lie’s integration theorem to develop an algorithm to integrate an
nth-order ODE via line integrals. If the dimension of the solvable Lie group r < n, then the order
of the ODE can be reduced to (n − r), provided that there exists a transitive n-dimensional Lie
group containing the solvable subgroup [1]. Bluman built an iterative algorithm for using a solvable
Lie group in reduction of order of an nth-order ODE using differential invariants of the admitted
group [25]. Recently, Wafo Soh and Mahomed [26] used Eisenhart’s theorem to reduce a system
of ODEs to quadratures, benefiting from the equivalence between system of ODEs and the linear
homogeneous first-order PDE to be given in eq. (9).

Here we consider three approaches in which two are based on the structure of the admitted Lie
group of symmetries including the Lie’s integration theorem and the method of successive reduction
of order. The first approach is based on Lie’s integration theorem applied on an ODE admitting
solvable transitive Lie algebra. This method depends on finding the normal forms of the generators
in the space of the solutions from which first integrals of the given ODE are obtained. This is
as a reformulation of the algorithm in [26]. The advantage of Stephani’s algorithm is that it is
based on the steps which are almost of algebraic nature except the last step in each iteration where
line integrals are found and their existence is guaranteed by Lemma (2.1). Even if the dimension
of the admitted solvable Lie algebra is less than kn, we can still apply the algorithm provided
that the solvable subalgebra is a subset of a kn-dimensional transitive Lie algebra admitted by
the system. This may reduce the system to some integrable form. In a previous work [26], it was
pointed out that the method of successive reduction of order fails to be applicable for system of
ODEs. In our second integration technique we transform a system into the canonical coordinates
associated to the admitted generators in the space of the original variables to successively reduce the
order of the ODE provided the symmetry generators satisfy certain structure constants, showing
the applicability of the method of successive reduction of order for system of ODEs. We include
illustrative examples to demonstrate the applications of these two methods.

The third strategy discussed in [1] is based on using differential invariants of the admitted
symmetry generators. In case the admitted Lie group do not satisfy the conditions of either of the
previous two strategies, one can find functionally independent differential invariants of the group and
can express the ODE in terms of these invariants, which reduces the order of the ODE. Sometimes
differential invariants may provide first integrals of the ODE if they are invariant solutions. The
method of invariant solutions given by Bluman for a scalar ODE [9, 10] in conjunction with the
method of differential invariants were used to find the invariant solutions for systems of ODEs. In
the case of non-existence of invariant solutions, differential invariants approach discussed in [1] is
applied. Examples were provided to emphasize these results in [32]. For the sake of completeness,
Example (4.7) is provided to elaborate this method.

In what follows we consider the system of k nth-order ODEs

x
(n)
i = ωi(t,x, ẋ, ...,x

(n−1)), i = 1, ..., k, k ≥ 1. (1)

where xT = [x1(t) x2(t) ... xk(t)] and ẋ = dx
dt , admitting an r-parameter symmetry group with

infinitesimals (using Einstein summation convention)

Xa = ξa
∂

∂t
+ ηia

∂

∂xi
, i = 1, ..., k, a = 1, ..., r. (2)

The nth-order prolongation of Xa is given by

X(n)
a = ξa

∂

∂t
+ ηia

∂

∂xi
+
(
ηia
)(1) ∂

∂ẋi
+ ...+

(
ηia
)(n) ∂

∂x
(n)
i

, i = 1, ..., k, a = 1, ..., r,
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where (
ηia
)(m)

=
d

dt

(
ηia
)(m−1) − x(m−1)i

dξa
dt
, m = 1, . . . , n.

Let q be the rank of the matrix of the coefficients of Xa

M =
[
ξa ηia

]
, a = 1, ..., r, i = 1, ..., k. (3)

Then the homogeneous system of partial differential equations

Xaφ(x) = 0, a = 1, .., r, (4)

satisfying q = r and
[Xa, Xb] = ζdab(x)Xd, a, b, d = 1, .., r, (5)

is called a complete system with (k − r) solutions φ(x) [4, 7].

2 Lie’s integration theorem

For r-parameter group of transformationsGr acting on a k-dimensional space, an orbit is defined
as the set of points invariant under the action of the group, i.e, the solution φ(x) = constant of
the system (4). The Gr is said to be transitive when there is no solution φ for the above system,
and the space is considered as the unique orbit of the group. This means that the whole space is
invariant under the group Gr. In the case where there exists a solution for the latter system, the
space is divided into orbits more than one and the group is said to be intransitive. Accordingly Gr
is transitive if and only if r ≥ k and q = k [1, 7].

Lemma 2.1. Suppose Gr is a transitive Lie group acting on an r-dimensional space. A solution
φ(x), for the system

X1φ(x) = 1, (6a)

Xdφ(x) = 0, d = 2, ..., r, (6b)

exists if and only if
[Xa, Xb] = λdab(x)Xd, a, b = 1, .., r, d = 2, .., r, (7)

and is given by

φ =

∫
det


dx1 · · · dxr

X2

...
Xr


det (M)

, (8)

where Xi denotes the coefficients of the respective generators.

Proof. The Gr is acts transitively on an r-dimensional space, thus Gr is of full rank consisting
of r linearly independent operators Xa. Assume condition (7) holds. Then from (5), the system
(6b) is a complete system of r − 1 generators in r variables which means that there exists exactly
r− (r−1) = 1 solution φ(x). Since all r generators are linearly independent, X1φ 6= 0, (if X1φ = 0,
then the generators will not be linearly independent) and under an appropriate change of variables
we have

X1φ = 1.

Conversely, assume that the solution φ(x) of system (6) exists. From the properties of the Lie
algebra,

[Xa, Xb] = C1
abX1 + CdabXd, a, b = 1, ..., r, d = 2, ..., r.
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Using the definition of the commutator and applying both sides of the above equation on φ yields

XaXbφ−XbXaφ = C1
abX1φ+ CdabXdφ,

which according to Eqs. (6) gives
C1
ab = 0.

This means that X1 /∈ G′r, the derived subalgebra of Gr. In order to find φ(x) we need first to
solve the non-homogeneous linear system

MΦ = b,

where M is as defined in (3), Φ =
[
φx1

· · · φxr
]T
, φxi =

∂φ

∂xi
, and b =

[
1 0 · · · 0

]T
1×r.

Due to the transitivity of Gr, we have

φxi =

(−1)i+1 det

 X2

...
Xr


det(M)

.

Thus

φ =

∫ r∑
i=1

φxidxi =

∫ ∑r
i=1

(−1)i+1 det

 X2

...
Xr

 dxi


det(M)

=

∫
det


dx1 · · · dxr

X2

...
Xr


det (M)

.

Now we prove Lie’s integration theorem for systems of ODEs.

Theorem 2.2 (Lie’s integration theorem for system of ODEs). If a system of k nth-order
ODEs admits a solvable Lie group Gkn of kn Lie point symmetries that acts transitively in the
space of first integrals, then the solution can be given in terms of kn line integrals.

Proof. Consider the system (1) with r = kn in (2). Let Gkn be solvable and transitive in the space
of first integrals φa such that

Aφa =

(
∂

∂t
+ ẋi

∂

∂xi
+ ...+ ωi(t, xi, ẋi, ..., x

(n−1)
i )

∂

∂x
(n−1)
i

)
φa = 0, i = 1, .., k, (9)

where A is the first-order linear partial differential operator associated with the system (1). Due
to transitivity of the group in the space of first integrals, we have

∆ =

∣∣∣∣ X(n−1)

A

∣∣∣∣ 6= 0, (10)



Integrability via Lie symmetries

where X = [X1 ... Xkn]T and X(n−1) are the (n − 1)th order prolonged form of X. Since the
group Gkn is solvable, we can make a chain of derived algebras as follows.

〈X1, ..., Xkn〉 ⊃ 〈X2, ..., Xkn〉 ⊃ ... ⊃ 〈Xkn〉 . (11)

From the definition of symmetry we have [1]

[X(n−1)
a , A] = λa(t, xi, ẋi, ..., x

(n−1)
i )A, a = 1, ..., kn, (12)

where
λa = −Aξa. (13)

The sequence of derived algebras (11) with Eq. (12) ensures that the condition (7) of Lemma (2.1)
is satisfied. Thus the solution of the system

X
(n−1)
1 φ1 = 1,

X(n−1)
a φ1 = 0, a = 2, .., kn

Aφ1 = 0

is guaranteed. Once φ1 is found, using formula (8), it is used as a variable instead of (say) x
(n−1)
k

and the new set of variables are (t, x1, ..., xk, ẋ1, ..., ẋk, ..., x
n−1
1 , ..., xn−1k−1 , φ1). Since

Aφ1 = 0,

X(n−1)
a φ1 = 0, a = 2, .., kn,

(14)

then in the space of the new variables, the above generators are independent of the term containing
∂

∂φ1
, and these are exactly the generators admitted by the partial differential equation

Âφa =

(
∂

∂t
+ ẋi

∂

∂xi
+ ...+ x

(n−1)
i

∂

∂x
(n−2)
i

+ ω1
∂

∂x
(n−1)
1

+ ...+ ωk−1
∂

∂x
(n−1)
k−1

)
φa = 0.

Due to the chain (11), we can repeat the above discussion for G
(1)
kn with Â. Repeating the procedure

kn times will lead us to find all kn first integrals of the system (1).

The extended Lie’s integration theorem is implemented by first finding all Lie point symmetries
XN admitted by the system of ODEs, and checking if there exists a transitive solvable Lie subalgebra
Lkn of dimension kn. If so, to make a chain of derived subalgebras as in (11), and write the

generators in the (n− 1)th order prolonged form X
(n−1)
a . In each block of the chain (11), find ∆a

using formula (10), and φa using Eq. (8) which in the space of first integrals reads

φa =

∫ ∣∣∣∣∣∣∣∣∣∣∣

dt dx dẋ · · · dx(n−1)

X(n−1)
a+1

...
X(n−1)

nk

Aa

∣∣∣∣∣∣∣∣∣∣∣
∆a

. (15)

We replace one of the space variables with the new first integral φa and rewrite the generators in
the space of the new variables in each iteration. For Abelian groups it doesn’t matter by which
generator we start in order to find first integrals φa, and we can use the same ∆ without the need
for the change of variables in each step. Example (4.5) ascertains this consideration. In general,
the algorithm of Lie’s integration theorem is illustrated in examples (4.1), (4.5) and (4.6) in section
(4).
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3 Successive reduction of order

For a symmetry generator

X1 = ξ1(t,x)
∂

∂t
+ η1i(t,x)

∂

∂xi

admitted by system (1), there always exists a change of variables [1–7,9]

r = φ◦(t,x), ui = φi(t,x), i = 1, ..., k (16)

such that X1 can be written in the canonical form

X̂1 =
∂

∂u1
. (17)

Transforming the system of ODEs to the canonical coordinates (r,u), where
uT = [u1(r) u2(r) ... uk(r)], means that the the new system will be independent of the variable
u1, and it is reduced in order by one with respect to the variable u1 in the space of the canonical
variables (16) to give

u
(n)
i = ω̂i(r, u2, ..., uk, u̇, ...,u

(n−1)), i = 1, ..., k. (18)

To accomplish more reductions of order we need more symmetries which are admitted by the
reduced system. Not all Lie algebras can be used to repeat the process of reduction. The following
theorem demonstrates the necessary and sufficient condition.

Theorem 3.1. Assume that system (1) is transformed to system (18) in the coordinates of the
canonical variables associated with the symmetry generator X1. Then system (18) admits the sym-
metry generator X̂2 if and only if

[X1, X2] = C1X1, C1is a constant, (19)

where X̂2 is the symmetry generator X2 in the space of variables (16).

Proof. Suppose that system (1) admits the symmetry generators X1 and X2. Transformations (16)
maps the system to the new coordinates (r,u) to give the system (18) with operators (17) and

Â =
∂

∂r
+ u̇i

∂

∂ui
+ üi

∂

∂u̇i
+ ...+ ω̂i(r, u2, ..., uk, u̇, ...,u

(n−1))
∂

∂u
(n−1)
i

,

X̂
(n−1)
2 = ξ̂2

∂

∂r
+ η̂2i

∂

∂ui
+ η̂′2i

∂

∂u̇i
+ ...+ η̂

(n−1)
2i

∂

∂u
(n−1)
i

, i = 1, ..., k.

(20)

Since a commutator is invariant under a coordinate transformation [1,4], then due to symmetry
conditions (12)-(13), we have

[X̂
(n−1)
2 , Â] = λ̂2Â, λ̂2 = −Âξ̂2. (21)

Now system (18) is independent of the variable u1 and so its solution; thus its admitted operators

do not contain terms with
∂

∂u1
. Hence operators (20) can be written as

Ā =
∂

∂r
+ u̇j

∂

∂uj
+ üi

∂

∂u̇i
+ ...+ ω̂i(r, u2, ..., uk, u̇, ...,u

(n−1))
∂

∂u
(n−1)
i

,

X̄
(n−1)
2 = ξ̂2

∂

∂r
+ η̂2j

∂

∂uj
+ η̂′2i

∂

∂u̇i
+ ...+ η̂

(n−1)
2i

∂

∂u
(n−1)
i

, i = 1, ..., k, j = 2, ..., k.
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Accordingly, solutions of system (18) are the constant functions ψa such that Āψa = 0. Therefore
X̄2 is its symmetry if and only if it satisfies the symmetry condition[

X̄
(n−1)
2 , Ā

]
= λ̄2(r,u)Ā. (22)

From the definitions of the above operators,

Ā = Â− u̇1X̂1,

X̄
(n−1)
2 = X̂

(n−1)
2 − η̂21X̂1.

Substituting these equations into the LHS of the Eq. (22) and using Eq.(21) yields[
X̂

(n−1)
2 − η̂21X̂1, Â− u̇1X̂1

]
= λ̂2Â− η̂21(λ̂1Â) +

(
Âη̂21 − X̂(n−1)

2 (u̇1)− u̇1X̂1(η̂21)
)
X̂1 − u̇1[X̂

(n−1)
2 , X̂1].

From eqs. (13) and (20), we obtain[
X̄

(n−1)
2 , Ā

]
= λ̂2Â− η̂21(−Âξ̂1)Â+

(
∂η̂21
∂r

+ u̇1
∂η̂21
∂u1

+ u̇j
∂η̂21
∂uj

− η̂′21 − u̇1
∂η̂21
∂u1

)
X̂1 + u̇1

[
X̂1, X̂

(n−1)
2

]
= λ̂2Â+

(
∂η̂21
∂r

+ u̇j
∂η̂21
∂uj

− η̂′21
)
X̂1 + u̇1

[
X̂1, X̂

(n−1)
2

]
.

Expanding η̂′1, regrouping terms and again using relation (13), the above equation reduces to[
X̄

(n−1)
2 , Ā

]
=λ̂2Â− u̇1

(
∂η̂21
∂u1

+ Âξ̂2

)
X̂1 + u̇1

(
c1X̂1 + c2X̂

(n−1)
2

)
=λ̂2Â− u̇1

(
∂η̂21
∂u1

− λ̂2 + c1

)
X̂1 + c2u̇1X̂

(n−1)
2

=λ̂2

(
Â− u̇1X̂1

)
− u̇1

(
∂η̂21
∂u1

+ c1

)
X̂1 + c2u̇1X̂

(n−1)
2

This statement matches to (22) if and only if

c2 = 0, c1 = −∂η̂21
∂u1

, and λ̄2 = λ̂2. (23)

Conditions (23) demonstrate that the commutator of X1 and X2 must be a multiple of only X1 so
that X2 is admitted by the system (18) which is in the canonical space associated with X1, i.e,

[X1, X2] = c1X1.

If we want to completely integrate the system using the Lie algebra admitted by the original
given system, we must have enough symmetry generators, at least kn generators, satisfying the
chain:

[X1, Xa] = CaX1, a := 2, ..., kn

[X2, Xb] = CbX2, b := 3, ..., kn

...

[Xkn−1, Xkn] = CXkn−1.

(24)

Transforming the system to the canonical variables corresponding to X1 reduces the order of the
system by one with respect to a selected dependent variable. After writing the rest of the generators
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in the new coordinates (of canonical variables), we repeat the process using X2. Repeating this
process kn times, the system can be completely integrated. Examples (4.2), (4.3) and (4.6) in
the next section demonstrate this algorithm. The advantage of this method is that the system
can be integrable without the admitted Lie algebra being solvable, and even if we don’t have
enough symmetries, we can reduce the order of the system to some form which provides further
simplification. This is clear in example (4.3) in which after the second iteration the system can be
integrated, whereas in example (4.6), after the second transformation, one equation of the system
gets transformed to Bernoulli’s equation.

4 Applications

We consider mainly examples taken from the literature.

Example 4.1. We start with the system

ẍ = ẋ+
ẏ

y
e−t, ÿ =

ẏ2

y
+ ẏ + y (25)

admitting the Lie point symmetry generators (in extended form):

X1 =
∂

∂x
, X2 = et

∂

∂x
+ et

∂

∂ẋ
, X3 =

∂

∂x
+ y

∂

∂y
+ ẏ

∂

∂ẏ
,

X4 =
(
ln y + et

) ∂

∂x
+ yet

∂

∂y
+

(
ẏ

y
+ et

)
∂

∂ẋ
+ (ẏ + y) et

∂

∂ẏ
.

This system has been linearized using four-dimensional Lie group which is intransitive in the space
of variables in [29]. Later was solved using the approach of invariant solutions in [32]. Here we
intend to apply Theorem (2.2) to find its solution in order to establish the applicability of our
algorithm.

L4 = 〈X1, X2, X3, X4〉 is a solvable and a transitive Lie algebra. We have

L4 ⊃ 〈X1, X2, X3〉 ⊃ 〈X2, X3〉 ⊃ 〈X3〉 ,

and the associated linear partial differential operator to system (25) appears as

A1 =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+

(
ẋ+

ẏ

y
e−t
)

∂

∂ẋ
+

(
ẏ2

y
+ ẏ + y

)
∂

∂ẏ
,

whereas Eq. (10) results in
∆1 = −y2e2t.

Thus, formula (15) with respect to X4 gives

φ1 =

∫ ∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
0 et 0 et 0
0 1 y 0 ẏ
dt dx dy dẋ dẏ

1 ẋ ẏ

(
ẋ+

ẏ

y
e−t
) (

ẏ2

y
+ ẏ + y

)

∣∣∣∣∣∣∣∣∣∣∣∣
∆1

=

∫ {(
−ẏ
yet
− 1

et

)
dt− ẏ

y2et
dy +

1

yet
dẏ

}
=

1

et

(
ẏ

y
+ 1

)
. (26)
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Now choosing the variable φ1 instead of (say) ẏ and writing the generators in terms of the new
variables t, x, y, ẋ and φ1 yields

X̂1 =
∂

∂x
, X̂2 = et

∂

∂x
+ et

∂

∂ẋ
, X̂3 =

∂

∂x
+ y

∂

∂y
,

A2 =
∂

∂t
+ ẋ

∂

∂x
+ y(φ1e

t − 1)
∂

∂y
+
(
ẋ+ φ1 − e−t

) ∂

∂ẋ
.

(27)

where the operator A2 replaces the operator A1 in the space of the new variables. Again using the
above procedure with the operators (27) we have

∆2 = yet,

and with respect to X̂1, one gets

φ2 = (φ1 − 1)t+ e−t + φ1e
t + x− ln y − ẋ. (28)

This gives the new set of variables as t, x, y, φ1 and φ2 and correspondingly the operators reduce
to

ˆ̂
X2 = et

∂

∂x
,

ˆ̂
X3 =

∂

∂x
+ y

∂

∂y
,

A3 =
∂

∂t
+
(
(φ1 − 1)t+ e−t + φ1e

t + x− ln y − φ2
) ∂

∂x
+ y(φ1e

t − 1)
∂

∂y
.

This gives rise to
∆3 = yet,

and with respect to
ˆ̂
X2, the first integral is

φ3 =
1

2
e−2t − (φ2 − φ1 − φ1t+ ln y − x+ t)e−t. (29)

In the last iteration we write the generators in the newest variables t, y, φ1, φ2, and φ3 as

X̄3 = y
∂

∂y
, A4 =

∂

∂t
+ y(φ1e

t − 1)
∂

∂y
,

and consequently
∆4 = y.

whereas
φ4 = φ1e

t − t− ln y. (30)

Therefore from the first integrals (26)-(30) of system (25), we solve for the dependent variables
to deduce

x = (φ1 + φ3)et − 1

2
e−t − φ1t− φ1 + φ2 − φ4,

y = eφ1e
t−t−φ4 , .

Example 4.2. The system

ẍ =
1

ẋ2 − 2ẏ
, ÿ =

1 + ẋ

ẋ2 − 2ẏ
(31)

admitting the following symmetry ooperators (in extended form)

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = t

∂

∂x
+ x

∂

∂y
+

∂

∂ẋ
+ ẋ

∂

∂ẏ
,
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that has been solved in [26] using the solvable Lie algebra L4. It is already independent of x and
y, so it is of first order with respect to the variables ẋ and ẏ.

We intend to demonstrate the use of the method of successive reduction of order on this system
by transforming it to canonical space associated with the two symmetry generators X1 and X4.
This is due to these two generators commuting and thus the condition of Theorem (3.1) is satisfied.
Starting with X4, as a consequence of X2 and X3, it can be written as

X4 =
∂

∂ẋ
+ ẋ

∂

∂ẏ
.

Thus the transformation into the canonical space (r, u, v) associated with the above generator is

r = t, u = ẏ − ẋ2

2
, v = ẋ (32)

by which X̂4 =
∂

∂v
. Accordingly, the system in the canonical space is

u̇ =
−1

2u
, v̇ =

−1

2u
.

The above system is of order one with respect to the variable v and can be integrated easily.
However, we use the generator X1 to find the full solution to show the efficiency of the method.
Now X1 is already in canonical form and therefore the transformation that leads to our goal, which
is the canonical space of variables (ε, φ, θ), is

ε = u, φ = r, θ = v, (33)

by which the new system is
φ̇ = −2ε, θ̇ = 2,

whose solution is
φ = −ε2 + c1, θ = 2ε+ c2.

Substituting back to the coordinates (r, u, v), using (33), we find

u(t) = ±
√
c1 − t, v(t) = ±2

√
c1 − t+ c2.

Then substituting back to the variables (t, x, y), using (32), gives the reductions

ẋ = ±2
√
c1 − t+ c2, ẏ = ±

√
c1 − t+

1

2
(±
√
c1 − t+ c2)2,

whose solution is

x(t) = ∓2

3
(c1 − t)

3
2 + c2t+ c3,

y(t) = ±
√
c1 − t (c2t+ t− c2 − c1c2)− 1

4
t2 +

1

2
(c1 + c22)t+ c4.

Example 4.3. The Newtonian system

ẍ =
x

(x2 + y2)2
, ÿ =

y

(x2 + y2)2
, (34)

admits the Lie point symmetry generators in extended form given by

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− ẋ ∂

∂ẋ
− ẏ ∂

∂ẏ
,

X3 = y
∂

∂x
− x ∂

∂y
+ ẏ

∂

∂ẋ
− ẋ ∂

∂ẏ
.
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Despite the above generators forming a solvable Lie algebra, they are not enough to apply Lie’s
integration theorem. The Lie algebra

[X3, X1] = [X3, X2] = 0, [X1, X2] = 2X1, (35)

satisfies the condition of Theorem (3.1) and suggests the use of these operators in the order X3,
X1 and X2, respectively to apply successive reduction of order. In the first iteration we transform
the system (34) into the canonical coordinates (r, u, v) associated with X3 for which the canonical

form is X̂3 =
∂

∂v
. This is done by the transformation

r = t, u =
√
x2 + y2, v = tan−1

(
x

y

)
, (36)

which leads to the new system

ü =
u4v̇2 + 1

u3
, v̈ =

−2v̇u̇

u
, (37)

admitting the symmetry generators

X̂1 =
∂

∂r
, X̂2 = 2r

∂

∂r
+ u

∂

∂u
− u̇ ∂

∂u̇
− 2v̇

∂

∂v̇
.

According to (35), in the second iteration we use X̂1 and transform the system into the co-
ordinates of canonical variables (s, w, z) associated with X̂1. It is already in canonical form with
respect to the independent variable r. Hence to achieve our goal we use the transformation

s = u, w = r, z = v̇, (38)

mapping system (37) to

ẅ = −ẇ3

(
sz2 +

1

s3

)
, ż =

−2z

s
, (39)

which is first order with respect to ẇ and z. In the space of the new variables the symmetry
generator X̂2 transforms to

ˆ̂
X2 = s

∂

∂s
+ ẇ

∂

∂ẇ
− 2z

∂

∂z
− 3ż

∂

∂ż
.

At this stage, although the system is integrable, we continue using the symmetries to transform
it to an autonomous system. The last iteration uses the above symmetry generator which in the
canonical coordinates (ε, θ, φ) is of the form

X̄2 =
∂

∂ε
,

via the transformation

ε = ln s, θ = zs2, φ =
ẇ

s
. (40)

The associated canonical form of system (39) is the autonomous system

θ̇ = 0, φ̇ = −φ3(θ2 + 1)− φ,

whose solution is

θ(ε) = c, φ(ε) =
±1√

e2ε − 1− c1 + c2
.

Now we substitute back to the original variables. From Eq. (40) we have

z(s) =
c1
s2
, ẇ =

±s√
c2e2ε − 1− c1

,
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which gives

w(s) =
±1

c2

√
e2ε − 1− c1 + c3.

Then utilising (38) yields

u(r) =
±1
√
c2

√
c22(r − c3)2 + 1 + c1, v̇ =

c1
s2

=
c1c2

c22(r − c3)2 + 1 + c1
. (41)

The above gives

v(r) =
c1√

(1 + c21)
tan−1

(
c2(r − c3)√

1 + c21

)
. (42)

Finally we use the transformation (36) to arrive at

x(t) =
u(t) tan (v(t))√
1 + tan2 (v(t))

, y(t) =
u(t)√

1 + tan2 (v(t))
,

where u and v are defined in (41) and (42).

Example 4.4. The Hamiltonian system of equations under the influence of the potential [33, 34]

V =
1

2
(x2 + y2) +

2

(x+ y)2

is

ẍ+ x− 2

(x+ y)3
= 0, (43a)

ÿ + y − 2

(x+ y)3
= 0, (43b)

admits a six-parameter group of Lie point symmetries. Among others, two generators are

X1 =
∂

∂t
, X2 = −(y − x)

∂

∂x
+ (y − x)

∂

∂y
, (44)

with commutator
[X1, X2] = 0.

So, there is no harm with which we start the reduction process. Starting with X2, we transform
the system into its corresponding canonical coordinates (s, u, v), where

s = t, u = ln
√
x− y, v = x+ y. (45)

Thus the reduced system is

ü+ 2u̇2 +
1

2
= 0, v̈ + v − 4v−3 = 0.

Using X1 which is already in normal form, the above system is transformed into

ẇ =
−2

1 + 4r2
, ż = z3(r − 4

r3
)

whose solution can be easily found to be

w = − tan−1 2r − c1, z = ± r√
c3r2 − r4 − 4

.



Integrability via Lie symmetries

Substituting back to the coordinates (s, u, v), we have the system

u(s) = ln
√
c2 cos(c1 − s), v(s) = ±

√√
c3 − 16

2
sin(±2s+ c4) +

c3
2
,

which in the space of the original variables is

x(t) =
1

2

(
±
√√

c3 − 16

2
sin(±2t+ c4) +

c3
2
− c2 cos(c1 − t)

)
,

y(t) =
1

2

(
±
√√

c3 − 16

2
sin(±2t+ c4) +

c3
2

+ c2 cos(c1 − t)

)
.

Example 4.5. The system of equations of motion of the time-dependent n-dimensional oscillator
written as

ẍi + Ω2(t)xi = 0, i = 1, ..., n, (46)

admits n2 +4n+3 Lie point symmetries from which the Nöether symmetries are singled out to find
first integrals of the system by using Nöether theorem [17]. Here we use Lie’s integration theorem
to solve this system. We choose the Abelian transitive subgroup consisting of the 2n symmetry
generators

X1i = ρ cos θ
∂

∂xi
, (47a)

X2i = ρ sin θ
∂

∂xi
, (47b)

where ρ(t) and θ(t) are functions satisfying

ρ̈+ Ω2ρ = ρ−3, θ̇ = ρ−2.

This fulfills the conditions of Lie’s integration theorem. The linear partial differential operator
associated with system (46) is

A =
∂

∂t
+ ẋi

∂

∂xi
− Ω2(t)xi

∂

∂xi
,

where the repetition of the indices implies summation of the n terms and the fist order prolongation
of the operators (47) are

X ′1i = ρ cos θ
∂

∂xi
+ (ρ̇ cos θ − ρ sin θθ̇)

∂

∂ẋi
,

X ′2i = ρ sin θ
∂

∂xi
+ (ρ̇ sin θ + ρ cos θθ̇)

∂

∂ẋi
.

Since the group is Abelian, it doesn’t matter with which generator we start and therefore we can
use the same ∆ to find all the first integrals from the determinant of the (2n+ 1)× (2n+ 1) matrix

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X ′11
...

X ′1n
X ′2n

...
X ′2n
A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ρ cos θ 0 −ρ̇ cos θ − ρθ̇ sin θ 0
...

. . .
. . .

0 0 ρ cos θ 0 −ρ̇ cos θ − ρθ̇ sin θ

0 ρ sin θ 0 −ρ̇ sin θ + ρθ̇ cos θ 0
...

. . .
. . .

0 0 ρ sin θ 0 −ρ̇ sin θ + ρθ̇ cos θ
1 ẋ1 · · · · · · ẋn −Ω2x1 · · · · · · − Ω2xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ρ2nθ̇n,
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where 0 = [0 ... 0]. First integral φ1i with respect to X1i is found from the formula

φ1i =

∫ ∣∣∣∣∣∣∣∣
dt dx1 ... dxn dẋ1 ... dẋn

X′1k
X′2j
A

∣∣∣∣∣∣∣∣
∆

, i, j, k = 1, ..., n, k 6= i,

which gives

φ1i =
xi
ρ

cos θ + (xiρ̇− ρẋi) sin θ.

The same formula is applied to find the first integrals with respect to the operators X2i to give

φ2i =
xi
ρ

sin θ − (xiρ̇− ρẋi) cos θ.

Using the above first integrals we can find the full set of solutions as

xi = ρ (φ1i cos θ + φ2i sin θ) ,

which exactly matches the solution deduced in [17,18].

Example 4.6. The geodesic system of Bertotti-Robinson’s electromagnetic universe is given by [20]

ẗ+ 2 coth rṫṙ = 0, r̈ + sinh r cosh rṫ2 = 0, (48a)

φ̈+ 2 cot zφ̇ż = 0, z̈ − cos z sin zφ̇2 = 0. (48b)

This system admits the Lie algebra L8 consisting of Lie point symmetry operators

X1 = s
∂

∂s
, X2 =

∂

∂s
, X3 =

∂

∂t
, X4 =

∂

∂φ
,

X5 = cot z cosφ
∂

∂φ
+ sinφ

∂

∂z
, X6 = cot z sinφ

∂

∂φ
− cosφ

∂

∂z
,

X7 = et coth r
∂

∂t
− et ∂

∂r
, X8 = e−t coth r

∂

∂t
+ e−t

∂

∂r
,

which do not constitute a solvable algebra. It is notable that system (48) is composed of two
independent sets of ODEs each consisting of two equations. The first set is composed of Eqs. (48a)
admitting the radical subalgebra of L8

rad(L8) = 〈X1, X2, X3, X7, X8〉, (49)

and the second one is the set of Eqs. (48b) admitting the non-solvable subalgebra

〈X1, X2, X4, X5, X6〉. (50)

The radical subalgebra (49) provides the necessary condition, in addition to its transitivity, in
order to apply Lie’s integration theorem for solving the first set of ODEs in (t(s), r(s)) space, with
associated operator A

A =
∂

∂s
+ ṫ

∂

∂t
+ ṙ

∂

∂r
− 2 coth rṫṙ

∂

∂ṫ
− sinh r cosh rṫ2

∂

∂ṙ
.

Hence for the solution in the space of (t(s), r(s)), we use Lie’s integration theorem, while for the
solution in the space of (φ(s), z(s)) we can use the method of successive reduction if the Lie algebra
(50) satisfies the chain (24) or a part thereof.
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We consider the chain of the derived subalgebras

〈X1, X2, X3, X7〉 ⊃ 〈X2, X3, X7, 〉 ⊃ 〈X2, X7, 〉 ⊃ 〈X2〉, (51)

and accordingly the first integrals are, with respect to the track X1 −→ X3 −→ X7 −→ X2. In the
first iteration,

∆1 =

∣∣∣∣∣∣∣∣∣∣
X ′1
X ′2
X ′3
X ′7
A

∣∣∣∣∣∣∣∣∣∣
=

et

sinh2 r

(
ṫ sinh r cosh r + ṙ

) (
ṫ2 sinh2 r − ṙ2

)
,

with

φ1 =

∫
ṫ2 sinh r cosh r

ṫ2 sinh2 r − ṙ2
dr − ṫ sinh2 r

ṫ2 sinh2 r − ṙ2
dṫ− ṙ

ṫ2 sinh2 r − ṙ2
dṙ

= ln

(
1√

ṫ2 sinh2 r − ṙ2

)
.

Let φ1 be instead of ṙ, where

ṙ = ±
√
ṫ2 sinh2 r − e−2φ1 .

We consider the positive root of ṙ. Accordingly, in the space of the new set of variables s, t, r, ṫ, φ1,
the new operators read

A2 =
∂

∂s
+ ṫ

∂

∂t
+
√
ṫ2 sinh2 r − e−2φ1

∂

∂r
− 2ṫ

√
ṫ2 sinh2 r − e−2φ1 coth r

∂

∂ṫ
,

X̂2 =
∂

∂s
, X̂3 =

∂

∂t
,

X̂7 = et coth r
∂

∂t
− et ∂

∂r
+ et

(
coth rṫ− ṫ2 sinh2 r − e−2φ1

sinh2 r

)
∂

∂ṫ
.

Thus

∆2 =
et

sinh2 r

√
ṫ2 sinh2 r − e−2φ1

(
ṫ sinh r cosh r +

√
ṫ2 sinh2 r − e−2φ1

)
.

and φ2, with respect to X3,

φ2 = t+ ln
(√

ṫ2 sinh2 r − e−2φ1 + ṫ sinh r cosh r
)
.

So
t = φ2 − ln

(√
ṫ2 sinh2 r − e−2φ1 + ṫ sinh r cosh r

)
.

The third iteration is in the space of the variables s, r, ṫ, where

A3 =
∂

∂s
+
√
ṫ2 sinh2 r − e−2φ1

∂

∂r
− 2ṫ

√
ṫ2 sinh2 r − e−2φ1 coth r

∂

∂ṫ
,

ˆ̂
X2 =

∂

∂s
,

ˆ̂
X7 =− eφ2−ln

(√
ṫ2 sinh2 r−e−2φ1+ṫ sinh r cosh r

)
∂

∂r

+

(
coth rṫ− ṫ2 sinh2 r − e−2φ1

sinh2 r

)
e
φ2−ln

(√
ṫ2 sinh2 r−e−2φ1+ṫ sinh r cosh r

)
∂

∂ṫ
,
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and the third first integral is, with respect to
ˆ̂
X7 according to (51). Hence

∆3 =
eφ2

sinh2 r

√
ṫ2 sinh2 r − e−2φ1 ,

with

φ3 =

∫
−e−φ2

(
2ṫ sinh r cosh rdr + sinh2 rdṫ

)
= −e−φ2 ṫ sinh2 r,

from which

ṫ = − φ3e
φ2

sinh2 r
. (52)

In the fourth and last iteration, we are in the space of the variables s, r, where

A4 =
∂

∂s
+

√
φ3e

φ2

sinh2 r
− e−2φ1

∂

∂r
, X̃2 =

∂

∂s
,

and

∆4 =

√
φ3eφ2 − e−2φ1 sinh2 r

sinh r
.

Therefore, the fourth first integral is

φ4 =

∫ ∣∣∣∣∣∣
ds dr

1

√
φ3eφ2 − e−2φ1 sinh2 r

sinh r

∣∣∣∣∣∣
∆4

= s− eφ1 sin−1

(
e−φ1 cosh r√
φ3eφ2 + e−2φ1

)
,

Let α = φ3e
φ2 , β = e−φ2 and φ4 = 0. Hence

cosh r =

√
α2 + β2

β
sin(βs), (53)

and therefore

r(s) = cosh−1

(√
α2 + β2

β
sin(βs)

)
.

From (53) we have

sinh r =
1

β

√
(α2 + β2) sin2(βs)− β2.

Therefore we can rewrite Eq. (52) as

ṫ = − α

sinh2 r
= − αβ2

(α2 + β2) sin2(βs)− β2
,

whose integral is

t(s) = ln

(√
α tan(βs) + β

α tan(βs)− β

)
.

For the solution in the space of (φ(s), z(s)), we utilise the non-solvable subalgebra (50) to solve
the second set of two ODEs (48b) using the method of successive reduction according to the chain
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X2 then X1 since [X2, X1] = X2. Due to X4, the system is of first order with respect to φ̇. We

want to reduce it to be of first order with respect to ż too. Thus we use the generator X2 =
∂

∂s
with the transformation

t = z, x = φ, y = s. (54)

Hence

ẋ =
φ̇

ż
, ẏ =

1

ż
,

and therefore

ẍ =
1

ż3
(żφ̈− φ̇z̈), ÿ = − z̈

ż3
.

Substituting for φ̈ and z̈ from the original system gives the new system

ẍ+ 2 cot tẋ+ cos t sin tẋ3 = 0,

ÿ + cos t sin tẋ2ẏ = 0,

which is of first order w.r.t.ẋ and ẏ.
In the space of the variables (t, x, y) the symmetry operators are

X̂1 = y
∂

∂y
+ ẏ

∂

∂ẏ
, X̂2 =

∂

∂y
, X̂4 =

∂

∂x
.

In the second reduction we use the operator X̂1. Since the system is independent of y, this
latter operator can be written as

X̂1 = ẏ
∂

∂ẏ
,

which has the canonical form
ˆ̂
X1 =

∂

∂u
,

via the transformation
u = ln ẏ, v = ẋ, t = t, (55)

where
X̂1u = 1, X̂1v = X̂1t = 0.

Thus

u̇ =
ÿ

ẏ
, v̇ = ẍ,

and the new reduced system is

v̇ + 2 cot tv + cos t sin t v3 = 0, (56a)

u̇+ cos t sin t v2 = 0. (56b)

The equation (56a) is Bernoulli’s equation which can be solved by the transformation

ω = v−2 ⇒ ω̇ = −2v−3v̇. (57)

Substituting this into (56a) gives

ω̇ =
4 cot t

v2
+ 2 cos t sin t,

or
ω̇ − 4 cot tω = 2 cos t sin t,

which is a first-order differential equation which can be solved using the integrating factor

µ =
1

sin4 t
.
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Thus
ω(t) = sin2 t(c1 sin2 t− 1).

Inserting back into (57) gives

v =
1√
ω

= ± 1

sin t
√
c1 sin2 t− 1

and this result into Eq. (56b) yields

u̇ = − cos t

sin t(c1 sin2 t− 1)

whose solution is

u(t) = ln

(
sin t√

c1 sin2 t− 1

)
+ c.

From the transformation (55) we find the variables ẋ and ẏ as

ẋ = v = ± 1

sin t
√
c1 sin2 t− 1

,

ẏ = eu =
c2 sin t√
c1 sin2 t− 1

,

resulting in

x = ∓1

2
tan−1

(
1− c1 sin2 t+ cos2 t

2 cos t
√
c1 sin2 t− 1

)
+ c3,

y = − c2
2
√
c1

tan−1

(
1− c1 + 2 cos2 t

2
√
c1 cos t

√
c1 sin2 t− 1

)
+ c4.

Reverting back to the space (s, φ, z) via the transformation (54) gives rise to

φ = ∓1

2
tan−1

(
1− c1 sin2 z + cos2 z

2 cos z
√
c1 sin2 z − 1

)
+ c3,

which is an implicit relation between the dependent variables φ(s) and z(s), where the latter can
be found from the implicit relation

tan

(
−

2
√
c1

c2
(s− c4)

)
=

1− c1 + 2 cos2 z

2
√
c1 cos z

√
c1 sin2 z − 1

.

Example 4.7. The motion of a unit mass particle in three-dimensional space governed by the
potential V (x, y, z) = xyz is described by the Hamiltonian system of equations in Newtonian
form [34]

ẍ = −yz, ÿ = −xz, z̈ = −xy. (58)

This system admits the two-dimensional Lie group of symmetries with generators

X1 =
∂

∂t
, X2 = t

∂

∂t
− 2x

∂

∂x
− 2y

∂

∂y
− 2z

∂

∂z
,

which is not enough to apply Lie’s integration theorem or the method of successive reduction of
order. We apply the method of invariants to find a solution for the system (58). Eq. (9) of Theorem
(2) in [32] gives

Y =
∂

∂t
− 2x

t

∂

∂x
− 2y

t

∂

∂y
− 2z

t

∂

∂z
,

ψ1 = −2x

t
, ψ2 = −2y

t
, ψ3 = −2z

t
,
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with respect to the generator X2. Consequently

Y ψ1 =
6x

t2
, Y ψ2 =

6y

t2
, Y ψ3 =

6z

t2
,

and

Q1 =
6x

t2
+ yz, Q2 =

6y

t2
+ xz, Q3 =

6z

t2
+ xy.

Now Qi = 0 give the non-trivial solutions

x(t) = − 6

t2
, y(t) = z(t) =

6

t2
,

y(t) = − 6

t2
, x(t) = z(t) =

6

t2
,

z(t) = − 6

t2
, x(t) = y(t) =

6

t2
,

and

x(t) = y(t) = z(t) = − 6

t2
.

5 Concluding remarks

Lie’s integration theorem for a scalar ODE was extended to a system of ODEs given in the
form of theorem (2.2). We noticed that the approach of this theorem is more practical as compared
to the previous algorithm [26] for solving a system of ODEs due to its algebraic nature. It may
happen that the Lie algebra admitted by a system of ODEs is of high dimension but the condition
of transitivity is not satisfied, which prevents the implementation of Lie’s integration theorem. In
this case the method of successive reduction of order of a system may be an alternative choice as
opposed to the remarks made in [26]. Here we have proved theorem (3.1) in which this method
is shown to be applicable for a system of ODEs admitting a Lie algebra satisfying the chain (24)
in order to use the symmetries admitted by the original system instead of finding new admitted
symmetries for the reduced system in each iteration. If a single symmetry exists, there is always
a possible reduction with respect to one variable, and if the condition (19) is satisfied, another
reduction is attainable. The number of reductions depends on how many commutator brackets one
can find in the order of the series (24). We observed that this chain guarantees that the Lie algebra
is solvable. However, but the converse may not be true. The additional advantage of this method
is that even if the Lie algebra satisfies a part of the chain (24), one can still reduce the system
to a lower order. In both of the above mentioned methods, one has to find a suitable chain of
derived subalgebras (except in the case of an Abelian Lie algebra) in order to utilise the symmetry
generators in a correct order.

If none of the conditions of the above two methods are satisfied by the admitted Lie algebra,
one may try to apply the method of invariant solutions. The extended Bluman’s theorem [32] for a
system of ODEs provides necessary conditions for the system to admit invariant solutions without
performing integration. Here we have provided the Example (4.7) to demonstrate the use of this
theorem for the sake of completeness. In case one fails to find an invariant solution, the method of
differential invariants may provide first integrals, or may be used to reduce the order of the system.
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