REFERENCES
Argyros, R. D., Mathews, D. E., Chiang, Y.-H., Palmer, C. M., Thibault,
D. M., Etheridge, N., … Schaller, G. E. (2008). Type B RESPONSE
REGULATORS of Arabidopsis play key roles in cytokinin signaling
and plant development. Plant Cell , 20 (8), 2102–2116.
https://doi.org/10.1105/tpc.108.059584
Arnaud, D., Lee, S., Takebayashi, Y., Choi, D., Choi, J., Sakakibara,
H., & Hwang, I. (2017). Cytokinin-mediated regulation of reactive
oxygen species homeostasis modulates stomatal immunity inArabidopsis . Plant Cell , 29 (3), 543–559.
https://doi.org/10.1105/tpc.16.00583
Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesisin vivo . Annual Review of Plant Biology , 59 (1),
89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Bano, A., Hansen, H., Dörffling, K., & Hahn, H. (1994). Changes in the
contents of free and conjugated abscisic acid, phaseic acid and
cytokinins in xylem sap of drought stressed sunflower plants.Phytochemistry , 37 (2), 345–347.
https://doi.org/10.1016/0031-9422(94)85058-5
Caers, M., Rudelsheim, P., Onckelen, H. Van, & Horemans, S. (1985).
Effect of heat stress on photosynthetic activity and chloroplast
ultrastructure in correlation with endogenous cytokinin concentration in
maize seedlings. Plant and Cell Physiology , 26 (1), 47–52.
https://doi.org/10.1093/oxfordjournals.pcp.a076894
Choi, J., Huh, S. U., Kojima, M., Sakakibara, H., Paek, K.-H. H., &
Hwang, I. (2010). The cytokinin-activated transcription factor ARR2
promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling
in Arabidopsis . Developmental Cell , 19 (2),
284–295. https://doi.org/10.1016/j.devcel.2010.07.011
Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., &
Schmülling, T. (2019). Cytokinin action in response to abiotic and
biotic stress in plants. Plant, Cell & Environment ,42 (3), 998–1018. https://doi.org/10.1111/pce.13494
Cortleven, A., Marg, I., Yamburenko, M. V, Schlicke, H., Hill, K.,
Grimm, B., … Schmülling, T. (2016). Cytokinin regulates the
etioplast-chloroplast transition through the two-component signaling
system and activation of chloroplast-related genes. Plant
Physiology , 172 (1), 464–478.
https://doi.org/10.1104/pp.16.00640
Cortleven, A., Nitschke, S., Klaumünzer, M., Abdelgawad, H., Asard, H.,
Grimm, B., … Schmülling, T. (2014). A novel protective function
for cytokinin in the light stress response is mediated by the
ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3
receptors. Plant Physiology , 164 (3), 1470–1483.
https://doi.org/10.1104/pp.113.224667
Dortay, H., Mehnert, N., Bürkle, L., Schmülling, T., & Heyl, A. (2006).
Analysis of protein interactions within the cytokinin-signaling pathway
of Arabidopsis thaliana . FEBS Journal , 273 (20),
4631–4644. https://doi.org/10.1111/j.1742-4658.2006.05467.x
Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H., &
Sakakibara, H. (2008). Regulation of cytokinin biosynthesis,
compartmentalization and translocation. Journal of Experimental
Botany , 59 (1), 75–83. https://doi.org/10.1093/jxb/erm157
Huang, X., Hou, L., Meng, J., You, H., Li, Z., Gong, Z., … Shi,
Y. (2018). The antagonistic action of abscisic acid and cytokinin
signaling mediates drought stress response in Arabidopsis .Molecular Plant , 11 (7), 970–982.
https://doi.org/10.1016/j.molp.2018.05.001
Hutchison, C. E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M.
W., … Kieber, J. J. (2006). The ARABIDOPSIS HISTIDINE
PHOSPHOTRANSFER PROTEINS are redundant positive regulators of cytokinin
signaling. Plant Cell , 18 (11), 3073–3087.
https://doi.org/10.1105/tpc.106.045674
Hwang, I., & Sheen, J. (2001). Two-component circuitry inArabidopsis cytokinin signal transduction. Nature ,413 (6854), 383–389. https://doi.org/10.1038/35096500
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato,
T., … Kakimoto, T. (2001). Identification of CRE1 as a cytokinin
receptor from Arabidopsis . Nature , 409 (6823),
1060–1063. https://doi.org/10.1038/35059117
Ishida, K., Yamashino, T., Yokoyama, A., & Mizuno, T. (2008). Three
type-B RESPONSE REGULATORS, ARR1, ARR10 and ARR12, play essential but
redundant roles in cytokinin signal transduction throughout the life
cycle of Arabidopsis thaliana . Plant and Cell Physiology ,49 (1), 47–57. https://doi.org/10.1093/pcp/pcm165
Itai, C., Ben‐Zioni, A., & Ordin, L. (1973). Correlative changes in
endogenous hormone levels and shoot growth induced by short heat
treatments to the root. Physiologia Plantarum , 29 (3),
355–360. https://doi.org/10.1111/j.1399-3054.1973.tb04830.x
Kakimoto, T. (2001). Identification of plant cytokinin biosynthetic
enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases.Plant and Cell Physiology , 42 (7), 677–685.
https://doi.org/10.1093/pcp/pce112
Kiba, T., Takei, K., Kojima, M., & Sakakibara, H. (2013). Side-chain
modification of cytokinins controls shoot growth in Arabidopsis .Developmental Cell , 27 (4), 452–461.
https://doi.org/10.1016/j.devcel.2013.10.004
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The
Arabidopsis Book , 12 , e0168. https://doi.org/10.1199/tab.0168
Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant
development. Development , 145 (4).
https://doi.org/10.1242/dev.149344
Ko, D., Kang, J., Kiba, T., Park, J., Kojima, M., Do, J., … Lee,
Y. (2014). Arabidopsis ABCG14 is essential for the root-to-shoot
translocation of cytokinin. Proceedings of the National Academy of
Sciences of the United States of America , 111 (19), 7150–7155.
https://doi.org/10.1073/pnas.1321519111
Kudo, T., Kiba, T., & Sakakibara, H. (2010). Metabolism and
long-distance translocation of cytokinins. Journal of Integrative
Plant Biology , 52 (1), 53–60.
https://doi.org/10.1111/j.1744-7909.2010.00898.x
Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato,
Y., … Kyozuka, J. (2007). Direct control of shoot meristem
activity by a cytokinin-activating enzyme. Nature ,445 (7128), 652–655. https://doi.org/10.1038/nature05504
Lomin, S. N., Krivosheev, D. M., Steklov, M. Y., Arkhipov, D. V,
Osolodkin, D. I., Schmülling, T., & Romanov, G. A. (2015). Plant
membrane assays with cytokinin receptors underpin the unique role of
free cytokinin bases as biologically active ligands. Journal of
Experimental Botany , 66 (7), 1851–1863.
https://doi.org/10.1093/jxb/eru522
Mack, T. R., Gao, R., & Stock, A. M. (2009). Probing the roles of the
two different dimers mediated by the receiver domain of the Response
Regulator PhoB. Journal of Molecular Biology , 389 (2),
349–364. https://doi.org/10.1016/J.JMB.2009.04.014
Marín-de la Rosa, N., Pfeiffer, A., Hill, K., Locascio, A., Bhalerao, R.
P., Miskolczi, P., … Alabadí, D. (2015). Genome wide binding site
analysis reveals transcriptional coactivation of cytokinin-responsive
genes by DELLA proteins. PLoS Genetics , 11 (7), e1005337.
https://doi.org/10.1371/journal.pgen.1005337
Mason, M. G., Li, J., Mathews, D. E., Kieber, J. J., & Schaller, G. E.
(2004). Type-B response regulators display overlapping expression
patterns in Arabidopsis . Plant Physiology , 135 (2),
927–937. https://doi.org/10.1104/pp.103.038109
Mason, M. G., Mathews, D. E., Argyros, D. A., Maxwell, B. B., Kieber, J.
J., Alonso, J. M., … Schaller, G. E. (2005). Multiple type-B
RESPONSE REGULATORS mediate cytokinin signal transduction inArabidopsis . Plant Cell , 17 (11), 3007–3018.
https://doi.org/10.1105/tpc.105.035451
Miyawaki, K., Matsumoto-Kitano, M., & Kakimoto, T. (2004). Expression
of cytokinin biosynthetic ISOPENTENYLTRANSFERASE genes inArabidopsis : tissue specificity and regulation by auxin,
cytokinin, and nitrate. The Plant Journal , 37 (1),
128–138. https://doi.org/10.1046/j.1365-313X.2003.01945.x
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner,
T., … Tran, L. S. P. (2011). Analysis of cytokinin mutants and
regulation of cytokinin metabolic genes reveals important regulatory
roles of cytokinins in drought, salt and abscisic acid responses, and
abscisic acid biosynthesis. Plant Cell , 23 (6), 2169–2183.
https://doi.org/10.1105/tpc.111.087395
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M.,
Riefler, M., & Schmülling, T. (2016). Circadian stress regimes affect
the circadian clock and cause jasmonic acid-dependent cell death in
cytokinin-deficient Arabidopsis plants. Plant Cell ,28 (7), 1616–1639. https://doi.org/10.1105/tpc.16.00016
Nitschke, S., Cortleven, A., & Schmülling, T. (2017, September 29).
Novel stress in plants by altering the photoperiod. Trends in
Plant Science . Elsevier. https://doi.org/10.1016/j.tplants.2017.09.005
Novák, O., Hauserová, E., Amakorová, P., Doležal, K., & Strnad, M.
(2008). Cytokinin profiling in plant tissues using ultra-performance
liquid chromatography–electrospray tandem mass spectrometry.Phytochemistry , 69 (11), 2214–2224.
https://doi.org/10.1016/j.phytochem.2008.04.022
Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T., &
Sakakibara, H. (2017). Systemic transport of trans -zeatin and its
precursor have differing roles in Arabidopsis shoots.Nature Plants , 3 (8), 17112.
https://doi.org/10.1038/nplants.2017.112
Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., &
Černý, M. (2018). Cytokinin at the crossroads of abiotic stress
signalling pathways. International Journal of Molecular Sciences ,19 (8), 2450. https://doi.org/10.3390/ijms19082450
Ramireddy, E., Brenner, W. G., Pfeifer, A., Heyl, A., & Schmülling, T.
(2013). In planta analysis of a cis -regulatory cytokinin
response motif in Arabidopsis and identification of a novel
enhancer sequence. Plant and Cell Physiology , 54 (7),
1079–1092. https://doi.org/10.1093/pcp/pct060
Romanov, G. A., Lomin, S. N., & Schmülling, T. (2006). Biochemical
characteristics and ligand-binding properties of Arabidopsiscytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct
binding assay. Journal of Experimental Botany , 57 (15),
4051–4058. https://doi.org/10.1093/jxb/erl179
Romanov, G. A., Lomin, S. N., & Schmülling, T. (2018). Cytokinin
signaling: from the ER or from the PM? That is the question! New
Phytologist , 218 (1), 41–53. https://doi.org/10.1111/nph.14991
Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and
translocation. Annual Review of Plant Biology , 57 (1),
431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
Schulze, A., Zimmer, M., Mielke, S., Stellmach, H., Melnyk, C. W.,
Hause, B., & Gasperini, D. (2019). Wound-induced shoot-to-root
relocation of JA-Ile precursors coordinates Arabidopsis growth.Molecular Plant , 12 (10), 1383–1394.
https://doi.org/10.1016/j.molp.2019.05.013
Sokolovsky, V., Kaldenhoff, R., Ricci, M., & Russo, V. E. A. (1990).
Fast and reliable mini-prep RNA extraction from Neurospora
crassa . Fungal Genetics Reports , 37 (1).
https://doi.org/10.4148/1941-4765.1492
Stolz, A., Riefler, M., Lomin, S. N., Achazi, K., Romanov, G. A., &
Schmülling, T. (2011). The specificity of cytokinin signalling inArabidopsis thaliana is mediated by differing ligand affinities
and expression profiles of the receptors. Plant Journal ,67 (1), 157–168. https://doi.org/10.1111/j.1365-313X.2011.04584.x
Sun, Q., Yoda, K., & Suzuki, H. (2005). Internal axial light conduction
in the stems and roots of herbaceous plants. Journal of
Experimental Botany , 56 (409), 191–203.
https://doi.org/10.1093/jxb/eri019
Sun, Q., Yoda, K., Suzuki, M., & Suzuki, H. (2003). Vascular tissue in
the stem and roots of woody plants can conduct light. Journal of
Experimental Botany , 54 (387), 1627–1635.
https://doi.org/10.1093/jxb/erg167
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H., & Mizuno, T.
(2001). The Arabidopsis sensor His-kinase, AHK4, can respond to
cytokinins. Plant and Cell Physiology , 42 (2), 107–113.
https://doi.org/10.1093/pcp/pce037
Takei, K., Sakakibara, H., & Sugiyama, T. (2001). Identification of
genes encoding ADENYLATE ISOPENTENYLTRANSFERASE, a cytokinin
biosynthesis enzyme, in Arabidopsis thaliana . Journal of
Biological Chemistry , 276 (28), 26405–26410.
https://doi.org/10.1074/jbc.M102130200
Takei, K., Yamaya, T., & Sakakibara, H. (2004). ArabidopsisCYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyse the
biosynthesis of trans -zeatin. Journal of Biological
Chemistry , 279 (40), 41866–41872.
https://doi.org/10.1074/jbc.M406337200
Ueguchi, C., Sato, S., Kato, T., & Tabata, S. (2001). The AHK4 gene
involved in the cytokinin-signaling pathway as a direct receptor
molecule in Arabidopsis thaliana . Plant and Cell
Physiology , 42 (7), 751–755. https://doi.org/10.1093/pcp/pce094
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De
Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time
quantitative RT-PCR data by geometric averaging of multiple internal
control genes. Genome Biology , 3 (7), RESEARCH0034.
https://doi.org/10.1186/gb-2002-3-7-research0034
Veerabagu, M., Elgass, K., Kirchler, T., Huppenberger, P., Harter, K.,
Chaban, C., & Mira-Rodado, V. (2012). The Arabidopsis B-type
RESPONSE REGULATOR 18 homomerizes and positively regulates cytokinin
responses. The Plant Journal , 72 (5), 721–731.
https://doi.org/10.1111/j.1365-313X.2012.05101.x
Werner, T., & Schmülling, T. (2009). Cytokinin action in plant
development. Current Opinion in Plant Biology , 12 (5),
527–538. https://doi.org/10.1016/j.pbi.2009.07.002
Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K.,
… Mizuno, T. (2001). The Arabidopsis AHK4 HISTIDINE KINASE
is a cytokinin-binding receptor that transduces cytokinin signals across
the membrane. Plant and Cell Physiology , 42 (9),
1017–1023. https://doi.org/10.1093/pcp/pce127
Yan, Z., Liu, X., Ljung, K., Li, S., Zhao, W., Yang, F., … Tao,
Y. (2017). Type B RESPONSE REGULATORS act as central integrators in
transcriptional control of the auxin biosynthesis enzyme TAA1.Plant Physiology , 175 (3), 1438–1454.
https://doi.org/10.1104/pp.17.00878
Zhang, K., Novak, O., Wei, Z., Gou, M., Zhang, X., Yu, Y., … Liu,
C. J. (2014). Arabidopsis ABCG14 protein controls the acropetal
translocation of root-synthesized cytokinins. Nature
Communications , 5 , 3274. https://doi.org/10.1038/ncomms4274