Case I: Informative initial guess |
\(N(\mu:\ \theta_{j},\ \sigma:\ s_{\theta_{j}}=\frac{1}{5}\theta_{j})\) |
Discard any parameter initial guesses beyond \(\theta_{j}\)
\(\pm\ \)3\({s_{\theta}}_{j}\) and select again. |
Case II: Moderately informative initial guess |
\(N(\mu:\ \theta_{j},\ \sigma:\ s_{\theta_{j}}=\frac{1}{2}\theta_{j})\) |
Discard any negative parameter initial guesses and any values beyond
\(\theta_{j}\) \(\pm\ \)3\({s_{\theta}}_{j}\) and selected
again. |
Case III: Misinformed initial guess |
\(N(\mu:\ \theta_{j},\ \sigma:\ s_{\theta_{j}}=\frac{1}{5}\theta_{j})\) |
Select initial guess all from the tails of the distribution,
beyond \(\theta_{j}\) \(\pm\)3 \(s_{\theta_{j}}\). Discard any negative
value and select again. |