References

[1] Kantarci N, Borak F, Ulgen KO. Bubble column reactors. Process Biochemistry. 2005;40(7):2263-2283.
[2] Shah YT, Kelkar BG, Godbole SP, Deckwer WD. Design parameters estimations for bubble column reactors. AIChE Journal. 1982;28(3):353-379.
[3] Deckwer WD, Louisi Y, Zaidi A, Ralek M. Hydrodynamic properties of the Fischer-Tropsch slurry process. Industrial & Engineering Chemistry Process Design and Development. 1980;19(4):699-708.
[4] Schumpe A, Grund G. The gas disengagement technique for studying gas holdup structure in bubble columns. The Canadian Journal of Chemical Engineering. 1986;64(6):891-896.
[5] Saxena SC, Rao NS, Saxena AC. Heat-transfer and gas-holdup studies in a bubble column: air-water-glass bead system. Chemical Engineering Communications. 1990;96(1):31-55.
[6] Daly JG, Patel SA, Bukur DB. Measurement of gas holdups and Sauter mean bubble diameters in bubble column reactors by dynamics gas disengagement method. Chemical Engineering Science. 1992;47(13-14), 3647-3654.
[7] Pino LZ, Solari RB, Siquier S, Antonio Estevez L, Yepez MM, Saez, AE. Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid. Chemical Engineering Communications. 1992;117(1):367-382.
[8] Krishna R, De Swart JW, Ellenberger J, Martina GB, Maretto C. Gas holdup in slurry bubble columns: effect of column diameter and slurry concentrations. AIChE Journal. 1997;43(2):311-316.
[9] Hyndman CL, Larachi F, Guy C. Understanding gas-phase hydrodynamics in bubble columns: a convective model based on kinetic theory. Chemical Engineering Science. 1997;52(1):63-77.
[10] Luo X, Lee DJ, Lau R, Yang G, Fan, LS. Maximum stable bubble size and gas holdup in high‐pressure slurry bubble columns. AIChE journal. 1999;45(4):665-680.
[11] Li H, Prakash A. Analysis of bubble dynamics and local hydrodynamics based on instantaneous heat transfer measurements in a slurry bubble column. Chemical Engineering Science. 1999;54(21):5265-5271.
[12] Lockett MJ, Kirkpatrick RD. Ideal bubbly flow and actual flow in bubble columns. Transactions of the Institution of Chemical Engineers. 1975;53:267–73.
[13] Kara S, Kelkar BG, Shah YT, Carr NL. Hydrodynamics and axial mixing in a three-phase bubble column. Industrial & Engineering Chemistry Process Design and Development. 1982;21(4):584-594.
[14] Koide K, Takazawa A, Komura M, Matsunga H. Gas holdup and volumetric liquid phase mass transfer coefficient in solid-suspended bubble column. Journal of Chemical Engineering of Japan. 1984;17:459–66.
[15] Eissa SH, Schügerl K. Holdup and backmixing investigations in cocurrent and countercurrent bubble columns. Chemical Engineering Science. 1975;30(10):1251-1256.
[16] Bach HF, Pilhofer T. Variation of gas holdup in bubble columns with physical properties of liquids and operating parameters of columns. Ger Chemical Engineering. 1978;1: 270–275.
[17] Godbole SP, Honath MF, Shah YT. Holdup structure in highly viscous newtonian and non-newtonian liquids in bubble columns. Chemical Engineering Communications. 1982;16(1-6):119-134.
[18] Khare AS, Joshi JB. Effect of fine particles on gas hold-up in three-phase sparged reactors. Chemical Engineering Journal. 1990;44(1):11-25.
[19] Ruzicka MC, Drahoš J, Mena PC, Teixeira JA. Effect of viscosity on homogeneous–heterogeneous flow regime transition in bubble columns. Chemical Engineering Journal. 2003;96:15–22.
[20] Olivieri G, Russo ME, Simeone M, Marzocchella A, Salatino P. Effects of viscosity and relaxation time on the hydrodynamics of gas–liquid systems. Chemical Engineering Science. 2011;66(14):3392-3399.
[21] Rabha S, Schubert M, Hampel U. Regime transition in viscous and pseudo viscous systems: A comparative study. AIChE Journal. 2014;60(8):3079-3090.
[22] Besagni G, Inzoli F, De Guido G, Pellegrini LA. The dual effect of viscosity on bubble column hydrodynamics. Chemical Engineering Science. 2017;158:509-538.
[23] Besagni G, Inzoli F, Ziegenhein T. Two-phase bubble columns: A comprehensive review. ChemEngineering. 2018;2(2):13.
[24] Akita K, Yoshida F. Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Industrial & Engineering Chemistry Process Design and Development. 1973;12(1):76-80.
[25] Mersmann A. Design and scale-up of bubble and spray columns. Ger Chemical Engineering. 1978;1:1–11.
[26] Riquarts HP, Pilhofer T. Modell des heterogenen Strömungszustandes in Blasensäulen. Verfahrenstechnik. 1978;12:77-80.
[27] Iordache OM, Muntean OI. Stochastic approach to the hydrodynamics of gas-liquid dispersions. Industrial & Engineering Chemistry Fundamentals. 1981;20(3):204-207.
[28] Santus D, Salvagno N. Purificazione di gas naturale da composti acidi mediante assorbimento fisico downhole. 2014; Master’s Thesis, Politecnico di Milano, Milan, Italy.
[29] Leonard C, Ferrasse JH, Boutin O, Lefevre S, Viand A. Bubble column reactors for high pressures and high temperatures operation. Chemical Engineering Research and Design. 2015;100:391-421.
[30] Li H, Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column. Powder Technology. 2000;113(1-2):158-167.
[31] Deckwer WD. Bubble Column Reactors. Chichester, UK: John Wiley & Sons Ltd., 1992.
[32] Manoharan S, Jog MA, Manglik RM. Effects of liquid viscosity on bubble growth from submerged orifice plates. American Society of Mechanical Engineers. In ASME 2017 Heat Transfer Summer Conference (pp. V002T11A012-V002T11A012).
[33] Wilkinson PM, Spek AP, van Dierendonck LL. Design parameters estimation for scale‐up of high‐pressure bubble columns. AIChE Journal. 1992;38(4):544-554.
[34] Kuncová G, Zahradník J. Gas holdup and bubble frequency in a bubble column reactor containing viscous saccharose solutions. Chemical Engineering and Processing Process Intensification. 1995;34:25–34.
[35] Lange V, Azzopardi BJ, Licence, P. Hydrodynamics of ionic liquids in bubble columns. In Ionic Liquids-New Aspects for the Future; InTechOpen: London, UK, 2013.
[36] Philip J, Proctor JM, Niranjan K, Davidson JF. Gas hold-up and liquid circulation in internal loop reactors containing highly viscous newtonian and non-newtonian liquids. Chemical Engineering Science. 1990;45:651–664.
[37] Yang JH, Yang JI, Kim HJ, Chun DH, Lee HT, Jung H. Two regime transitions to pseudo-homogeneous and heterogeneous bubble flow for various liquid viscosities. Chemical Engineering and Processing Process Intensification. 2010;49:1044–1050.
[38] Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal. 1955;1(3):289-295.
[39] Mouza AA, Dalakoglou GK, Paras SV. Effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Chemical Engineering Science. 2005;60(5):1465-1475.
[40] Kazakis NA, Papadopoulos ID, Mouza AA. Bubble columns with fine pore sparger operating in the pseudo-homogeneous regime: gas hold up prediction and a criterion for the transition to the heterogeneous regime. Chemical Engineering Science. 2007;62(12):3092-3103.
[41] Besagni G, Di Pasquali A, Gallazzini L, Gottardi E, Colombo LPM, Inzoli F. The effect of aspect ratio in counter-current gas-liquid bubble columns: Experimental results and gas holdup correlations. International Journal of Multiphase Flow. 2017;94:53-78.
[42] Houghton G, McLean AM, Ritchie PD. Mechanism of formation of gas bubble-beds. Chemical Engineering Science. 1957;7(1-2):40-50.
[43] Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics International. 2004;11(7):36-42.
[44] Peters R, Rasband WS. ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. 2012.
[45] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis Nature Methods. 2012;9(7):671.
[46] Rasband WS. ImageJ. U.S. National Institutes of Health, Bethesda, MD, USA, 1997–2016. Available online: http://imagej.nih.gov/ij (accessed on 16 April 2013).
[47] Mohagheghian S, Elbing BR. Characterization of Bubble Size Distributions within a Bubble Column. Fluids. 2018;3 (1):13.
[48] Mohagheghian S, Still AL, Elbing BR, Ghajar AJ. Study of bubble size, void fraction, and mass transport in a bubble column under high amplitude vibration. ChemEngineering. 2018;2 (2):16.
[49] Mohagheghian S, Ghajar AJ, Elbing BR. Effect of vertical vibration on the mixing time of a passive scalar in a sparged bubble column reactor. Fluids. 2020;5(1):6.
[50] Anastasiou AD, Kazakis NA, Mouza AA, Paras SV. Effect of organic surfactant additives on gas holdup in the pseudo-homogeneous regime in bubble columns equipped with fine pore sparger. Chemical Engineering Science. 2010;65(22):5872-5880.
[51] Alves SS, Maia CI, Vasconcelos JMT, Serralheiro AJ. Bubble size in aerated stirred tanks. Chemical Engineering Journal. 2002;89 (1-3):109-117.
[52] Lewis D, Davidson JF. Bubble splitting in shear flow. Transactions of the Institution of Chemical Engineers. 1982;60:283–291.
[53] Waghmare YG, Dorao CA, Jakobsen HA, Knopf FC, Rice RG. Bubble size distribution for a bubble column reactor undergoing forced oscillations. Industrial & Engineering Chemistry Research. 2009;48(4):1786-1796.