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Abstract: A discrete-time Leslie model with Hassell growth function for two generations is 

investigated by qualitative analysis and numerical simulation. Local stability analysis of the system 

is carried out. Many forms of complex dynamics are observed, including chaotic bands with periodic 

windows, flip bifurcations, and Hopf bifurcations, attractor crises, and non-unique dynamics 

(meaning that several attractors coexist). Numerical simulation results not only show the consistence 

with the theoretical analysis but also display the new and interesting dynamical behaviors, including 

different periodic orbits in chaotic regions, attracting invariant circle, period-doubling bifurcations 

from stable equilibriums leading to chaos, interior crisis and boundary crisis. The largest Lyapunov 

exponents are numerically computed to confirm further the complexity of these dynamic behaviors. 

The analysis and results in this paper are interesting in mathematics and biology. 

Keywords: discrete-time Hassell model; Hopf bifurcation; chaotic attractor; numerical simulation. 

1. Introduction 

In 1964, Hénon took KAM Theorem as the background, and found that there was deterministic 

random behavior in two-dimensional non-integrable Hamiltonian system, that is claimed Hénon 

attractor. Ruelle and Takens proposed the concept of ‘‘strange attractor’’, which promoted the 

research of Smale horseshoe attractor (Smale, 1976). Lorenz (1963) pointed out that there must be 

a connection between the inexact recurrence of climate and the inability of long-term weather 

forecast. It is found that the chaos phenomenon is ‘‘extremely sensitive to the initial conditions’’. 
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The word ‘‘chaos’’ is formally used by Li and Yorke (1975), which is considered as the first formal 

expression of chaos theory. Smale (1976) gave an example of horseshoe mapping, which opened 

the mathematical method of studying chaos. LaSota (1981) studied the initial value problem of the 

first order nonlinear partial differential equation of the wormhole model. Brunovsky (1983) gave 

the definition of chaotic mapping. 

In population dynamics, there are two kinds of mathematical models: the continuous-time 

models described by differential equations or dynamical systems, and the discrete-time models 

described by difference equations, discrete dynamical systems or iterative mappings. The simplest 

continuous-time population model is the logistic differential equation of a single species, first 

introduced by Verhulst (1838) and later studied further by Pearl and Reed (1920): 

0 1
x

x r x
k

   
 

                                (1) 

where x(t) denotes the population of a single species at time t, k is the carrying capacity of the 

population, and r0 is the intrinsic growth rate. Eq. (1) describes the growth rate of the population 

size of a single species. However, the population size of a single species may has a fixed interval 

between generations or possibly a fixed interval between measurements. For example, many species 

of insect have no overlap between successive generations, and thus their population evolves in 

discrete-time steps. Such a population dynamics is described by a sequence {xn} that can be modeled 

by the logistic difference equation 
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We can see that Eq. (2) is time discretization of Eq. (1) by the forward Euler scheme with step one. 

May (1976) made the profound discovery in the 1970s that several discrete-time models used 
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to describe the dynamics of isolated single-species populations display chaotic behavior for large 

ranges of parameter values. Furthermore, an early work by Beddington (1975) showed that discrete-

time host–parasitoid models can produce a much richer set of dynamic patterns than those observed 

in continuous-time models, where the dynamics include only stable equilibrium or limit cycles. 

In the last few decades, research seems to have focused on continuous-time interspecific systems, 

rather than on the discrete-time interspecific interactions.  

It is assumed that the evolution of the host population without parasitoids follows a Hassell 

dynamic by Hassell (1975), as given by: 
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where Xt is the population size in generation t (t = 0,1,2,3,. . .); a, b, and r are all positive constants; 

a is a scaling parameter affecting the equilibrium population size; b is a parameter to incorporate 

density-dependent effects such as intra-specific competition; r denotes the reproductive rate of 

population growth. 

Leslie (1945, 1948) introduced age-structured linear population model. Consider a population 

divided into d age-classes or generations, which we call generations 1, 2, ..., d. Most Leslie models 

used for actual demographic forecasting use 5-year age groups instead of three generations. The text 

Matrix Population Models’ by Caswell (2001) contains a comprehensive treatment of Leslie model. 

Leslie models with nonlinear fertility and mortality have complicated dynamical behavior. 

Ugarcovici and Weiss (2004) studied the dynamical behavior of Ricker model. This model is 

described by the two dimensional mapping 2 2
, :a bR      

      , , e ,x y
a bR x y ax ay bx                          (4) 
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where x and y stand for the density of the first age group and the second age group. a and γa are the 

group’s initial fertility rates (a, γ > 0), b is the survival rate from the first age group to the second 

one and λ is the decay index, λ>0. In Eq. (4), the fertility rate monotonically decreases as a function 

of the total population size, the fertility decay is exponential. The other mold is Hassell model. It is 

described by the two dimensional mapping 2 2
, :a bH     

      , , 1+ ,a bH x y ax ay x y bx
                       (5) 

where a and γa are the group’s initial fertility rates, b is the survival rate from the first age group to 

the second one and β is the decay index, β>1. In Eq. (5), the fertility rate monotonically decreases 

as a function of the total population size, the fertility decay is polynomial. 

For some parameter values, these models admit an ergodic attractor which supports a unique 

physical probability measure. This physical measure satisfies in the strongest possible sense the 

population biologist’s requirement for ergodicity in their population models. Wikan and Mjølhus 

(1996) and Ugarcovici and Weiss (2001) showed that Ricker mapping and Hassell mapping produce 

Hénon-like chaotic attractors. 

Here, the local stability analysis of a discrete-time Hassell-type recruitment population model 

is investigated. As the parameters a, b, , are changed in different rang, respectively, the dynamic 

complexities of the model are qualitatively analyzed, and many forms of complex dynamics are 

observed, including chaotic bands with periodic windows, period-doubling bifurcations, Hopf and 

flip bifurcations, attractor crises, and non-unique dynamics (meaning that several attractors coexist). 

Numerical simulations are shown, including bifurcation diagrams, phase portraits, maximum 

Lyapunov exponents, to verify theoretical analyses and display some new and interesting nonlinear 

dynamical behaviors of the discrete-time system. 

In biology or ecology, the complex chaotic behavior of this mapping shows the relationship 

between the number, birth rate and survival rate in a population, whether it survives in a balanced 

state or makes the population develop in disorder or chaos. This research can provide theoretical 

basis and help for the research in biology or ecology. For example, it is applied in the marine fishing, 

or in the reproduction and population growth of a certain species in nature. 

2. The nonlinear Leslie population model Hassell-type 
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Hassell model is described by the two dimensional mapping 2 2
, :a bH     
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where 

     , 1+t t t t t tF x y ax ay x y
    ,  ,t t tG x y bx        (7) 

,t tx y  are the density of the first age group and the second one. a and γa are the group’s initial 

fertility rates, b is the survival rate from the first age group to the second one and β is the decay index, 

β>1. In Eq. (6), the fertility rate monotonically decreases as a function of the total population size, 

the fertility decay is polynomial. 

3. Stability analysis 

The Eq. (6) has one equilibrium point:  ,E x y 
, where ,x y   are positive and satisfy 

   1+ax ay x y x



                                 (8) 

bx y                                     (9) 

To carry out linear stability analysis, the Taylor series expansion of Eq. (6) may be written as 
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Using Eq. (8) and (9), one can obtain the following: 

 
   

 
   

 

 

1

,

1

,

,

,

1 1

1

0

x y

x y

x y

x y

F
a x x y y x y

x

F
a x x y y x y

y

G
b

x

G

y





 

    

 

 

 

 

      

      


      




      













        (11) 



 

6 
 

Consider the matrix 

11 12

21 22

P P
A

P P
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 

                                (12) 

where 

              
       

11 12 21 22
, ,, ,

, , ,
x y x yx y x y

F F G G
P P P P

x y x y      

   
   
   

    (13) 

The characteristic equation is 

11 12

21 22

det 0
P P

P P




 
  

                        (14) 

which may be rewritten in the form  

2 0B C                                    (15) 

where 

  
   

1

11 22

1

11 22 12 21

1 1

1

B P P a x x y y x y

C P P P P ab x x y y x y





 

    

      

      

        

         
   (16) 

The roots of Eq. (15) are 

 2
1,2

1
4

2
B B C                             (17) 

Both eigenvalues are real numbers and 1,2 < 1 if 

2 4 0B C   and  21
1 4 1

2
B B C                    (18) 

which yields  

24 4 4C B C                             (19) 

The eigenvalues 1,2  become complex numbers and are inside the unit circle in the complex  -

plane for 

2 4 0B C   and  2 24 4B C B                  (20) 

which yields 
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2 4 4B C                              (21) 

Conditions (20) and (21) obtain when the positive equilibrium point  ,E x y   is stable. 

4. Bifurcation analysis 

As we know, Eq. (6) cannot be solved analytically, and therefore its long-term behavior must be 

investigated using numerical simulation. Figures 1(1-2) show the bifurcation diagrams of Eq. (6) 

for the density of the first age group x and the second one y with 0.8, 22   , b=0.7, as the 

parameter a increases. Because of the similarity of the bifurcation diagrams, only Figure 1(1) is 

shown magnified in Figure 2. 

  

Figure 1: Bifurcation diagrams of Eq. (6): ( 0.8, 22   , b=0.7, 0<a<45). 

When the initial fertility rate a changes between 0 and 60, Eq. (6) generates complicated 

features. For 0<a<0.75, (0,0) is a global attractor. There exists a positive fixed point that is 

asymptotically stable for 0.75<a<15.8. At a=15.8, it appears a cascade of period-3 orbit. For a 

between 15.8 and 24, it exists a period-3 window which is embedded in strange attractor for a long 

time. Then each of the period-3 orbits begins to undergo a flip bifurcation, leading to chaos. The 

phase portraits of various a corresponding to Figure 2(1) are plotted in Figures 3(1-2). Li, York 

(1975) proved that if a system has period-3 point, it has all periodic points. This is also verified in 

the following analysis as the parameter a increasing. 

When the parameter a passes through the range (24.4, 27), the bifurcation diagram in Figure 

2(2) shows that this window is not a periodic window with a cascade of periodic attractors, but that 

it includes more complex dynamic patterns. It appears that several attractors coexist in this region: 

period-3 and period-5 attractors. There is a very wide chaotic band with period-6 orbit meanwhile 
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(see Figure 3(2)).  

When the parameter a=27.2, the chaotic band suddenly disappears in a crisis and the system 

enters a periodic window with a cascade of period-doubling bifurcations leading to a chaotic 

attractor with periodic windows. It appears period-11 and starts to appear period-9 when the 

parameter a=27.24. The phase portraits which are associated with Figure 2(2) are disposed in 

Figures 3(2-3). When the parameter a passes through the range (27.24, 30), the detailed 

bifurcation diagram in Figure 2(3). As a > 28.26, there is a cascade of period-doubling bifurcation 

leading to a wide chaotic region, characterized by tangent bifurcation and attractor crises. A very 

narrow periodic window appears again when a=29. When a increases beyond 28.5, a chaotic 

attractor abruptly appears and the periodic attractor disappears. The chaotic band has changed into 

four chaotic bands. This kind of transilienc of chaotic state caused by the continuous change of 

parameters is called chaos crisis by Grebogi (1983). Because the unstable periodic orbit meets the 

secondary chaotic band, the orbits in the chaotic band is filled between all levels of orbits, leading 

to the emergence of chaos crisis. The phase portraits of various a corresponding to Figure 2(3) are 

plotted in Figures 3(4-6). When the parameter a passes through the range (30.8, 31.7) in Figure. 

2(4), a large periodic window appears, then chaos appears because of period-doubling bifurcation. 

When the parameter a=49, it appears period-4, and it appears period-9 at a=51.2, at last the Eq. (6) 

appears a chaotic attractor. The phase portraits which are associated with Figure 2(5) are disposed 

in Figures 3(7-8). 

From the above analysis, it can be seen that the two-dimensional nonlinear mapping is a 

process of intermittently breaking up in accordance with periodic behavior and chaos phenomenon, 

so that the system appears chaotic motion state, which is called Pomeau-Manneville path (through 

intermittence chaos) by Eckmann (1981). In the process of parameter change, when the periodic 

window appears, the one of the roots of Eq. (14) is -1. The unstable period doubling bifurcation 
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happens immediately, and the periodic point becomes the periodic saddle point. Once the mapping 

point falls near the unstable periodic point, it will leave along the unstable manifold, and chaos will 

appear. Eq. (6) also contains Feigenbaum path (through fork bifurcation) to chaos. 

  

   

Figure 2: Magnification of part of Figure 1(1). 

   

   

  

Figure 3: The phase diagrams of Eq. (6): ((1)15.8<a<24, (2) 22.4<a<27, 
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(3) a=27.4,(4-6) 28.26<a<30.8, (7-8) 30.8<a<60). 

Figures 4(1-2) show the bifurcation diagrams of Eq. (6) for the density of the first age group x 

and the second one y with 0.8, 22   , a=38, as the parameter b increases. Figures 4(3-5) are 

the graphs magnified of Figures 4(1-2). 

   

  

Figure 4: Bifurcation diagrams of Eq. (6): ( 0.8, 22   , a=38, 0<b<0.7). 

In Figure 4(1), as the parameter b increases from 0 to 0.03, a narrow chaotic band appears. 

When the parameter b = 0.03, the chaotic regime suddenly disappears in a crisis and the system 

appears a period-2 orbit for b(0.03, 0.435), and a stable fixed point for b(0.435, 0.526). A flip 

bifurcation occurs at b = 0.435. Figure 5(1) presents the phase portrait of period-2. As the parameter 

b(0.526, 0.55) in Figure 4(3), the Eq. (6) goes through a quasi-periodic region (including tangent 

bifurcation, narrow and wide periodic windows, and frequency lockings which appear as a collapse 

of the invariant circle to a periodic orbit). We can see that there is a stable fixed point for b<0.526, 

and the fixed point loses its stability as b increases. A Hopf bifurcation occurs at b=0.526 and an 

attracting invariant cycles bifurcates from the fixed point. In this case, Eq. (14) has two conjugate 

complex roots  and , satisfying  =1. 
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As b is increasing, the smooth invariant loop becomes larger and no longer smooth. At last, the 

invariant loop breaks. As b=0.59, there is a cascade of period-doubling bifurcation leading to a wide 

chaotic region, characterized by tangent bifurcation and attractor crises. Further, when b(0.55, 

0.56) and b(0.592, 0.614), we can observe the period-5, 8 windows within the chaotic regions, 

respectively. The phase portraits of various b corresponding to Figure 4 (3) are plotted in Figures 

5(2-6). 

In the same way as research the dynamics in (a, x) plane, we investigate the dynamics in (a, y) 

plane with the same parameters.  

In Figure 4(4), as the parameter b increases from 0 to 0.01, a narrow chaotic band appears. We 

can observe that there are period-3 orbit for b(0.01, 0.03) and a period-2 orbit for b(0.03, 0.4). 

There is a stable fixed point for b(0.41, 0.553) . A flip bifurcation occurs at b = 0.41 in Figure 4(2). 

In Figure 4(5), a Hopf bifurcation occurs at b=0.553 and an attracting invariant cycles bifurcates 

from the fixed point. As the parameter b(0.553, 0.64), the Eq. (6) goes through a quasi-periodic 

region including tangent bifurcation, narrow and wide periodic windows, and frequency lockings. 

Further, we can observe that several different periodic windows are embedded in this region 

respectively. There is a cascade of period-doubling bifurcation leading to a wide chaotic region, 

characterized by tangent bifurcation and attractor crises. 

According to the above analysis, when the parameter b is increasing, chaos appears by the 

Ruelle Takens Newhouse scheme (through Hopf bifurcation) and the Pomeau-Manneville path 

(through intermittence chaos). In the larger region of the control parameter space, the path leading 

to chaos is related to the Hopf bifurcation. In these ways, the locking phase and quasi-periodic 

motion can be observed. 
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Figure 5: The phase diagrams of Eq. (6): ((1)0.03<b<0.435, (2-3) 0.526<a<0.59,  

(4) 0.55<b<0.56, (5) 0.592<b<0.614, (6) b>0.614). 

Figure 6(1) shows the bifurcation diagram of Eq. (6) for the density of the first age group x 

with a=38, b=0.7, 22   as the parameter increases. Figure 6(2) is the graph magnified of Figure. 

6(1). 

    

Figure 6: Bifurcation diagrams of Eq. (6): ( 22  , a=38, b=0.7, 0 0.8   ). 

In Figure 6(1), as the parameter  increases from 0 to 0.03, a narrow chaotic band appears. 

When the parameter  = 0.03, the chaotic band suddenly disappears in a crisis and the system enters 

a periodic window. Figure 7(1) presents the phase portrait as  (0, 0.03). We can observe that there 

are period-3 orbit for  (0.03, 0.08), and two chaotic bands with periodic windows for  (0.08, 

0.125). It shows that the existence of period-3 means that there are any periodic points, and finally 
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chaos appears. Figure 7(2) presents the phase portrait of period-3. At  = 0.125, the chaotic band 

suddenly disappears in a crisis and the Eq. (6) enters a periodic window with a cascade of period-

doubling bifurcations. A flip bifurcation and an inverted bifurcation occur. At  = 0.158, there is 

period-6 orbit. At  = 0.175, there is a cascade of period-doubling bifurcation leading to three chaotic 

bands, characterized by tangent bifurcation and attractor crises. The phase portraits of various  

corresponding to Figures 6 (1-2) are plotted in Figures 7(3-5). 

   

  

Figure 7: The phase diagrams of Eq. (6): ((1) 0< <0.03, (2) 0.03< <0.08,  

(3) =0.158, (4) =0.75, (5) >0.25). 

5. The largest Lyapunov exponent 

In this section, the largest Lyapunov exponent, which has proven to be the most useful dynamic 

diagnostic tool for chaotic systems, is considered. This quantity represents the average exponential 

rate of divergence or convergence of nearby orbits in phase space [18]. The general approach for 

calculating the largest Lyapunov exponent is to follow two nearby orbits and to calculate their 

average logarithmic rate of separation. Whenever they move too far apart, one of the orbits has to 

be moved back to the vicinity of the other along the line of separation. For a chaotic attractor, the 
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largest Lyapunov exponent LEmax must be positive. If LEmax is negative, this implies a stable state 

or a periodic attractor. 

The largest Lyapunov exponents corresponding to the cases shown in Figures 1, 4, and 6 have 

been calculated and plotted in Figures 8(1-3), respectively. The existence of chaotic regions in the 

parametric space is clearly visible in these Figures. The largest Lyapunov exponents for the strange 

attractors were found to be LEmax = 12.21, 19.81, and 17.35, respectively. 

In Figure 8(1), we can easily see that the maximum Lyapunov exponents are negative for the 

parameter a∈(0, 25.5), that is to say, the Eq. (6) has no chaotic region. For a∈(25.5, 35), some 

Lyapunov exponents are bigger than 0, some are smaller than 0, so there exists stable fixed point or 

stable periodic windows in the chaotic region. In Figure 8(2), the maximum Lyapunov exponents 

are positive for the parameter b∈(0, 0.03), that is to say, the Eq. (6) appears a chaotic region. For 

b∈(0.03, 0.526), the maximum Lyapunov exponents are negative, the Eq. (6) appears periodic. For 

b∈(0.526, 0.7), some Lyapunov exponents are bigger than 0, some are smaller than 0, so there exist 

periodic windows in the chaotic region. In Figure 8(3), the maximum Lyapunov exponents are 

positive for the parameter  ∈(0, 0.158) and  ∈(0.28, 0.8), the Eq. (6) appears a chaotic region. 

For  ∈(0.158, 0.28), the maximum Lyapunov exponents are negative, the Eq. (6) appears periodic. 

We find that the analysis of the maximum Lyapunov exponents is consistent with the dynamic 

properties of the system under different parameters. 

 
Figure 8: (1)Lyapunov exponent of Eq. (6) with 0.8, 22   , b=0.7, 0<a<40;  
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       (2)Lyapunov exponent of Eq. (6) with 0.8, 22   , a=38, 0<b<0.7; 

        (3)Lyapunov exponent of Eq. (6) with 22  , a=38, b=0.7,0 0.8  . 

6. Concluding  

A discrete-time Leslie model with Hassell growth function for two generations is investigated 

by qualitative analysis and numerical simulation. Local stability analysis of the system is carried 

out. Many forms of complex dynamics are observed, including chaotic bands with periodic windows, 

flip bifurcations, and Hopf bifurcations, attractor crises, and non-unique dynamics (meaning that 

several attractors coexist). Numerical simulation results not only show the consistence with the 

theoretical analysis but also display the new and interesting dynamical behaviors, including different 

periodic orbits in chaotic regions, attracting invariant circle, period-doubling bifurcations from 

stable equilibriums leading to chaos, interior crisis and boundary crisis. The largest Lyapunov 

exponents are numerically computed to confirm further the complexity of these dynamic behaviors. 

In biology or ecology, the complex chaotic behavior of this mapping shows the relationship 

between the number, birth rate and survival rate in a population, whether it survives in a balanced 

state or makes the population develop in disorder or chaos. This research can provide theoretical 

basis and help for the research in biology or ecology. For example, it is applied in the marine fishing, 

or in the reproduction and population growth of a certain species in nature. 
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