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Text S1. CM2.1 validation In addition to the discussion in the main text, Fig. S1

shows the latitude-pressure zonal mean zonal wind seasonal climatologies of the mean

and interannual standard deviation. The model shows good agreement at all levels and
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seasons, although there is some overestimation of southern upper stratospheric variability

in September-October-November and the model does not simulate the Quasi-Biennial

Oscillation, resulting in underestimates in tropical interannual variability.

Text S2. The 2002 and 2019 events Fig. S2 shows the evolution of u1060 and polar

cap stratospheric ozone during the springs of 2002 and 2019 from ERA5.

Text S3. Surface impacts Just as for the observed SSWs, in our present-day sim-

ulation SSWs are followed by a negative phase of the SAM on a monthly to seasonal

timescale (Fig. S3a; only composites for SSW-weak are shown) (Thompson et al., 2005),

accompanied by colder and wetter conditions over New Zealand and South America as

well as warmer and drier conditions over Eastern Australia (Figs. S3b and S3c). These

surface impacts agree well with previous work (Gillett et al., 2006; Lewis, 2019; Lim et

al., 2019) and the reanalysis data from the 2002 and 2019 events, confirming that our

model reproduces the dynamical evolution of SSWs well and that our definition based on

anomalous u1060 does indeed capture events with considerable surface impact. We note

that the surface impact of early SSW-weak events (e.g. those occurring in June and July)

is similar to the impact of later events (not shown).

Text S4. CMIP6 model selection We consider pre-industrial control (piControl) and

Shared Socioeconomic Pathway 585 (SSP585) (O’Neill et al., 2014) simulations (which

include e.g. ozone hole recovery, Fig. 4 and Table S1). The models from the CMIP6

archive were chosen based on the availability of daily data for both piControl and SSP585

scenarios, and given the lack of stratospheric variability in low top models (Charlton-Perez

et al., 2013), we require a well resolved stratosphere with at least 30 vertical levels and
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a model top at or above 1 hPa. For piControl we required at least 100 years of data for

sufficient statistics. The five models that fulfill all these conditions are CESM2-WACCM,

CanESM5, GFDL-CM4, INM-CM5-0, MIROC6, and the data used comprise a total of

3,341 years of piControl as well as 5x80 years of SSP585 (from 2021 to 2100). One ensemble

member (r1i1p1f) for each model was considered.

Text S5. Uncertainty estimates For the two CM2.1 simulations, frequency uncer-

tainties in Fig. 2 are computed by splitting the 9,900 years (after 90 years spinup) into

99 century-long non-overlapping segments, and computing the mean and standard devi-

ation from this ensemble. For CMIP6 there are not enough events for similar statistical

calculations, and the raw results are reported in Table S1.

Text S6. Return time If SSWs are random and independent, we should be able to model

them as a Poisson process. For such a process, the return or waiting time can be computed

using an exponential distribution with an expectation value equal to the mean occurrence

frequency: PDF = λ exp(−λx), where λ is the average frequency (e.g. 1/21.6 years for

present-day SH SSW-weak events) and x is the waiting time in years (Gumbel, 1941).

This is an approximation to a binomial distribution assuming large sample size and low

probability. Since in our case we do not always have large sample size, we compute

the return time using the binomial distribution. Then, the return time distribution is

determined by the probability of zero events during a given time period (k = 0, n =number

of years, p = 1/mean return time to be fitted). This has the advantage of being able to

compute the probabilities for an arbitrary number of events, while still being able to check

the validity of randomness and independence. The cumulative distribution function of the
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exponential distribution is an approximation (again large sample size and low probability)

for the survival function of a binomial distribution for zero events. Therefore, we use

the latter to compute the probability of one or more events within a given time period,

provided the events are independent and random.

Explicitly, the return time PDF of a random and independent process follows a binomial

distribution of zero events, as the return time corresponds to the probability of no event

happening within a given time interval:

P (y) =

[
k=N∑
k=0

(
y

k

)(
1

τ

)k (
1 − 1

τ

)y−k
]
N=0

=

(
1 − 1

τ

)y

, (1)

where y is the time interval in years, N(= 0) is the number of events, and τ is the mean

time interval between two SSWs (e.g. 21.6 years for present-day SSW-weak events). This

is what is shown as solid black line in the return time plots of Fig. 2.

The probability of one or more events within a given time interval is simply 1 − P (y),

which is shown as dashed black line in the return time plots. This so-called ’survival

function’ is used along with the cumulative probability function (as shown above but not

setting N = 0) and the mass probability function (without the summation) to compute

the various probabilities reported in the text and Table ??. For instance, the probability

of at least one SSW-reversal in 80 years is 1 − (1 − 1/883)80 ≈ 8.7%, and the probability

of exactly two SSW-weak events in 41 years of present-day conditions is(
41

2

)(
1

21.6

)2(
1 − 1

21.6

)41−2

≈ 28%, (2)

as reported in Table 1.
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Figure S1. Comparison of (left) CM2.1 and (right) ERA5 zonal mean zonal wind

climatology (a,b) and interannual standard deviation (c,d).
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Figure S2. u1060 (solid), and polar cap (60-90◦S) averaged ozone mass mixing ratio at

50 hPa (dashed) for the springs of (a) 2002 and (b) 2019 from ERA5 reanalysis. The solid

vertical lines denote the onset date based on the SSW-weak definition.
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Figure S3. Composited surface anomalies averaged 0-60 days after the onset day

for (a) surface pressure, (b) surface temperature and (c) precipitation for present-day

CM2.1 SSW-weak events. The composites of the 2002 and 2019 events from ERA5 are

added in gray contours for direct comparison except for precipitation which is too noisy in

ERA5. Anomalies are relative to daily climatology, and only values which are statistically

significant at the 5% level (two-sided t-test) are plotted.
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Model # years # SSW- mean return # SSW-weak # SSW-weak

weak time [years] per 80 years 2021-2100

CESM2-WACCM 500 15 33.3 2.40 0

CanESM5 1000 6 166.7 0.48 1

GFDL-CM4 140 1 140.0 0.57 1

INM-CM5-0 1201 5 240.2 0.33 0

MIROC6 500 5 100.0 0.80 1

Table S1. Statistical information for CMIP6 data. All columns except the last refer to

piControl simulations, whereas the last reports results from the SSP585 simulations. The

second last column normalizes the number of SSW-weak events in piControl to a 80-year

period for direct comparison to 2021-2100. All models except CESM2-WACCM strongly

underestimate the number of SSWs, and no model produces more than one single event

between 2021 and 2100.
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