Acknowledgment
This work was supported by National Natural Science Foundation of China (No. 21978055 and 21808040), and “High-level Talents Program” of Pearl River (2017GC010080).
References
1. de Almeida JLG, Dufaux M, Taarit YB, Naccache C. Linear alkylbenzene. J. Am. Oil. Chem. Soc. 1994;71(7):675-694.
2. Yadav GD, Doshi NS. Synthesis of Linear Phenyldodecanes by the Alkylation of Benzene with 1-Dodecene over Non-Zeolitic Catalysts. Org. Process Res. Dev.2002;6(3):263-272.
3. Cao Y, Kessas R, Naccache C, Ben Taarit Y. Alkylation of benzene with dodecene. The activity and selectivity of zeolite type catalysts as a function of the porous structure. Appl. Catal., A. 1999;184(2):231-238.
4. Tsai T-C, Wang I, Li S-J, Liu J-Y. Development of a green LAB process: alkylation of benzene with 1-dodecene over mordenite. Green Chem. 2003;5(4):404-409.
5. Sivasanker S, Thangaraj A. Distribution of isomers in the alkylation of benzene with long-chain olefins over solid acid catalysts. J. Catal. 1992;138(1):386-390.
6. Kocal JA, Vora BV, Imai T. Production of linear alkylbenzenes. Appl. Catal., A.2001;221(1):295-301.
7. Aitani A, Wang JB, Wang I, Al-Khattaf S, Tsai T-C. Environmental Benign Catalysis for Linear Alkylbenzene Synthesis: A Review. Catal. Surv. from Asia.2014;18(1):1-12.
8. Harmer MA, Sun Q. Solid acid catalysis using ion-exchange resins. Appl. Catal., A.2001;221(1):45-62.
9. Mokaya R, Jones W. Pillared Clays and Pillared Acid-Activated Clays: A Comparative-Study of Physical, Acidic, and Catalytic Properties. J. Catal.1995;153(1):76-85.
10. Zhang J, Zhu Z, Li C, Wen L, Min E. Characterization and kinetic investigation of tungstophosphoric supported on SiO2 for alkylation of benzene with 1-dodecene to synthesize linear alkylbenzene. J. Mol. Catal. A: Chem. 2003;198(1):359-367.
11. Wang J-J, Chuang Y-Y, Hsu H-Y, Tsai T-C. Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: A mini review. Catal. Today.2017;298:109-116.
12. Jian LIU HL, Bin TAN, Ping LI, Jianhong XU. Research progress in long chain catalytic alkylation of aromatic hydrocarbons. Chem. Ind. Eng. Prog.2020;39(5):1744-1755.
13. Zheng YW, Yi MW. Catalytic Application of Mesoporous ZSM-5 Zeolite. Curr. Org. Chem. 2014;18(10):1305-1322.
14. Sugi Y, Vinu A. Alkylation of Biphenyl over Zeolites: Shape-Selective Catalysis in Zeolite Channels. Catal. Surv. from Asia. 2015;19(3):188-200.
15. Zhou Y, Mu Y, Hsieh M-F, et al. Enhanced Surface Activity of MWW Zeolite Nanosheets Prepared via a One-Step Synthesis. J. Am. Chem. Soc. 2020;142(18):8211-8222.
16. Maheshwari S, Jordan E, Kumar S, et al. Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. J. Am. Chem. Soc.2008;130(4):1507-1516.
17. Lv D, Wu Y, Chen J, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane. AIChE J.2020;66(9):e16287.
18. Zhang Y, Kubů M, Mazur M, Čejka J. Synthesis of Pt-MWW with controllable nanoparticle size.Catal Today. 2019;324:135-143.
19. Roth WJ, Nachtigall P, Morris RE, Čejka J. Two-Dimensional Zeolites: Current Status and Perspectives. Chem. Rev. 2014;114(9):4807-4837.
20. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science.1994;264(5167):1910-1913.
21. Chen J-Q, Li Y-Z, Hao Q-Q, et al. Controlled direct synthesis of single- to multiple-layer MWW zeolite. Natl. Sci. Rev. 2020;236:1-8.
22. Sabnis S, Tanna VA, Li C, et al. Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chem.Commun. 2017;53(52):7011-7014.
23. Wang Z, Cichocka MO, Luo Y, et al. Controllable direct-syntheses of delaminated MWW-type zeolites. Chinese J. Catal. 2020;41(7):1062-1066.
24. Položij M, Thang HV, Rubeš M, Eliášová P, Čejka J, Nachtigall P. Theoretical investigation of layered zeolites with MWW topology: MCM-22P vs. MCM-56. Dalton Trans. 2014;43(27):10443-10450.
25. Carriço CS, Cruz FT, Santos MB, Pastore HO, Andrade HMC, Mascarenhas AJS. Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous Mesoporous Mater.2013;181:74-82.
26. Olson A. Alkylation of Aromatics with 1-Alkenes. Ind. Eng. Chem. 1960;52(10):833-836.
27. Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. J. Am. Chem. Soc.2010;132(12):4169-4177.
28. He YJ, Nivarthy GS, Eder F, Seshan K, Lercher JA. Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous Mesoporous Mater. 1998;25(1):207-224.
29. Jankowska A, Kowalczyk A, Rutkowska M, Mozgawa W, Gil B, Chmielarz L. Silica and silica–titania intercalated MCM-36 modified with iron as catalysts for selective reduction of nitrogen oxides – the role of associated reactions.Catal. Sci. Technol. 2020;10(23):7940-7954.
30. Marosz M, Samojeden B, Kowalczyk A, et al. MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration. Mater. 2020;13(10):2399.
31. Hao Q-Q, Lei C-Y, Song Y-H, Liu Z-T, Liu Z-W. The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catal Today.2016;274:109-115.
32. Corma A, Díaz U, García T, Sastre G, Velty A. Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. J. Am. Chem. Soc. 2010;132(42):15011-15021.
33. Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Pariente J. Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22. Zeolites.1995;15(7):576-582.
34. Kennedy GJ, Lawton SL, Fung AS, Rubin MK, Steuernagel S. Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catal Today. 1999;49(4):385-399.
35. Chen J, Liang T, Li J, et al. Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catal.2016;6(4):2299-2313.
36. Schwanke A, Pergher S. Lamellar MWW-Type Zeolites: Toward Elegant Nanoporous Materials.Appl. Sci. 2018;8(9):1636.
37. Schwanke AJ, Pergher S, Díaz U, Corma A. The influence of swelling agents molecular dimensions on lamellar morphology of MWW-type zeolites active for fructose conversion. Microporous Mesoporous Mater. 2017;254:17-27.