References
(1) Riboldi, L.; Bolland, O. Overview on Pressure Swing Adsorption (PSA)
as CO2 Capture Technology: State-of-the-Art, Limits and
Potentials. Energy Procedia 2017 , 114 (1876),
2390–2400. https://doi.org/10.1016/j.egypro.2017.03.1385.
(2) Mosca, A.; Hedlund, J.; Webley, P. A.; Grahn, M.; Rezaei, F.
Structured Zeolite NaX Coatings on Ceramic Cordierite Monolith Supports
for PSA Applications. Microporous Mesoporous Mater.2010 , 130 (1–3), 38–48.
https://doi.org/10.1016/j.micromeso.2009.10.010.
(3) Webley, P. A. Adsorption Technology for CO2Separation and Capture: A Perspective. Adsorption 2014 ,20 (2–3), 225–231. https://doi.org/10.1007/s10450-014-9603-2.
(4) Gelles, T.; Lawson, S.; Rownaghi, A. A.; Rezaei, F. Recent
Advances in Development of Amine Functionalized Adsorbents for
CO2 Capture ; Springer US, 2019.
https://doi.org/10.1007/s10450-019-00151-0.
(5) Rao, A. B.; Rubin, E. S. A Technical , Economic , and Environmental
Assessment of Amine-Based CO2 Capture Technology for
Power Plant Greenhouse Gas Control. Environ. Sci. Technol.2002 , 36 , 4467–4475.
(6) Yu, C.; Huang, C.; Tan, C. A Review of CO2 Capture
by Absorption and Adsorption. 2012 , 745–769.
https://doi.org/10.4209/aaqr.2012.05.0132.
(7) Bosoaga, A.; Masek, O.; Oakey, J. E. CO2 Capture
Technologies for Cement Industry. Energy Procedia 2009 ,1 (1), 133–140. https://doi.org/10.1016/j.egypro.2009.01.020.
(8) Lee, S. Y.; Park, S. J. A Review on Solid Adsorbents for Carbon
Dioxide Capture. J. Ind. Eng. Chem. 2015 , 23 ,
1–11. https://doi.org/10.1016/j.jiec.2014.09.001.
(9) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R.
Post-Combustion CO2 Capture Using Solid Sorbents: A
Review. 2012 , 1438–1463.
(10) Ding, Y.; Alpay, E. Equilibria and Kinetics of CO2 Adsorption on
Hydrotalcite Adsorbent. Chem. Eng. Sci. 2000 , 55(17), 3461–3474. https://doi.org/10.1016/S0009-2509(99)00596-5.
(11) Rezaei, F.; Sakwa-Novak, M. A.; Bali, S.; Duncanson, D. M.; Jones,
C. W. Shaping Amine-Based Solid CO2 Adsorbents: Effects
of Pelletization Pressure on the Physical and Chemical Properties.Microporous Mesoporous Mater. 2015 , 204 (2015),
34–42. https://doi.org/10.1016/j.micromeso.2014.10.047.
(12) Lawson, S.; Adebayo, B.; Robinson, C.; Al-naddaf, Q.; Ali, A. The
Effects of Cell Density and Intrinsic Porosity on Structural Properties
and Adsorption Kinetics in 3D-Printed Zeolite Monoliths. Chem.
Eng. Sci. 2020 , 115564.
https://doi.org/10.1016/j.ces.2020.115564.
(13) Deng, H.; Yi, H.; Tang, X.; Yu, Q.; Ning, P.; Yang, L. Adsorption
Equilibrium for Sulfur Dioxide, Nitric Oxide, Carbon Dioxide, Nitrogen
on 13X and 5A Zeolites. Chem. Eng. J. 2012 , 188 ,
77–85. https://doi.org/10.1016/j.cej.2012.02.026.
(14) Deng, H.; Yi, H.; Tang, X.; Liu, H.; Zhou, X. Interactive Effect
for Simultaneous Removal of SO2, NO, and
CO2 in Flue Gas on Ion Exchanged Zeolites. Ind.
Eng. Chem. Res. 2013 , 52 (20), 6778–6784.
https://doi.org/10.1021/ie303319f.
(15) Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M.
Capture of CO2 from High Humidity Flue Gas by Vacuum
Swing Adsorption with Zeolite 13X. 2008 , 415–422.
https://doi.org/10.1007/s10450-007-9100-y.
(16) Li, G.; Xiao, P.; Webley, P. A.; Zhang, J.; Singh, R. Competition
of CO2/H2O in Adsorption Based
CO2 Capture. Energy Procedia 2009 ,1 (1), 1123–1130. https://doi.org/10.1016/j.egypro.2009.01.148.
(17) Thakkar, H. V.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J.
C.; Rezaei, F. 3D-Printed Zeolite Monoliths for CO2 Removal from
Enclosed Environments. ACS Appl. Mater. Interfaces 2016 ,4 , 1–9. https://doi.org/10.1021/acsami.6b09647.
(18) Monash, P.; Pugazhenthi, G. Development of Ceramic Supports Derived
from Low-Cost Raw Materials for Membrane Applications and Its
Optimization Based on Sintering Temperature. Int. J. Appl. Ceram.
Technol. 2011 , 8 (1), 227–238.
https://doi.org/10.1111/j.1744-7402.2009.02443.x.
(19) Neimark, A. V.; Thommes, M.; Sing, K. S. W.; Rodriguez-Reinoso, F.;
Olivier, J. P.; Kaneko, K.; Rouquerol, J. Physisorption of Gases, with
Special Reference to the Evaluation of Surface Area and Pore Size
Distribution (IUPAC Technical Report). Pure Appl. Chem.2015 , 87 (9–10), 1051–1069.
https://doi.org/10.1515/pac-2014-1117.
(20) Xiao, P.; Zhang, J.; Webley, P.; Li, G.; Singh, R.; Todd, R.
Capture of CO2 from Flue Gas Streams with Zeolite 13X by
Vacuum-Pressure Swing Adsorption. Adsorption 2008 ,14 (4–5), 575–582. https://doi.org/10.1007/s10450-008-9128-7.
(21) Chue, K. T.; Kim, J. N.; Yoo, Y. J.; Cho, S. H. Comparison of
Activated Carbon and Zeolite 13X for CO2 Recovery from
Flue Gas by Pressure Swing Adsorption. 1995 .
https://doi.org/10.1021/ie00041a020.
(22) Girimonte, R.; Formisani, B.; Testa, F. Adsorption of CO2 on a
Confined Fluidized Bed of Pelletized 13X Zeolite. Powder Technol.2017 , 311 , 9–17.
https://doi.org/10.1016/j.powtec.2017.01.033.
(23) Lee, Y. C.; Weng, L. C.; Tseng, P. C.; Wang, C. C. Effect of
Pressure on the Moisture Adsorption of Silica Gel and Zeolite 13X
Adsorbents. Heat Mass Transf. und Stoffuebertragung2014 , 51 (3), 441–447.
https://doi.org/10.1007/s00231-014-1442-x.
(24) Plaza, M. G.; González, A. S.; Rubiera, F.; Pevida, C. Evaluation
of Microporous Biochars Produced by Single-Step Oxidation for
Postcombustion CO2 Capture under Humid Conditions. Energy
Procedia 2014 , 63 (May 2015), 693–702.
https://doi.org/10.1016/j.egypro.2014.11.077.
(25) Luo, L.; Guo, Y.; Zhu, T.; Zheng, Y. Adsorption Species
Distribution and Multicomponent Adsorption Mechanism of
SO2, NO, and CO2 on Commercial
Adsorbents. Energy and Fuels 2017 , 31 (10),
11026–11033. https://doi.org/10.1021/acs.energyfuels.7b01422.
(26) Yang, J.; Yu, X.; Yan, J.; Tu, S. T.; Dahlquist, E. Effects of
SO2 on CO2 Capture Using a Hollow Fiber
Membrane Contactor. Appl. Energy 2013 , 112 ,
755–764. https://doi.org/10.1016/j.apenergy.2012.11.052.
(27) Rezaei, F.; Webley, P. Structured Adsorbents in Gas Separation
Processes. Sep. Purif. Technol. 2010 , 70 (3),
243–256. https://doi.org/10.1016/j.seppur.2009.10.004.