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Abstract 7 

Recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL), have created 8 

tremendous excitement and opportunities in the earth and environmental sciences communities. To 9 

leverage these new ‘data-driven’ technologies, however, one needs to understand the fundamental 10 

concepts that give rise to DL and how they differ from ‘process-based’, mechanistic modelling. This paper 11 

revisits those fundamentals and addresses 10 questions often posed by earth and environmental 12 

scientists with the aid of a real-world modelling experiment. The overarching objective is to contribute to 13 

a future of AI-assisted earth and environmental sciences where DL models can (1) embrace the typically 14 

ignored knowledge base available, (2) function credibly in ‘true’ out-of-sample prediction, and (3) handle 15 

non-stationarity in earth and environmental systems. Comparing and contrasting earth and 16 

environmental problems with prominent AI applications, such as playing chess and trading in the stock 17 

market, provides critical insights for better directing future research in this field. 18 

Plain Language Summary 19 

Deep learning (DL) is an artificial intelligence (AI) technique that has already served the vast majority, if 20 

not all, of everyday society in tasks such as image recognition and language processing through 21 

smartphones. The recent unprecedented performance of DL in those tasks has accelerated applications 22 

in non-native areas such as earth and environmental sciences where knowledge-based modelling has 23 

dominated to date. A major challenge, however, is DL and knowledge-based modelling are rooted in 24 

different worldviews towards problem solving. This paper explains the ‘whats’ and ‘whys’ of DL from first 25 

principles, with an eye on applications since inception in environmental problems. An experiment is run 26 

to illustrate the fundamental differences between the two worldviews, and to shed light on some critical, 27 

but often ignored, issues DL may face in practice, largely arising from the fact that earth and 28 

environmental systems are complex with behaviors changing in ways that are physically explainable but 29 

not seen in the period of record due to uncertain factors such as climate change. Such issues must be 30 

addressed at the heart of the endeavor to develop DL techniques that embrace the knowledge base 31 

available, in anticipation of breakthroughs in an age of big data and computational power. 32 
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Key Points 37 

 DL is rooted in connectionism, hyper-flexibility, and vigorous optimization, which are alien to 38 

conventional knowledge-based modelling. 39 

 A knowledge base is essential to enable credible predictions of complex, open, partially observable, 40 

and non-stationary systems. 41 

 Bridging DL and earth and environmental sciences is still embryonic but has great potential in an age 42 

of big data and computational power. 43 
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 79 

1. The rise of deep learning 80 

The last decade has witnessed a tremendous rise in techniques called ‘deep learning’ (DL), under the 81 

umbrella of artificial intelligence (AI) and machine learning (ML), and their unprecedented performance 82 

in areas such as computer vision (Krizhevsky et al., 2017), natural language processing (Young et al., 2018), 83 

and gaming (Silver et al., 2018). These successes have motivated the application of DL across a wide range 84 

of disciplines, including medicine (Hosny et al., 2018), earth sciences (Reichstein et al., 2019), robotics 85 

(Torresen, 2018), engineering (Panchal et al., 2019), and finance (Lee et al., 2019). DL owes its exemplary 86 

success to the boom in computational power and the emergence of big data sources and associated data 87 

storage and sharing technologies.  88 

Earth and environmental sciences appear to be positioned to benefit profoundly from DL, as big data 89 

sources on a range of in situ and remotely-sensed variables are becoming increasingly available with the 90 

advances in sensing technologies (Reichstein et al., 2019). The storage volume of remote sensing data for 91 

earth observations is already well beyond dozens of petabytes, with transmission rates exceeding 92 

hundreds of terabytes per day. Datasets based on model outputs are rising; for example, the climate 93 

assessment dataset provided by the Coupled Model Intercomparison Project Phase 6 may reach 40 94 

petabytes (Eyring et al., 2016). Reanalysis climatic datasets have also grown; for example, NASA’s Modern-95 

Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) is ~400 terabytes (Gelaro 96 

et al., 2017). In addition, datasets generated via tens of thousands of citizen science projects are providing 97 

large and rich sources of ground-based data. 98 

This potential is shifting the attention of earth and environmental scientists and relevant funding agencies 99 

towards ML, as evidenced, for example, by the shift in research work presented at the American 100 

Geophysical Union (AGU)’s fall meetings, the largest assembly of earth and environmental scientists with 101 

more than 27,000 people in attendance and 25,000 presentations in 2019. The number of ML-related 102 

presentations has risen consistently—from 0.2% of total presentations in 2015 to 4.2% in 2020. In 103 

particular, this shift has been astonishing in the ‘non-linear geophysics’, ‘earth and space science 104 

informatics’, ‘natural hazards’, ‘hydrology’, and ‘seismology’ sub-fields, where 28 (2.1), 18 (5.1), 9 (1.3), 105 

7.5 (1.4), and 6.7% (0.9%) of total presentations, respectively, were related to ML in 2020 (2015).  106 

Recent successful applications of DL techniques to earth and environmental sciences include weather 107 

forecasting (Xingjian et al., 2015), rainfall-runoff modelling (Kratzert et al., 2018), rain and snow retrieval 108 

from spaceborne sensors (Tang et al., 2018), downscaling hydroclimatic variables (Ducournau and Fablet, 109 

2016), and surrogate modelling (Razavi et al., 2012a). Unsuccessful applications, perhaps similar to many 110 

other areas, remain largely unreported in the peer-reviewed scientific literature but occasionally appear 111 

in other media (e.g., Wexler, 2017; Kolakowski, 2018).  112 

Notably, most DL algorithms, formerly known as artificial neural networks (ANNs), have been around and 113 

widely applied in earth and environmental sciences since the early 1990s. These applications are 114 

documented in reviews by Gardner and Dorling (1998), Maier and Dandy (2000), Krasnopolsky (2007), 115 

Maier et al. (2010), Abrahart et al. (2012), Razavi et al. (2012a), Shen (2018), Bergen et al. (2019), and 116 

Reichstein et al. (2019). Arguably, however, the uptake of DL to facilitate and advance earth and 117 

environmental sciences has not kept pace with data availability and computational power over the past 118 

three decades.  119 
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But why? The challenges impeding the widespread application of DL to earth and environmental problems 120 

to date may be rooted in the fact that convincingly casting those problems, for which an extensive 121 

knowledge base is usually available, within the DL framework is often not straightforward. Moreover, the 122 

lack of interpretability and explainability of DL has been a major hindrance, as model developers need to 123 

be able to make sense of why a model functions the way it does, and to explain that to model users. These 124 

challenges can be further complicated in the absence of a solid understanding of the fundamentals of DL 125 

and how they differ from theory-driven, mechanistic modelling and prediction.  126 

And why this paper? Motivated by the recent breakthroughs by DL in its original areas of application, 127 

namely computer vision and natural language processing, this paper aims to address the persistent 128 

challenges facing DL applications in non-native areas related to earth and environmental sciences. With 129 

this overarching aim, this paper addresses 10 questions regarding the fundamentals of DL and its 130 

explainability and bridgeability to earth and environmental systems modelling: 131 

(1) What is DL and how did it evolve from ANNs? 132 

(2) Can we really interpret the internal functioning of DL? 133 

(3) How can the complexity of DL be justified in light of the principle of parsimony? 134 

(4) Why is DL considered superior to other types of ML? 135 

(5) How can DL account for memory and time dependency? 136 

(6) How do DL and process-based models behave differently in out-of-sample prediction? 137 

(7) What is the typically ignored value of domain knowledge in DL? 138 

(8) Why is DL essentially different from process-based modelling? 139 

(9) What are the existing approaches to bridging DL and mechanistic modelling? 140 

(10) What can we learn from prominent DL applications such as gaming and the stock market?  141 

The structure of this paper is such that it best serves the reader when all sections are followed 142 

sequentially. However, an advanced reader could directly refer to a section designated to address a 143 

question of interest. Sections 2 through 7 address questions 1 through 6 and sub-sections 8.1 through 8.4 144 

address questions 7 through 10, respectively. The contents of this paper are intended to be accessible to 145 

a wide audience from various fields under the umbrella of earth and environmental sciences. However, 146 

the views presented mainly arise from the author’s data- and theory-driven research background in 147 

hydrology and water resources. Further, a real-world hydrological modelling problem and multiple 148 

synthetic functions are used to explain complex concepts via simple examples.  149 

2. Back to fundamentals 150 

2.1. Why AI and DL? 151 

AI, and in particular DL, is nowadays concerned with developing machines that improve their own 152 

performance in carrying out a given task over time by ‘learning’ from examples, with minimal human 153 

efforts to instruct the machines how to do so (Jordan and Mitchell, 2015). According to Goodfellow et al. 154 

(2016), however, the early efforts to generate AI were based on a knowledge base paradigm to instruct 155 

machines with a formal set of step-by-step mathematical and if-then rules. Those efforts focused on 156 

carrying out tasks that were intellectually difficult for humans but straightforward for computers. 157 

Goodfellow et al. (2016) argue such efforts led to no major successes, and the AI of today is about enabling 158 

machines to perform tasks that humans perform intuitively and rather easily but have difficulty formally 159 
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describing how they do so. Examples of such tasks include recognizing faces in a photo or comprehending 160 

spoken words. 161 

Not only did state-of-the-art AI divorce from the knowledge base, but it also completely separated from 162 

classic data-driven modelling rooted in statistics such as regression. This separation was a response to the 163 

need for models that are not constrained by the many assumptions typical statistical models hold. For 164 

example, traditional statistical modelling requires a formalization of relationships between variables and 165 

assumptions about functional shapes, distributions of variables, and their inter-dependencies, which 166 

enables hypothesis testing and the generation of confidence bounds (see Dangeti, 2017, p. 10-11). 167 

Conversely, in the DL context the underlying relationships in data may have any complex form, which is 168 

typically unknown a priori, and the data used may have any size and distributional properties.  169 

Because of these characteristics, DL is deemed suitable to pursue the longstanding ambition to build 170 

machines that work with minimal or no human supervision and imposed assumptions. As a result, DL 171 

provides hyper-flexible tools that can adapt to a wide range of data and applications.  172 

2.2. Evolution of DL and major milestones 173 

It was 1957 when Frank Rosenblatt invented the first algorithm, termed ‘perceptron’ (Rosenblatt, 1957), 174 

which today is considered the smallest computational unit of DL. A perceptron, alternatively termed a 175 

‘neuron’ because of its resemblance to the basic working unit of the brain, is shown in Figure 1a and 176 

formulated as: 177 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1 + 𝑏)          (Eq. 1) 178 

where D is the dimension of input space, x is the input vector, w is a set of weights corresponding to the 179 

input vector, b is bias, and f is an ‘activation’ function. A perceptron has D+1 tunable parameters (i.e., D 180 

weights and one bias) and is basically nothing but a multiple linear regression augmented by an output 181 

function (f), which is typically non-linear. The form of the activation function was originally a step function, 182 

but now a range of monotonic functional forms, most commonly ‘sigmoidal’, are used.  183 

The invention of perceptrons created significant excitement in the AI community and beyond. But, it soon 184 

became clear that a perceptron would not be able to map input spaces that are not linearly separable, 185 

such as the XOR problem (Minsky and Papert, 1969), rendering perceptrons of limited use in real-world 186 

applications. The reason for this inability is that the core of the perceptron is a linear regression.  187 

Efforts to overcome this barrier could have followed two different avenues. Perhaps the most intuitive 188 

avenue was to employ non-linear regression, by allowing the terms inside the parentheses in Eq. 1 to be 189 

of other algebraic forms. However, this was not a viable option in part because the user then would need 190 

to specify the form of non-linearity a priori, which was not compatible with the principles of AI.  191 

The second avenue that led to today’s DL was to combine perceptrons both in parallel and in series to 192 

create so-called ‘multi-layer perceptrons’ (MLPs), as shown in Figure 1b, with the hope this more complex 193 

system could overcome the barrier. An MLP would then have many more tunable parameters than the 194 

perceptron. The first layer, also called the first ‘hidden’ layer, would have n1.D weights and n1 biases, 195 

where n1 is the number of neurons in this layer. Similarly, the second hidden layer would have n2.n1 196 

weights and n2 biases, and the last layer, called the ‘output’ layer would have nd.nd-1 weights and nd biases, 197 
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where n2 and nd are the numbers of neurons in the second and last layers, respectively, and d is the total 198 

number of layers.  199 

The total number of layers in an MLP and the number of neurons in each layer are ‘hyper-parameters’, to 200 

be specified by users. Also important is the choice of the activation function in each layer. Note that a 201 

linear activation function is typically only suitable for the last layer and, in general, any stack of linear 202 

layers is effectively equivalent to a single linear layer. MLPs have also historically been called ‘artificial 203 

neural networks’ (ANNs), or simply ‘neural networks’ (NNs), because of their perceived resemblance to 204 

biological neural networks.  205 

 206 

 207 

Figure 1. (a) A perceptron and (b) a multi-layer perceptron with four inputs, two hidden layers, and 208 

three outputs. 209 

 210 

MLPs on their own did not go far and the field stagnated for many years because of the absence of an 211 

algorithm that could automatically derive from data the network weights and biases—a process referred 212 

to as ‘training’ in the AI community. It took until the mid-1980s when the first ‘back-propagation’ (BP) 213 

algorithm was invented to enable the training of MLPs with any network structure (Rumelhart et al., 214 

1986). This invention marked the beginning of the ‘second wave’ of popularity of ANNs. BP is essentially 215 

an optimization algorithm, based on non-linear programing, that minimizes a loss function representing 216 

the goodness-of-fit of predictions to observations, such as the ‘sum of squared errors’, as follows: 217 

𝐹 = ∑ ∑ (𝑇𝑗
𝑘 − 𝑦𝑗

𝑘)
2𝑁

𝑗=1
𝑀
𝑘=1          (Eq. 2) 218 

where 𝑦𝑗
𝑘 is the output of neuron j in the output layer when the network is forced with input data entry k 219 

and 𝑇𝑗
𝑘 is the respective desired target. Also, M is the size of training data, and N is the number of neurons 220 

in the output layer. 221 

𝑏

𝑦

𝑥1

𝑥2

𝑥𝐷

𝑤1

𝑤2

𝑤𝐷

(a)                                       (b)
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Different variations of BP rooted in first- or second-order optimization, or a combination thereof, now 222 

exist; see e.g., the Levenberg-Marquardt algorithm as implemented by Hagan and Menhaj (1994). These 223 

algorithms are fundamentally the same as optimization algorithms used nowadays for calibration of 224 

process-based models. The only difference is that, in the case of ANNs, and unlike most process-based 225 

models, the partial derivatives of the loss function with respect to weights and biases are analytically 226 

available and obtained through the ‘chain rule of differentiation’. More recently, derivative-free and 227 

metaheuristic optimization algorithms have shown promise in ANN training (e.g., Dengiz et al., 2009; 228 

Rakitianskaia and Engelbrecht, 2009; Razavi and Tolson, 2011), but have yet to become mainstream. 229 

In the late 1980s, after the invention of BP, MLPs were proven to be ‘universal approximators’ (Hornik et 230 

al., 1989). This proof indicated MLPs with only one single-hidden layer that possesses a sigmoidal 231 

activation function, and a linear output layer, would be able to approximate any function with any desired 232 

level of accuracy provided the number of hidden neurons is sufficient. Since then, the ‘universal function 233 

approximation theorem’ has been the fundamental driver of interest in MLPs across a variety of disciplines 234 

and applications. 235 

ANNs started receiving much attention in earth and environmental sciences in the early 1990s. The 236 

pioneering applications of ANNs include: Benediktsson et al. (1990), Badran et al. (1991), Stogryn et al. 237 

(1994), Bankert (1994), and Cabrera-Mercader and Staelin (1995) in the context of remote sensing of the 238 

environment; McCann (1992), Boznar et al. (1993), and Navone and Ceccatto (1994) in the context of 239 

atmospheric forecasting; and Kang et al. (1993), Hsu et al. (1995), and Minns and Hall (1996) in the context 240 

of hydrology modelling. Perhaps the most prominent and widely used application of ANNs in these fields 241 

has been related to the development of PERSIANN, or ‘Precipitation Estimation from Remotely Sensed 242 

Information using Artificial Neural Networks’ (Hsu et al., 1997; Sorooshian et al., 2000; Ashouri et al., 243 

2015), which has been maintained and updated for two decades (accessible at 244 

https://chrsdata.eng.uci.edu/). 245 

Despite all of these advances, investments in ANNs and therefore the popularity of ANNs saw a decline in 246 

the AI community beginning in the mid-1990s, perhaps triggered by failures to fulfill overly ambitious or 247 

unrealistic promises by prominent AI scientists (Goodfellow et al., 2016), as historically observed in ‘AI 248 

winters’ (Hendler, 2008). ANNs in earth and environmental sciences, however, remained fairly popular 249 

arguably until the mid-2000s. The focus of researchers in these fields was to find novel applications of 250 

ANNs across different earth and environmental problems. 251 

It took until early 2010s before the third wave of popularity and interest in ANNs hit, when the field was 252 

revived and renamed ‘deep learning’. ‘Depth’ is a recently popularized term and loosely refers to the 253 

number of hidden layers in ANNs. A related term is ‘width’, which loosely refers to the number of neurons 254 

in hidden layers. Now, a DL model (or deep ANN) simply refers to an MLP with two or more hidden layers. 255 

All of the recent excitement around ANNs is despite the fact that the structure, formulation, and other 256 

properties of MLPs have remained unchanged since their inception, except for some minor modifications. 257 

So, one might ask: is DL merely a repackaging and rebranding of what existed before? The next section 258 

attempts to answer this question while reviewing the recent milestones. 259 

2.3. Latest developments and rebranding the field 260 

To better understand the recent developments in ANNs, one first needs to know the history around the 261 

‘depth’ concept. MLPs, since their inception, have been used with various numbers of hidden layers, that 262 

https://chrsdata.eng.uci.edu/
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is with various depths. Most applications, however, remained limited to networks with only one hidden 263 

layer until very recently. For example, Razavi et al. (2012a) report that more than 90% of ANNs used for 264 

surrogate modelling in water resources literature have only one hidden layer. There was (and perhaps still 265 

is) no consensus about a proper network depth, because identifying the optimal network configuration 266 

for a given problem and dataset is challenging.  267 

Historically, some researchers favored ANNs with more than one hidden layer, arguing that they require 268 

fewer hidden neurons to approximate the same function (see e.g., Tamura and Tateishi, 1997). On the 269 

other hand, others asserted that single-hidden-layer ANNs are superior to those with more than one 270 

hidden layer with the same level of complexity (see e.g., de Villiers and Barnard, 1993). A discussion on 271 

this matter is available in Razavi et al. (2012a). 272 

Three general reasons historically drove interests towards ANNs with a single hidden layer: (1) the 273 

universal function approximation theorem (Hornik et al., 1989), as it provided a compelling argument that 274 

such ANNs are fully capable of learning any function; (2) the principle of parsimony, as ANNs with fewer 275 

hidden layers are generally deemed less complex and more understandable; and (3) difficulty of training, 276 

as ANNs with more hidden layers are more complex to train (see e.g., de Villiers and Barnard, 1993). 277 

So, what recently shifted the status quo towards ANNs with multiple (typically many) hidden layers? 278 

Goodfellow et al. (2016) attribute the beginning of this shift to the work of Hinton et al. (2006), where 279 

‘unsupervised learning’ was used to pre-train deep ANNs. They show unsupervised learning could 280 

effectively initialize the network’s parameters such that the subsequent training efforts through BP would 281 

become more successful. In AI, unsupervised learning refers to a process where a model learns from 282 

‘unlabeled’ examples, which are technically inputs with no associated output. This is as opposed to 283 

‘supervised learning’ where examples (i.e., data points) are ‘labeled’, meaning the output associated with 284 

each input is available; this process is called ‘model calibration’ in other fields. 285 

Now, one might ask how unsupervised learning can be of any help in supervised learning. A common 286 

method for this purpose uses ‘autoencoders’, which are a class of ANNs historically used for 287 

dimensionality reduction and feature learning (Bourlard and Kamp, 1988). An autoencoder is an MLP, 288 

typically trained by BP, with one (or more) hidden layer that receives input and aims to produce the same 289 

input as its output. As the number of hidden neurons in an autoencoder is smaller than the dimension of 290 

input, the input data get encoded at the hidden layer (i.e., bottleneck) with a reduced dimensionality, 291 

while preserving the information contained in the input. Autoencoders can pre-train the first layers of a 292 

deep ANN such that the weights of those layers capture the main features in input data before passing 293 

them to the next layers. After the pre-training phase by unsupervised learning, the ANN is fully trained in 294 

the conventional supervised manner, using the actual output data and algorithms such as BP. 295 

While the third wave of ANN popularity began by leveraging unsupervised learning to train deep ANNs, 296 

Goodfellow et al. (2016) argue the interest has gradually shifted back to the classic learning algorithms, 297 

such as BP, even for training deep ANNs. Those classic learning algorithms are now believed to work quite 298 

well in the DL context, perhaps due to the emergence of unprecedented computational power. In this 299 

regard, a game changer was the introduction of graphics processing units (GPUs) to the ANN community 300 

as a powerful tool to massively parallelize and thus expedite training algorithms (Raina et al., 2009). Such 301 

computational power has enabled the development of large ANNs, in terms of both depth and width. As 302 

such, ANNs with hundreds of millions (e.g., Devlin et al., 2018) or even a trillion parameters (e.g., 303 

Rajbhandari et al., 2019) are becoming common. 304 
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Such a tremendous revival of the field of ANNs might seem at first surprising to those earth and 305 

environmental scientists who have known the field for a long time. This might be due, in part, to the fact 306 

that ANNs developed nowadays are fundamentally similar to those developed in the 1990s. Differences, 307 

if any in an application, are often in the details. For example, following Glorot et al. (2011), the tendency 308 

now is to use the rectified linear unit (ReLU), which is an unbounded function, instead of the standard 309 

‘sigmoidal’ activation functions (see Eq. 1). The recent boom in data science and cyberinfrastructure and 310 

in investments by mega companies, such as Google, in this field might explain this revival, resulting in 311 

huge successes in image processing (Krizhevsky et al., 2017) and speech recognition (Young et al., 2018). 312 

Perhaps recent rebranding of the field under the title of ‘deep learning’ might have been in part a 313 

marketing strategy; as cited in Schmidhuber (2015a), this term was first introduced by Dechter (1986) to 314 

ML and by Aizenberg et al. (2000) to ANNs. 315 

3. Geometrical Interpretation of DL 316 

ANNs have always struggled with explainability and interpretability. Extensive research efforts have 317 

endeavored to peer inside the ‘black box’ of ANNs, via various forms of sensitivity analysis (see Section 318 

3.4 of Razavi et al. (2021) for a review) or geometrical or other types of interpretations (e.g., Benítez et 319 

al., 1997; Tickle et al., 1998; Castro et al., 2002; Wilby et al., 2003; Xiang et al., 2005; Razavi and Tolson, 320 

2011). In particular, Razavi and Tolson (2011) developed a geometrical interpretation of ANNs, based on 321 

which they recast ANNs with respect to a new set of ‘explainable’ variables. This section uses that 322 

geometrical interpretation to explain why deeper ANNs are more powerful. 323 

3.1. A perceptron 324 

An MLP is in principle made of a number of perceptrons. Consider an MLP with a single hidden layer with 325 

a sigmoidal activation function, as shown Figure 2a. Each hidden neuron, e.g., the rth neuron, is a 326 

perceptron whose output 𝑦𝑟
1 is multiplied by the weight 𝑤1,𝑟

2  before entering the output neuron. This 327 

hidden neuron, when only having one input 𝑥1, forms a functional relationship such as that shown in 328 

Figure 2b. This ‘sigmoidal unit’ can be characterized by three variables: ‘slope’, ‘location’, and ‘height’. 329 

There is one-to-one mapping between these variables and the original network variables, 𝑤𝑟,1
1 , 𝑏𝑟

1, and 330 

𝑤1,𝑟
2 , as shown in the figure. As such, one can directly control the shape of the sigmoidal unit through 331 

slope, location, and height, and where needed, map them onto the network’s original variables. The 332 

benefit of doing so is that, unlike the unintuitive original variables, the new variables are geometrically 333 

interpretable. 334 

Figure 2c shows the geometry of a perceptron with two inputs, 𝑥1 and 𝑥2. In this case, the resulting 335 

sigmoidal unit forms a plane that can be characterized by slope, location, and height, plus an additional 336 

variable called ‘angle’ that specifies the direction toward which the sigmoidal unit is facing. This geometry 337 

can be extended to perceptrons with three or more (say D) inputs, where the sigmoidal unit becomes a 338 

hyperplane, characterized by a slope, location, and height and D-1 angles. Full details of this geometrical 339 

interpretation, and how it works in practice, are available in Razavi and Tolson (2011). As shown in the 340 

next section, ANNs can approximate any function by putting together a large number of such sigmoidal 341 

units. 342 
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 343 

Figure 2. (a) An MLP with a sigmoidal hidden layer and linear output layer. (b) The sigmoidal line formed 344 

by the rth hidden neuron when the network has only one input, x1. (c) The sigmoidal plane formed by the 345 

rth hidden neuron when the network has two inputs, x1 and x2. A sigmoidal line can be defined by three 346 

variables that are related to the original weights and biases: ℎ𝑟 is the ‘height’ of the tails, 𝑠𝑟 is the ‘slope’ 347 

of the tangent line at the inflection point, and 𝑑𝑟 is the ‘location’ of the inflection point with respect to 348 

the origin. A sigmoidal plane can be defined based on those three variables as well as 𝛼𝑟, which is the 349 

‘angle’ of the normal vector perpendicular to the plane. 𝑙𝑟
1 is the length of this vector. This geometry can 350 

be extended to MLPs with any number of inputs (see Razavi and Tolson, 2011). 351 

 352 

3.2. ANNs with one hidden layer 353 

Single-hidden-layer ANNs are capable of approximating any function by combining, in parallel, as many 354 

sigmoidal units as required. For example, suppose the underlying function to approximate is the sine 355 

function shown in Figure 3a. Three sigmoidal units, with equal heights, equal absolute slopes, and 356 

different locations, are required in parallel to represent the features of the function. These three units 357 

can be produced by the hidden layer of an ANN and feed into a linear output layer, where they are 358 

summed to approximate the sine function, as shown in Figure 3b.  359 

For problems with two or more inputs, the function approximation is not as straightforward. For example, 360 

suppose the objective in a two-input problem is to approximate the dome-like feature shown in Figure 361 

4a. A single-hidden layer ANN with four sigmoidal hidden neurons and one linear output neuron would 362 

approximate the dome part of the surface, as shown in Figure 4b. In such an ANN, four sigmoidal units 363 

with equal heights, equal slopes, equal locations, but different angles (90° apart) would be summed. The 364 

performance of this ANN, however, is unacceptable, as it creates erroneous features on the tails.  365 
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 366 

 367 

Figure 3. (a) An original sine function and three sigmoidal units, each approximating a part of the sine 368 

function. (b) Output of the ANN that superposes the tree sigmoidal units. 369 

 370 

Figure 4c shows the performance of a network with eight sigmoidal units, all having the same heights, 371 

slopes, and locations, but different angles, 45° apart. With more sigmoidal units at work, the performance 372 

at the tails is improved, producing less erroneous features. Almost 40 hidden neurons are required, as 373 

shown in Figure 4d, to generate smooth tails, similar to the original function shown in Figure 4a. This 374 

example provides a geometrical proof for the universal function approximation theorem of Hornik et al. 375 

(1989) because, in principle, any function could be approximated by a combination of such dome-like (i.e., 376 

basis) functions. The challenge, however, is that many (possibly an excessively large number of) hidden 377 

neurons may be required for a given problem to attain a desired level of approximation accuracy.  378 

 379 

3.3. Why more than one hidden layer? 380 

As proven by Hornik et al. (1989), and geometrically shown in the example above, ANNs with a sigmoidal 381 

hidden layer and a linear output layer are capable of approximating any function with any desired level of 382 

accuracy. So, one may wonder about the need to have deeper ANNs. This section attempts to answer this 383 

question via an example. 384 

Let us look back at the original function we aimed to approximate in Figure 4a. Only four sigmoidal units 385 

were required, as seen in Figure 4b, to reproduce the dome-like feature at the center. But can we 386 

somehow smooth the tails? Yes, all that is needed is a second layer with a nonlinear activation function 387 

(e.g., sigmoidal) to deactivate any feature that is under a threshold. In other words, in this process, the 388 

geometry formed by the sigmoidal units in the first layer filters through another sigmoidal unit that 389 

bounds that geometry. Figure 4e shows how adding the second non-linear layer enables the network to 390 

reproduce the original function, with only four neurons in the first hidden layer.  391 
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Similar to single-hidden-layer ANNs, those with two sigmoidal hidden layers and one linear output layer 392 

can approximate any function by putting the dome-like functions side by side. In the example shown, 393 

however, ANNs with more than one hidden layer would require significantly fewer neurons.  394 

 395 

 396 

Figure 4. (a) Original dome-like function. Performance of ANNs with (b) four sigmoidal hidden neurons 397 

and a linear output neuron, (c) eight sigmoidal hidden neurons and a linear output neuron, (d) 40 398 

sigmoidal hidden neurons and a linear output neuron, and (e) four sigmoidal hidden neurons and a 399 

sigmoidal output neuron. 400 

 401 

Another related consideration is that, in many problems, only a small part of the input space is active. In 402 

other words, some combinations of the different inputs might not occur in reality and therefore the 403 

accuracy of the model might not matter much in the regions of input space containing those 404 

combinations. For example, consider a case similar to one shown in Figure 4b, where the corners on the 405 

input space do not show up in the data available. A hydrological example is where snowfall and 406 

temperature are two inputs to ANNs. Because snowfall would never occur along with high temperature, 407 

the respective part of the input space always remains inactive. In such cases, single-hidden-layer ANNs 408 

may look just as good in terms of performance as an ANN with more hidden layers. This might be one 409 

reason why single-hidden-layer ANNs with only a limited number of hidden neurons have reportedly 410 

worked very well. 411 
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In general, shallower ANNs are special cases of deeper, more flexible ANNs. However, the training of 412 

deeper ANNs has been historically much more difficult because of the now well-known problem of 413 

‘vanishing and exploding’ gradients. This problem relates to the fact that the partial derivatives of a loss 414 

function (Eq. 2) with respect to weights and biases in first layers, obtained via the chain rule of 415 

differentiation, tend to become very small (i.e., close to zero) or very large (i.e., exponentially growing or 416 

fluctuating). Improved algorithms along with higher computational power have now made possible the 417 

training of very deep ANNs (Schmidhuber, 2015b). 418 

4. Relevance of Occam’s razor and equifinality? 419 

4.1. Issues with the complexity of ANNs 420 

ANNs are known for their hyper-flexibility in fitting data, owing to their enormous degrees of freedom. 421 

For example, consider a problem with five inputs and one output. A single-hidden-layer ANN with 10 422 

hidden neurons would have 71 tunable parameters (60 weights and 11 biases), and adding a second 10-423 

neuron hidden layer would result in a network with 181 parameters (160 weights and 21 biases). Compare 424 

that with linear or quadratic regression models for the same problem, which would have six or 21 tunable 425 

parameters, respectively. Such large degrees of freedom, manifest in large numbers of parameters, 426 

encountered in the field of ANNs do not seem consistent with a basic principle in statistical modelling: 427 

Occam’s razor. 428 

Occam’s razor, or principle of parsimony, indicates that simpler hypotheses or models should be preferred 429 

over more complex ones. In other words, those models that serve the purpose with as few parameters as 430 

possible should be chosen. However, many data-driven modellers, in particular in the field of ML, have 431 

arguably abandoned Occam’s razor. For example, ANN users typically do not try simpler model types such 432 

as regression for the problem at hand. And, when using ANNs, they do not necessarily look for the most 433 

parsimonious network. Note that some literature proposes systematic approaches to choose a network 434 

structure based on growing, pruning, or other strategies (e.g., Reed, 1993; Teoh et al., 2006; Xu et al., 435 

2006). In practice, however, such approaches have been of limited use and most ANN users choose the 436 

network structure on an ad hoc basis or by trial-and-error (see a survey by Razavi et al., 2012a). Recently, 437 

giant ANNs with hundreds of millions of parameters or more have become widespread (Devlin et al., 2018; 438 

Rajbhandari et al., 2019).  439 

In addition, equifinality, a common and widely discussed issue in process-based modelling (Beven and 440 

Freer, 2001), is not generally discussed or considered an issue in the context of ANNs. Equifinality concerns 441 

the fact that, in most cases, different model structures and parameter values can lead to identical 442 

modelling results. In other words, model structure and parameters are not uniquely identifiable from data 443 

(Guillaume et al., 2019). This is despite the fact that, loosely speaking, the level of equifinality of ANNs is 444 

much larger than other types of models because of their massively parallel nature in producing model 445 

outputs. 446 

So, how does DL handle the above issues? The answer is ‘indirectly’, by trying to avoid their undesired 447 

implications, which are overfitting and lack of generalizability. The former refers to a situation where a 448 

model fits the noise in the data rather than the underlying function. The latter refers to a case where the 449 

model does poorly in ‘out-of-sample prediction’, that is predicting situations unseen in the data used for 450 

model calibration. Various techniques are available in the ANN literature to address these issues, as 451 

outlined in the following. 452 
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4.2. Leashing the hyper-flexibility of ANNs 453 

Techniques to control the hyper-flexibility of ANNs and to avoid overfitting fall under two general 454 

strategies, namely ‘early stopping’ and ‘regularization’. Before reviewing these strategies in this section, 455 

let us revisit the common data-splitting approach for calibration and validation of models.  456 

ANNs and conventional mathematical models have major differences in terms of calibration and 457 

validation. In conventional modelling practices, the available data are commonly divided into ‘calibration’ 458 

and ‘validation’ datasets. The former is used to identify the model structure and parameters, while the 459 

latter is used to test the model performance in out-of-sample prediction.  460 

In ANN practices, however, the available data are typically divided into three sets, commonly referred to 461 

as ‘training’, ‘validation’, and ‘testing’ datasets. Any data chosen for ‘training’ and ‘testing’ in the ANN 462 

context are respectively treated like ‘calibration’ and ‘validation’ datasets in the conventional modelling 463 

context. The third ‘validation’ dataset is needed to leash the hyper-flexibility of the network while training. 464 

The simultaneous use of ‘training’ and ‘validation’ datasets during training may be best described within 465 

the ‘early stopping’ strategy, as follows. 466 

The training of ANNs is an iterative process, where the network parameters are updated after each 467 

iteration (called an ‘epoch’ in the ANN context), to minimize the loss function evaluated on the ‘training 468 

data’ (see Eq. 2). In the ‘early stopping’ strategy, the quality of fit to the ‘validation’ dataset is also 469 

evaluated after each epoch. Empirically speaking, as the training error decreases over time, the validation 470 

error decreases as well for a while. But, at some particular epoch, the validation error may begin to 471 

increase while the training error may keep decreasing (see Figure 5). This epoch is deemed to mark the 472 

beginning of overfitting; thus, the user stops the training process. This strategy is therefore called ‘early 473 

stopping’ in the sense that the training stops early, before it can further improve the fit to the ‘training’ 474 

dataset (for a review, see Prechelt, 1998). When the training process stops, the generalizability of the 475 

trained network is assessed via out-of-sample prediction on the ‘testing’ dataset. 476 

 477 

 478 

Figure 5. Illustration of ‘early stopping’. The loss function on the ‘training’ dataset generally decreases 479 

with more epochs, whereas the loss function on the ‘validation’ dataset decreases early on but begins to 480 

increases at some point, marking the commencement of overtraining. 481 
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‘Regularization’ is another commonly used strategy to put a leash on the hyper-flexibility of ANNs. Unlike 483 

early stopping, however, this strategy uses a ‘regularization function’ to control the ANN flexibility and 484 

tailor it to the problem at hand. A more regularized network is one with a smoother response. A traditional 485 

regularization function is the sum of the square of all network parameters (Krogh and Hertz, 1991), based 486 

on the notion that, in general, the smaller the parameters of a neuron, the less activated it is. For example, 487 

in an extreme case where all parameters of a neuron are zero, that neuron becomes fully inactive and 488 

does not contribute a feature to the overall network response. Razavi and Tolson (2011) provide a more 489 

efficient regularization function, based on the geometry presented in Section 3, where the regularization 490 

function is the sum of squares of all of the slopes. This regularization function targets and removes the 491 

unnecessary slopes, which are unsupported by data, from the overall network response.  492 

But how can one balance the goodness of fit and smoothness of the network response? In practice, this 493 

is a bi-objective optimization problem, where one objective is to minimize the error function and the other 494 

is to minimize the regularization function. These two objective functions are commonly integrated into 495 

one loss function via weighting schemes. Figure 6 shows how the two objectives compete in a real 496 

example. Ideally, one may wish to achieve a performance such as that shown in Figure 6e. Doing so is not 497 

trivial, however, because in practice the underlying function is unknown, available data are limited, and 498 

response surfaces are multi-dimensional and cannot be easily visualized. The Bayesian regulation method 499 

developed by MacKay (1992) and extended by Foresee and Hagan (1997) has proven useful to adaptively 500 

assign the weights associated with each function during training.  501 

 502 

Figure 6. Illustrative example of how regularization works to leash the hyper-flexibility of ANNs. Plot (a) 503 

shows an extreme case with no regularization where the ANN overfits data. Plot (b) shows a case where 504 

the regularization function is added to the loss function but marginally weighted. Plots (c) through (e) 505 

show cases with incremental increases in the weight of the regularization function. Plot (f) shows the 506 

other extreme case where the regularization function is dominantly weighted, making the ANN 507 

effectively inactive. These plots are based on a real experiment, where the data sample was taken from 508 

the underlying sine function shown and polluted with random noise. 509 
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A more advanced and much more complex regularization strategy is called ‘dropout’ (Hinton et al., 2012; 510 

Srivastava et al., 2014). ‘Dropout’ is a heuristic, particularly designed for deep ANNs, that randomly 511 

deactivates and then activates different neurons or groups of neurons at each epoch in the course of 512 

training. When a part of an ANN is inactivated in this process, the resulting network is called a ‘thinned’ 513 

network. The ultimate prediction after training with dropout is viewed as an approximation of the average 514 

of predictions by many independent ANNs. Basically, the many different thinned networks created 515 

throughout the process are assumed to represent ANNs with different configurations and parameters. 516 

This heuristic discourages neurons to co-adapt too much and, as such, is believed to avoid overfitting. 517 

5. Fundamental differences from other ML methods 518 

5.1. Local versus distributed representations 519 

Most ML methods, such as those based on kernel functions, are based on ‘local representations’. These 520 

methods, while forming connectionist networks like ANNs, represent each entity (e.g., a training sample 521 

point in the input space) via a single processing unit. For example, radial basis functions (Broomhead and 522 

Lowe, 1988), Gaussian emulator machines (Kennedy and O’Hagan, 2000), and support vector machines 523 

(Vapnik, 1998; Cherkassky and Ma, 2004) may use as many kernels as the number of training samples. 524 

Each kernel typically has a limited radius of influence in the input space, and therefore only responds to 525 

inputs located in their local neighborhood.  526 

Conversely, a unique feature of ANNs is their ability to learn through ‘distributed representations’ (Hinton 527 

et al., 1986). They typically represent an entity via collective efforts distributed among multiple processing 528 

units (e.g., sigmoidal units). Unlike kernel functions, the sigmoidal units typically have large regions of 529 

influence (see e.g., Figure 2c) that overlap each other in the input space (see e.g., Figure 4b). The former 530 

figure shows that a sigmoidal unit influences the entire input space, by dividing it into three zones: lower 531 

tail, upper tail, and slope. The latter figure shows how the influences of four such sigmoidal units are 532 

superimposed to generate the network response.  533 

5.2. Implications for users 534 

The use of distributed representations has several practical implications. To the author’s knowledge, these 535 

include: 536 

 Transparency: The internal functioning of methods based on local representations is more 537 

transparent. Local representations are the most straightforward and easy-to-interpret way of 538 

learning, whereas distributed representations can be complex, often leading to emergent 539 

properties that cannot be easily explained by local representations (Hinton et al., 1986).  540 

 Learning difficulty: Distributed representations are more difficult and time-consuming to learn. 541 

In local representations, the role of each processing unit may be assigned independently of the 542 

other units, but in distributed representations, many processing units may be configured together 543 

in complex ways to represent a feature in the data.  544 

 Network size: Distributed representations need much smaller network sizes. In general, the size 545 

of the networks based on local representations is directly proportional to the size of the dataset, 546 

in most cases with a proportionality constant of one; that is, the number of processing units 547 
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mirrors the number of training data samples. The size of networks based on distributed 548 

representations, however, depends on the complexity of features in the dataset, not its size. 549 

 Inexact emulation: Networks based on distributed representations are generally ‘inexact 550 

emulators’. This means they do not exactly fit the training samples to represent the features and 551 

patterns in the data. This is unlike some other ML methods, such as radial basis functions 552 

(Broomhead and Lowe, 1988) and Gaussian emulator machines (Kennedy and O’Hagan, 2000), 553 

that are ‘exact emulators’, perfectly interpolating the training samples. Other inexact emulators 554 

include support vector machines (Vapnik, 1998; Cherkassky and Ma, 2004) and multivariate 555 

adaptive regression splines (MARS) (Friedman, 1991). Refer to Razavi et al. (2012a, Section 2.6.2) 556 

for a discussion on this issue. 557 

In addition, ANNs are essentially multioutput models because they can have as many output neurons as 558 

required for a given problem. This means a single ANN can simultaneously predict different variables while 559 

accounting for their possible cross-correlations. Many other ML methods are, however, single output 560 

models. For example, in the case of support vector machines, one need to develop two independent 561 

models to be able to predict two different variables in a system. Refer to Razavi et al. (2012a, Section 562 

2.6.5) for an extensive discussion on this matter. 563 

6. How to introduce order, time-dependency, and memory 564 

MLPs provide static mapping from inputs to outputs. However, many applications require mappings with 565 

a formal representation of time evolution and memory. To enable MLPs to do so, two general sets of 566 

tools, and their combination, have been used in the literature: (1) tapped delay lines and (2) recurrent 567 

connections. These tools are explained in the following. 568 

6.1. Tapped delay lines 569 

A tapped delay line (TDL) consists of a certain number of time delay operators arranged in an incremental 570 

order (Figure 7a). TDLs can be installed on any internal connection weights of MLPs to represent time 571 

explicitly. The resulting ANN shown in Figure 7b, commonly referred to as a ‘time delay neural network’ 572 

(TDNN; Waibel et al., 1989), has been widely used in a range of time-series processing applications. As 573 

such, TDNNs possess a static memory with an adjustable length. This length can be viewed as a 574 

hyperparameter to be tuned during training, along with network structural properties such as the 575 

numbers of layers and neurons in each layer.  576 

Adding TDLs to an MLP significantly increases the number of tunable parameters. For example, a standard 577 

MLP with three inputs and 10 neurons in the first hidden layer would have 30 weights in that layer, while 578 

adding TDLs with a length of five to the inputs would result in an additional 50 weights (80 in total) to be 579 

trained.  580 

TDNNs can be viewed as a special case of ‘convolutional neural networks’ (CNNs; Lawrence et al., 1997). 581 

CNNs, which have proven capability in image recognition, apply a ‘moving window’ approach with linear 582 

filtering to the inputs to the first and possibly other layers to preserve spatial orders in those data. TDLs 583 

essentially function in the same way as such moving windows but along one dimension only that 584 

represents time. In general, CNNs can be configured for any data with any number of dimensions. 585 

 586 
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  587 

Figure 7. (a) A tapped delay line (TDL), receiving the scalar x(t) at each time step t and outputting the 588 

vector [x(t), …, x(t-L)], where L is the length of the TDL. (b) A time delay neural network (TDNN) with one 589 

hidden layer and TDLs installed on the input and hidden layers. (c) A recurrent neural network (RNN) 590 

with one hidden layer and recurrent connections from the hidden neurons to themselves. In case of long 591 

short-term memory (LSTM) networks, the context unit contains three ‘gate layers’ that adjust the 592 

properties of the network’s memory. (d) A gate layer of an LSTM with four inputs, two outputs, three 593 

‘context’ signals that evolve through time steps. 594 

6.2. Recurrent connections 595 

TDLs, as described in Section 6.1, explicitly represent time with a memory unit of limited length. Unlike 596 

TDLs, recurrent connections, first introduced by Jordan (1986), enable ANNs to account for time evolution 597 

based on an implicit memory concept, which is theoretically of unlimited length and is highly context 598 

dependent (Elman, 1990). Recurrent connections receive the outputs of a layer at every time step and 599 
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feed them back to the same or some other layer in the next time step. Technically, they do so via a ‘context 600 

unit’ that stores those outputs in a set of delay boxes (Figure 7c). Recurrent connections can be installed 601 

on one or more layers (e.g., Jordan, 1986; Elman, 1990) or locally on some select neurons (e.g., Frasconi 602 

et al., 1992). 603 

An MLP enabled with recurrent connections is commonly called a ‘recurrent neural network’ (RNN). An 604 

RNN can possess many more tunable parameters compared to an MLP with the same number of layers 605 

and neurons. Using the example given in Section 6.1, an MLP with three inputs and 10 neurons in the first 606 

hidden layer would have 30 weights in that layer, whereas adding recurrent connections to that layer 607 

(e.g., Figure 7c) would add 100 more weights (130 in total) to that layer.  608 

Unlike TDNNs that possess a short-term memory, RNNs in theory can represent long-term dependencies 609 

in the input sequence as well. In practice, however, recurrent connections have difficulty representing 610 

long-term memory because they can easily get dominated by short-term memory. In other words, even 611 

very small features arising from short-term dependencies tend to mask features arising from long-term 612 

dependencies. In addition, RNNs are prone to the ‘exploding and vanishing’ gradients problem in their 613 

training (Bengio et al., 1994). This is because RNNs, even with a single hidden layer, are in principle deep 614 

networks implicitly possessing an infinite number of recursive layers.  615 

To explicitly account for and balance both short- and long-term dependencies in input sequences, 616 

Hochreiter and Schmidhuber (1997) introduced a new type of RNNs, called ‘long short-term memory’ 617 

(LSTM). They extended and further parametrized the ‘context’ (also called ‘cell’) such that the network 618 

can more explicitly control what information to hold over time and what to forget. The LSTM’s context 619 

unit modulates not only the outputs in the previous time step but also the inputs to the network in the 620 

current time step. It does so via three independent layers of neurons arranged in the so-called ‘forget 621 

gate’, ‘input gate’, and ‘output gate’ layers. The neurons of each ‘gate layer’ as shown in Figure 7d, at 622 

each time step, receive recurrent connections as well as the new input to the network, and generate their 623 

response between zero and one via using a logistic function. These responses are then multiplied by their 624 

respective signals flowing through the context, which means a value of zero would kill a signal whereas a 625 

value of one would fully preserve it. Due to the additional weights and biases in the gate layers, an LSTM 626 

typically has many more tunable parameters than a conventional RNN. 627 

LSTMs are now perhaps the most popular and widely used type of ANNs with memory. However, LSTMs 628 

took a long time (more than a decade) to become known and mainstream, particularly beyond their core 629 

computer science community. Their widespread application nowadays owes to recently developed 630 

software tools such as TensorFlow that efficiently implement variations of LSTMs for a range of problems.  631 

6.3. Training considerations when the order of data matters 632 

The training of memory-enabled ANNs, such as TDNNs, RNNs, etc., is different from that of standard ANNs 633 

in terms of the way time-ordered data are presented to the network. To train standard ANNs, the data 634 

entries are typically presented randomly. In memory-enabled ANNs, however, the data entries should be 635 

presented in order of occurrence so that the structure of the time dependency is preserved. While this 636 

point might seem trivial, it requires careful attention in practical applications.  637 

Another point to consider in the training of memory-enabled ANNs is that all data entries are typically 638 

viewed to have equal importance, regardless of their location in the sequence. When used in an online 639 
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operational forecast, however, the ‘forgetting factor’ approach can be used to discount older samples. 640 

This approach allows the network to adapt to non-stationary environments, where more recent data are 641 

more representative of the underlying processes than older data (Razavi and Araghinejad, 2009).  642 

Lastly, elements of TDNNs and RNNs can be combined in a variety of ways. A well-known combination is 643 

‘time-delay recurrent neural networks’ developed by Kim (1998) and used in various applications such as 644 

long-term precipitation forecasting in Karamouz et al. (2008); see Razavi and Karamouz (2007) for a 645 

comparison of MLP, TDNN, RNN, and TDRNN in the context of flood forecasting. While such combinations 646 

may show improved modelling power compared to other ML or statistical methods, the attribution of 647 

memory gains to the different elements can arguably be challenging, if possible at all.  648 

7. ML versus process-based modelling – An experiment 649 

Machine learning has been extensively used to model systems for which process-based (also called 650 

mechanistic) models are also available. Mechanistic models are based on the physics governing the 651 

underlying processes and are therefore typically evaluated based on both their physical realism and 652 

goodness of fit to data. ML, however, does not do much, if anything, with the underlying physics while 653 

reportedly doing a superior job in fitting data, even in out-of-sample prediction. A fairly large body of 654 

literature benchmarks ML techniques, particularly ANNs, against mechanistic modes. Examples of such 655 

comparisons in the context of hydrologic modelling include Hsu et al. (1995), Tokar and Markus (2000), 656 

Wilby et. (2003), Kratzert et al. (2018), and Kratzert et al. (2019). Some studies, such as Wilby et al. (2003), 657 

also detected correlations between the weights of ANNs and state variables of mechanistic models as a 658 

way to verify that ANNs can capture the underlying processes in a hydrologic system. 659 

This section provides an experiment that runs and compares both types of models for the same problem 660 

and walks the reader through all of the steps involved. In particular, the processes around calibration and 661 

validation, role of physics, and interpretations of out-of-sample prediction are discussed. This experiment 662 

is performed in the context of hydrologic modelling, which has seen tremendous progress over the years 663 

with respect to both ML and mechanistic modelling.  664 

7.1. Data and models 665 

The case study used aims to model the hydrologic system of the Oldman River watershed in Alberta, 666 

Canada. This watershed has an area of 1434.73 km2 at Waldron's Corner with a long-term average 667 

temperature of 2.2 °C. On average, this watershed receives 611 mm of precipitation (rainfall + snowfall) 668 

annually and generates 11.7 m3/s of river flow. Figure 8 shows the 30-year long daily time series data 669 

used. The first 22 years were used for model ‘calibration’ (i.e., the ‘seen’ data in model development) and 670 

the last eight years for model ‘validation’ (i.e., the ‘unseen’ data in model development). The first three 671 

months of the calibration period were used for model spin-up. In the case of DL, the calibration period 672 

was further broken into ‘training’ (17 years) and ‘testing’ (5 years) periods, the latter for early stopping of 673 

the training process to avoid overfitting. Note that, as explained in Section 4.2, the naming convention in 674 

the ML context for the ‘validation’ and ‘testing’ periods is often the other way around. 675 

To model this system, an LSTM configuration was chosen here as a state-of-the art DL model that accounts 676 

for time dependency and memory. The inputs to the LSTM model are daily precipitation and temperature 677 

(Figures 8a and d) and the output is the concurrent flow (Figure 8e). The LSTM structure was rather 678 

arbitrarily chosen to have one hidden layer with five neurons, resulting in 166 calibration parameters. For 679 
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benchmarking purposes, a classic hydrologic model called HBV (Lindström et al., 1997), as implemented 680 

in HBV-SASK (Razavi et al., 2019), was used. HBV-SASK is based on a conceptualization of physical 681 

principles governing the water movement in a watershed using 12 calibration parameters. Each of these 682 

parameters has a physical interpretation and a physically justified feasible range (see Figure 9 and Table 683 

2 of Razavi et al., 2019). Full detail (including data) of this Oldman River watershed case study, which has 684 

been developed for educational purposes, is available in Razavi et al. (2019). 685 

 686 

 687 

Figure 8. Dataset used for the modelling experiment with ML and mechanistic modelling. (a) Measured 688 

precipitation time series (rainfall + snowfall). (b) Estimated rainfall time series (precipitation when 689 

temperature ≥ 0 °C). (c) Estimated snowfall time series (precipitation when temperature < 0 °C). (d) 690 

Measured temperature time series. (e) Measured river flow time series. The training period was used for 691 

LSTM training, while the testing period was used for early stopping. The calibration (training + testing) 692 

period was used for HBV calibration. The validation period was used to evaluate the performance of 693 

both LSTM and HBV in out-of-sample prediction. 694 
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7.2. Model performance in calibration 696 

The model calibration problem was cast as an optimization problem that tries to maximize the goodness 697 

of fit to data by tuning the model parameters, with the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 698 

1970) as the objective function. NSE is essentially a normalized version of mean squared errors computed 699 

as 1-[VAR(errors)/VAR(observations)]. As such, an NSE of one indicates a perfect fit, and an NSE of zero 700 

indicates the model prediction is not any better than the average of observations. As a rule of thumb, 701 

hydrologists often call an NSE of 0.7 and higher an acceptable fit. 702 

The LSTM model was calibrated using BP with the early-stopping strategy to avoid overfitting. In each 703 

epoch, the training period data were used to update the network parameters, while the testing period 704 

data were used to detect possible overfitting. Five independent replicates of LSTM calibration (with 705 

different initial random seeds) were conducted to account for possible variability of model performance. 706 

Figure 9a shows the training results of the five replicates compared to a case where the training would 707 

not have stopped. As expected, the LSTM performance keeps improving in training, whereas in testing it 708 

begins to significantly degrade at some point. The objective function in training came very close to one 709 

after many more epochs but with very poor performance in testing (not shown). 710 

The HBV-SASK model was calibrated by a multi-start Newton-type optimization algorithm. Similar to 711 

LSTM, five independent replicates of HBV-SASK calibration were run. Figure 9b compares the performance 712 

of HBV-SASK with that of LSTM in calibration. At this point, only check the performance of the ‘standard’ 713 

LSTM model in calibration. The figure shows all five replicates of LSTM outperform those of HBV-SASK. 714 

Note that the calibration performance of HBV-SASK shown herein is almost the best the author has 715 

achieved so far for this watershed. Based on these results, the superiority of LSTM over HBV-SASK in 716 

calibration is quite significant from a hydrologic modeling point of view. The performance of the two 717 

models in validation is discussed in Section 7.4, but before that let us discuss what information the two 718 

contained prior to calibration. 719 

 720 

Figure 9. (a) The performance of LSTM in training, testing, and calibration (training + testing) periods 721 

before and after ‘overfitting’. Training of each replicate was stopped once overtraining began at epoch 722 

numbers ranging from 30 to 110 (left panel). Then, each replicate continued to complete 250 epochs in 723 

total to merely evaluate the impact of overfitting (right panel). (b) A comparison of LSTM and HBV in 724 

out-of-sample prediction. Standard LSTM and process-informed LSTM are discussed in Sections 7.4 and 725 

7.5, respectively.  726 
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7.3. What about a priori information encoded in models? 727 

At this point, let us step back and investigate what we have achieved in terms of learning from data for 728 

both the LSTM and HBV-SASK models. The development of the LSTM model was not based on any a priori 729 

knowledge of how a watershed system works and the governing physical principles. As such, the model 730 

learned everything from scratch merely using examples from data. Basically, the model started with a fully 731 

randomized internal configuration controlled by a large number (i.e., 186) of parameters and then tuned 732 

those parameters to adapt the internal functioning of LSTM to the underlying real-world system 733 

represented in the data. Figure 10a shows the LSTM performance of arbitrarily chosen replicates before 734 

and after calibration. The model response to inputs before calibration seems to be completely random 735 

but, after calibration, the model response has learned to closely follow the underlying system response. 736 

Unlike LSTM, HBV-SASK encodes the expert knowledge available in the field of hydrology. This model is a 737 

collection of conservation of mass equations and process parametrizations that represent how 738 

hydrologists conceptualize the way a watershed works. This ‘physically based’ modelling structure is 739 

presumably able to emulate the behavior of any watershed by tuning only 12 parameters. Figure 10b 740 

shows how the model performs before calibration, with parameter values chosen to be at the midpoint 741 

of their ranges, and after calibration. The figure shows the ‘uncalibrated’ model responds reasonably to 742 

the inputs; it generally captures the timing of flows and emulates the low flow segments well but is overly 743 

responsive to large precipitation events, generating spurious spikes in flows. Calibration, either manual 744 

by expert knowledge or automatic as done here via optimization, can fix the discrepancies and fit the 745 

model output to observations. 746 

So, a fundamental difference between the two approaches is now clearer: using a mechanistic model is 747 

about directly using a wealth of expert knowledge available in a scientific field while using ML is about 748 

learning everything from scratch directly from data. This difference is manifest in the number of 749 

parameters that need to be tuned to achieve a reasonable performance. Notably, the LSTM model 750 

achieved a better performance in emulating observations after calibration, as evident in a comparison of 751 

Figures 10a and b. However, in any modelling exercise, one needs to ensure the model gives the right 752 

answer for the right reasons (Kirchner, 2006). That is why proper model evaluation in out-of-sample 753 

prediction is critically important, as discussed in the next section. 754 

7.4. Model validation: Standard versus true out-of-sample prediction 755 

In general, validation and verification of mathematical models are very challenging in some scientific 756 

disciplines, if possible at all (Oreskes et al., 1994). The standard practice, however, is to test the 757 

performance of the model under investigation in terms of reproducing some historical record not seen 758 

during model calibration (Klemeš, 1986a), a process called ‘out-of-sample prediction’ in this paper. Figure 759 

9b shows the results of such practice in the validation period set in Figure 8 for both the LSTM (standard) 760 

and HBV models. In this case, both models do reasonably well from a hydrologic point of view, with LSTM 761 

outperforming HBV across all replicates. In addition, and as expected, both models produced slightly lower 762 

NSE values in validation compared to those in calibration.  763 

The above so-called ‘model validation’ is inherently partial (Oreskes et al., 1994). While the performance 764 

of LSTM appears to be better than that of HBV in a ‘relative’ sense, one needs to take extra care before 765 

making such a conclusion. As argued by Klemeš (1986a) more than three decades ago, a strong 766 

assumption in this type of validation is that the conditions under which the model will be used will be 767 
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similar to the conditions under which the model has been developed and calibrated. It is now well-768 

recognized that such an assumption may not hold, as many natural systems are essentially non-stationary 769 

(Milly et al., 2008; Razavi et al., 2015). Despite such recognition, this standard model validation practice 770 

has arguably remained unchanged (Beven, 2018).  771 

 772 

Figure 10. What does a model learn via calibration? Performance samples of (a) LSTM and (b) HBV 773 

before and after calibration for a select two-year period. 774 

 775 

Here, I took a sensitivity analysis approach via a what-if scenario question to test and compare the 776 

performance of both models in a ‘true’ out-of-sample prediction, basically under conditions that have not 777 

truly been seen in the process of model development and calibration. The question is how the system 778 

would behave if the average temperature warmed by 2 °C while everything else remained the same. To 779 

assess this scenario, both calibrated models were fed a new temperature time series obtained by adding 780 

2 °C to all daily temperature values of Figure 8d. These new inputs roughly provide a picture of what might 781 

happen in this watershed under global warming. The modelling results under such scenarios are typically 782 

used to inform policy making for climate change adaptation. 783 

Now let us evaluate the possible changes in the watershed behavior in response to a 2 °C warming based 784 

on the two modelling paradigms. Here, instead of looking at individual simulated time series, the possible 785 

change in the average seasonality of flows is of interest. First, look at Figure 11a to check the consistency 786 

of simulated flows for the historical period. Both models generally follow the observed seasonality, but 787 

the range provided by the LSTM model is generally narrower and better encapsulates observations in both 788 

low and high flows.  789 

Under the new conditions, however, the two models show the two distinct behaviors shown in Figure 790 

11b. According to LSTM, peak summer flows would decline by about 25% on average and the time of the 791 

peak would shift backward by about a week, from the beginning of June to a time in the fourth week of 792 

May. According to HBV-SASK, however, the changes would be more pronounced. The peak flows would 793 
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decline by about 35% and the flows might show two modes: the larger at the beginning of May and the 794 

other at the beginning of June, at about the same time as the peak in the historical observations. Are such 795 

differences not sufficiently large so as to make the user skeptical about the modelling process? 796 

 797 

 798 

Figure 11. Long-term average daily flows throughout the year under (a) historical and (b) hypothetical 799 

conditions. The envelopes represent the daily ranges of flows obtained by the five replicates of each 800 

model. The curves were smoothed by a 20-year moving average filter. 801 

 802 

7.5. Injecting some physics into ML 803 

At this point, one may wonder about the possibility of ensuring that DL results be physically consistent, 804 

particularly under new conditions. Let us give it a try by recasting the modelling problem based on some 805 

understanding of the governing physics in hydrology. For example, physics tells us that the freezing point 806 

of water is around 0 °C and, therefore, this threshold could be used as an approximation to differentiate 807 

rainfall from snowfall on a daily basis, i.e., if the temperature on a day is above/below 0 °C, the 808 

precipitation on that day, if any, is considered to be rainfall/snowfall (see Figures 8b and c). This 809 

differentiation is actually a part of process parameterization in HBV, similar to many other hydrologic 810 

models, via a parameter called ‘temperature threshold’ (TT) for melting/freezing and separating rain and 811 

snow, with a feasible range from −4 to +4 °C (see Razavi et al., 2019 for details). The warming of a 812 

watershed would naturally change the rainfall to snowfall ratio, and so building this domain knowledge 813 

into the LSTM model makes sense.  814 

Perhaps the most straightforward way of introducing the TT concept into LSTM is via pre-processing of 815 

the inputs. Therefore, a new LSTM model was developed and calibrated, called ‘process-informed LSTM’ 816 

in this paper, with three inputs: rainfall, snowfall, and temperature as shown in Figures 8b, c, and d. 817 

Similar to the original, the new LSTM model has one hidden layer with five neurons, resulting in 186 818 

calibration parameters. The procedure for the calibration and validation of the process-based LSTM was 819 

the same as for the ‘standard LSTM’, already explained in Sections 7.2 and 7.4. Figure 9b compares the 820 

performance of the process-informed LSTM with HBV and the standard LSTM. The figure shows the two 821 
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LSTM models perform comparably well. Process-informed LSTM results in a slightly lower average NSE in 822 

validation but, with only five replicates, this small difference should be interpreted with caution. 823 

Figure 11b demonstrates the performance of the process-informed LSTM model in the true out-of-sample 824 

prediction. According to this model, the summer peak flows would decline by 20% on average and the 825 

time of peak would appear about two weeks earlier than in the historical record, in the third week of May. 826 

The process-informed LSTM model generated rising and falling limbs that are more consistent with those 827 

of HBV-SASK. Overall, however, the results of HBV-SASK under the new conditions are still quite different.  828 

7.6. So, what model should we trust: the ML or physically based model? 829 

Now the question is which one of the three models produced the most credible picture of possible 830 

watershed behavior under the new conditions. In practice, this question is very difficult to answer, if 831 

possible at all. In general, the prediction of such changes can be debated and might vary from one study 832 

to another, depending on the models and data used. Perhaps, a definite answer would need to wait until 833 

the future has come and shown such possible changes. And, from a bigger-picture point of view, models 834 

of natural systems cannot be verified or validated in true out-of-sample prediction, because those systems 835 

are never closed and not everything can be represented in a model, as argued by Oreskes et al. (1994) 836 

nearly three decades ago. 837 

But, as scientists, we have our own perceptions and intuitions. These might be biased but still useful to 838 

provide a ground for building confidence in the credibility of a model. In the context of the case study 839 

given, previous research on the Canadian Rocky Mountains has indicated that warming alone will result 840 

in a considerable reduction in flows and earlier peaks in watersheds similar to the Oldman River 841 

watershed. A synthesis of research efforts under the Changing Cold Regions Network (CCRN; DeBeer et 842 

al., 2020) on the cold interior of western Canada indicates a shift in timing of the spring hydrograph rise 843 

and peak flows of nearly two weeks earlier by mid-21st century, and as much as one month by the late 844 

21st-century.  845 

The addition of some physics to the LSTM model in Section 7.5 should at least intuitively improve trust in 846 

modelling results. What is worrisome is the large divergence in behavior between models that produce 847 

comparable results in standard out-of-sample prediction. This requires a more in-depth understanding 848 

and appreciation of the value of domain knowledge, as discussed in the next section. 849 

8. Discussion 850 

8.1. What is the typically ignored value of domain knowledge in DL? 851 

True out-of-sample prediction is nothing but ‘extrapolation’ beyond the observed data and behaviors used 852 

in model development and calibration. Extrapolation is a reality that many predictive models nowadays 853 

must face because of ‘non-stationarity’ in climate and the environment (Milly et al., 2008; Razavi et al., 854 

2015). Any purely regression-type model, including those arising from DL, would be disadvantaged in 855 

extrapolation as, by definition, extrapolating would require working in parts of the problem space for 856 

which they have not received any information. Conversely, mechanistic models may be salvaged in 857 

extrapolation by the domain knowledge encoded within them.  858 

But what does domain knowledge offer when it comes to extrapolation? The answer is the set of principles 859 

modulated via conservation laws (e.g., mass, energy, and momentum) and process parametrizations, 860 
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which represent our perceptions of how two or more variables might be related (Gupta et al., 2012). Such 861 

principles have been developed and evolved over time based on extensive observation and research by 862 

scientists and practitioners. The limits of validity of such principles are typically known. In the following, 863 

the importance of taking advantage of those principles in modelling and prediction is discussed with 864 

respect to three aspects: conservation laws, monotonicity and rates, and feedback mechanisms. 865 

Conservation laws: In physics, a conservation law states that a specific measurable property does not 866 

change within an isolated system with time. Such a law is usually expressed as a ‘continuity equation’; 867 

that is, a differential equation equates the rate of change in storage within a control volume with the 868 

difference between what comes in and what goes out of the control volume. In hydrology, for example, 869 

continuity equations are built into mechanistic models to ensure water balance is preserved in simulations 870 

over time. ML models, however, do not automatically account for such laws and, as a result, water can be 871 

falsely introduced or lost in the course of simulation. 872 

Monotonicity and rates: The knowledge base includes the general characteristics of some causal 873 

relationships between various physical variables. For example, we know from basic thermodynamics that 874 

the relationship between melt rate and available heat is monotonic; that is, more heat causes a higher 875 

melt rate. Furthermore, we have some rough estimate of the feasible range of the rate of change in one 876 

with respect to the other. Similarly, from basic hydrology we know the causal relationships governing the 877 

way a hillslope stores and releases water are generally such that a positive correlation exists between 878 

water available in the soil and its contribution to flows; more water means more flows due to gravitational 879 

forces.  880 

Mechanistic models directly account for such knowledge on casual relationships. This knowledge is 881 

encoded in process parametrizations typically in the form of deterministic, monotonic functions, or rarely 882 

in hysteretic forms, with a limited number of parameters to be calibrated to the specific case study in 883 

hand (Gharari and Razavi, 2018). However, in the case of hyper-flexible models such as ANNs, such 884 

functions need to be entirely derived from data, all from scratch, and ignoring the knowledge base related 885 

to those monotonic relationships. Therefore, extrapolation runs the risk that such relationships become 886 

non-monotonic and/or have unrealistic rates, producing erroneous behaviors. This risk is exacerbated by 887 

the fact that identifying and diagnosing such errors are very difficult, if possible at all. 888 

Feedback mechanisms: A real-world physical system is a combination of variables that interact over time, 889 

typically via a range of feedback mechanisms. Such feedback mechanisms control the internal dynamics 890 

of the system and are key to its evolution over time. For example, consider a coupled water-vegetation 891 

system in which precipitation, available soil moisture, and plant biomass interact in complex time-892 

dependent ways, even at times creating positive feedbacks that destabilize the system’s behavior 893 

(Rodriguez‐Iturbe et al., 1991; Scheffer et al., 2001). The knowledge base available about these feedback 894 

mechanisms is often built into mechanistic models, using differential equations (ordinary or partial) to 895 

describe the system dynamics. The representation of such dynamics in the making of models is important, 896 

particularly for long-term predictions and over long time scales.  897 

DL models are often unable to account explicitly, perhaps even implicitly, for such long-term dynamics. If 898 

a particular dynamical behavior is present in training data, then DL can capture that behavior in its 899 

mapping from input onto output. But DL has no explicit mechanism to represent that dynamic under 900 

perturbed conditions beyond what has been recorded in the training data.  901 
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The bottom line is that mechanistic models are generally expected to be less prone to generating spurious 902 

behaviors in true out-of-sample prediction. Therefore, many domain experts may be inclined to trust 903 

physically based models as their behavior is constrained by physical laws that are perceived as unchanging 904 

with time. The points made in this section will become clearer in the next section, where the essential 905 

differences between DL and mechanistic modelling are discussed. 906 

8.2. Why is DL essentially different from process-based modelling? 907 

In the author’s view, the first principles of ANNs are rooted in connectionism, hyper-flexibility, and 908 

vigorous optimization. These characteristics are fundamentally different from the guiding principles of 909 

developing and calibrating mechanistic models, as described in the following: 910 

 Connectionism is an approach that orchestrates a set of simple algebraic operations in a massively 911 

parallel manner to create a model that is able to carry out complicated tasks. Following this 912 

approach, ANNs represent the response of a system under consideration to an input by summing 913 

the collective efforts of many neurons, whose roles cannot be easily attributed to individual 914 

processes involved in that system. This is unlike mechanistic modelling where each part of a model 915 

is designed to be responsible for a specific process. 916 

 Hyper-flexibility is a characteristic of a model with excessive degrees of freedom, which can literally 917 

fit any dataset, and is not constrained by the many assumptions held by typical statistical models. 918 

ANNs are known to be hyper-flexible. Mechanistic models, however, have limited degrees of 919 

freedom depending on the knowledge base available about the processes being modelled. In 920 

general, mechanistic models tend to have just as many degrees of freedom as can be supported and 921 

constrained by available knowledge and data. 922 

 Vigorous optimization here refers to the practice of manipulating model parameters at any cost to 923 

maximize the goodness-of-fit to calibration data. The training of ANNs is all about minimizing an error 924 

function; that is, among two competing ANNs, the one producing smaller errors in calibration and 925 

validation is the winner. Optimization is also often an essential part of mechanistic modelling to 926 

calibrate model parameters. However, in mechanistic modelling, minimizing the errors is not the 927 

goal but a means to improve the realism of the model. In other words, unlike ANNs, physical 928 

feasibility of a parameter, its identifiability, and equifinality are key considerations in mechanistic 929 

modelling. 930 

The recognition of these fundamental differences is critically important when one aims to choose the 931 

correct modelling paradigm for a purpose, compare the two paradigms in a case study, or attempt to 932 

bridge the two paradigms, possibly for improved modelling performance. The following section outlines 933 

the status quo for bridging the two paradigms and some emerging trends. 934 

8.3. How can we bridge DL and process-based modelling? 935 

The history of research on reconciling and bridging ANNs with mechanistic modelling dates back to the 936 

early 2000s or perhaps earlier. These efforts have generally had the objective of simultaneously leveraging 937 

the strengths of the two modelling paradigms to further our knowledge and predictive ability. Abrahart 938 

et al. (2012) reviewed such research in the context of hydrology and refer to it as ‘hybridization’. They 939 

introduced three possible approaches for this purpose, which herein are referred to as ‘surrogate 940 

modelling’, ‘one-way coupling’, and ‘modular coupling’. Seven years later, Reichstein et al. (2019) in an 941 
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influential article in Nature re-introduced and proposed the notion of ‘hybrid modelling’ and the above 942 

three approaches as the next steps in earth science. In the following, these three approaches are 943 

explained, and then more modern existing approaches arising from research fields beyond earth and 944 

environmental sciences are discussed. 945 

Surrogate modelling, alternatively called metamodeling or model emulation, refers to the process of 946 

developing and applying a simpler, cheap-to-run model in lieu of a more complex, computationally 947 

intensive model (Razavi et al., 2012a). In this process, a data-driven surrogate, such as an ANN, is trained 948 

on samples of a limited number of original model runs to approximate the model response surface. The 949 

developed surrogate model can then be used in different frameworks in conjunction with the original 950 

model, as reviewed in Razavi et al. (2012a), in multi-query applications such as optimization and 951 

uncertainty quantification. Example applications of ANNs as surrogates of mechanistic models include 952 

Johnson and Rogers (2000), Behzadian et al. (2009), and Razavi et al. (2012b). 953 

One-way coupling refers to the process combining a mechanistic model with an ML model such that the 954 

output of the former feeds into the latter as input. A general rationale for such a combination is that a 955 

mechanistic model may not be able to fully explain the observed data and, therefore, an ML model could 956 

be of help in extracting any information left in the residuals of the mechanistic model. For example, 957 

consider a case where a mechanistic hydrologic model is used for streamflow forecasting and, as 958 

expected, some errors in model outputs are present. An ANN can be used to model such errors over a 959 

historical period to provide some predictive ability on the errors for a time step into the future. Then, 960 

running these two models in sequence may provide higher forecasting skills. Example applications of such 961 

one-way coupling include Shamseldin and O’Connor (2001) and Anctil et al. (2003). 962 

Modular coupling refers to cases where an ML model is used as a module/sub-model of a larger 963 

mechanistic model or vice versa. The rationale for this type of coupling may be that a particular model 964 

might have proven skills in representing a particular process and is therefore preferred, while other 965 

processes are better represented by another model. Hydrologic examples are the work of Chen and 966 

Adams (2006) and Corzo et al. (2009), in which ANNs are used as the routing module within a distributed 967 

hydrological model. Another example is the work of Chua and Wong (2010) in which an ANN-based 968 

hydrologic model takes the output of a kinematic wave model as one of its inputs. And, a recent example 969 

is the work of Bennett and Nijssen (2020), in which a DL-based model for the simulation of turbulent heat 970 

fluxes is built into a process-based hydrologic model. 971 

Beyond the earth and environmental sciences community, the notion of bridging the knowledge base and 972 

ML has a long history (e.g., see the ‘knowledge-based artificial neural networks’ by Towell and Shavlik 973 

(1994)), but it has received significantly more attention recently. Different approaches mostly arising from 974 

mathematics and computer science have been proposed under titles such as ‘theory-guided data science’ 975 

(Karpatne et al., 2017), ‘informed machine learning’ (von Rueden et al., 2019), and ‘physics-informed 976 

neural networks’ (Raissi et al., 2019). Providing a full coverage of such approaches is well beyond the 977 

scope of this paper, and many of them have been developed for specific application areas with limited 978 

relevance to earth and environmental problems. Instead, in the following, I try to be selective and explain 979 

three approaches that I found most relevant. 980 

Regularizing ANNs via knowledge-based loss terms. A new regularization function can be developed 981 

based on the available knowledge surrounding a given problem and be added to the loss function used in 982 

training. For example, any violation of the conservation laws or monotonicity of relationships, as described 983 
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in Section 8.1, can be quantified and penalized during training. Refer to Stewart and Ermon (2017) for an 984 

example application of this approach in the context of image processing. 985 

Using mechanistic model runs to augment ANN training data. A mechanistic model can be used to 986 

simulate the system under investigation under a range of conditions to generate ‘synthetic data’ to 987 

augment the available training data. This approach may be particularly useful in guiding ANNs in 988 

extrapolation beyond conditions seen in the original training data (see the discussion in Section 8.1). This 989 

approach is based on the assumption that the mechanistic model used is sufficiently accurate—an 990 

assumption that needs to be treated with caution. For an example of this approach in the field of systems 991 

biology, see Deist et al. (2019). 992 

Integrating differential equations into ANNs. This approach is a very recent and perhaps the most 993 

mathematically elaborate in terms of integrating the knowledge base into ANNs, primarily developed by 994 

Raissi et al. (2019). It parametrizes the known differential equations describing a system and integrates 995 

them into the body of ANNs. The integrated model is then trained to the available data, simultaneously 996 

inferring the parameters of the differential equations and network weights. This approach still seems 997 

embryonic but perhaps with great potential for scientific breakthroughs. 998 

8.4. What can we learn from prominent DL applications? 999 

As outlined in Section 1, DL has already been used across a wide range of disciplines and applications with 1000 

varying degrees of success. Here, and for context, consider two special and well-known cases of DL 1001 

applications: playing chess and predicting the stock market. DL has achieved incredible, superhuman-level 1002 

performance in chess and similar games (Silver et al., 2018), while its performance in stock market 1003 

prediction has been criticized despite its widespread application (e.g., Pearlstein, 2018). These opposing 1004 

outcomes may be explained as follows: 1005 

 Chess does not possess any properties of ‘complex systems’ (Bar-Yam, 1997), whereas financial 1006 

systems are essentially complex, with a wide range of agents interacting at a wide range of scales, 1007 

giving rise to emergent behaviors and even black swans. Any AI-based financial services themselves 1008 

would also be an agent influencing the stock market, even possibly inducing vicious cycles. 1009 

 Chess can be viewed as a closed system, as no exogenous factors influence any properties or 1010 

dynamics of the board and players, whereas stock markets are open systems and, for any analyses, 1011 

the assumed boundary conditions depend on the analyst’s judgement. 1012 

 Chess is a fully observable system, as the entire board, pieces, rules, and moves are seen by the 1013 

players, but stock markets are only partially observable and some controlling elements in the market 1014 

might be hidden to the analysts. 1015 

 Chess is stationary, as the properties and governing rules of the game remain constant over time, 1016 

whereas stock markets are non-stationary and their long-term dynamics and behaviors may change 1017 

in unpredictable ways driven by political, social, economic, or natural events. 1018 

So what? Earth and environmental systems arguably fall somewhere in between these two specific 1019 

applications with respect to their four fundamental and inter-related characteristics: such systems are 1020 

complex, open, partially observable, and non-stationary. Loosely speaking, understanding and predicting 1021 

earth and environmental systems face similar challenges to those of the stock markets in terms of those 1022 
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four characteristics. However, unlike stock market systems that are conceived to be partially predictable 1023 

at best (Fama, 1970; Malkiel, 2003), the behaviors of earth and environmental systems are generally 1024 

believed to be predictable, with limits of predictability that have been improving as more knowledge and 1025 

data become available.  1026 

The comparisons above try to convey two points. First, the revolutionary success of DL in one field of 1027 

application cannot necessarily be extended to another field of application. The context matters, and 1028 

success depends on the characteristics of the problem at hand. Second, different disciplines may cross-1029 

fertilize DL applications and learn from one another. However, this requires more direct communications 1030 

between experts in different disciplines about common issues, which is non-trivial.  1031 

9. Concluding remarks 1032 

Deep learning has perhaps by now served every researcher and practitioner in earth and environmental 1033 

sciences communities in tasks such as image and language processing, at least through their smart phones. 1034 

Such astonishing and within-reach technologies have boosted interest in DL, and in AI in general, within 1035 

these communities, evidenced by the significant growth in the number of their research papers on DL. 1036 

Many believe the combination of AI with unprecedented data sources and increased computational 1037 

power will offer exciting new opportunities for expanding our knowledge about various earth and 1038 

environmental systems. Unsurprisingly, similar to many other innovations, AI and particularly DL 1039 

techniques are facing different views towards their future; for example, in the hydrology context Nearing 1040 

et al. (2020) suggest a DL-informed divorce from some of the current hydrological theories while Beven 1041 

(2020) advocates for the fundamental needs of a knowledge base in DL interpretation.  1042 

It is certainly an exciting time for earth and environmental sciences to benefit from DL tools. We need, 1043 

however, to be mindful of any possible risk of over-excitement about the new potential and over-sellings 1044 

about the available tools. Arguably, DL in earth and environmental sciences has primarily focused on off-1045 

the-shelf applications of methods largely developed by mathematicians and computer scientists to 1046 

problems in a new domain with no or limited considerations of the available domain’s knowledge base. 1047 

The immediate risk of such practices is that the popularity of AI tools in earth and environmental sciences 1048 

would then follow the ups and downs of these tools in the areas from which they originate and the 1049 

software developed for those purposes. There is also a greater risk, in the author’s view, as follows. 1050 

Let us flash back to more than three decades ago, when the prominent statistician George Box (1976, p. 1051 

797-798) warned about the “mathematistry” trap, “characterized by development of theory for theory's 1052 

sake, which since it seldom touches down with practice, has a tendency to redefine the problem rather 1053 

than solve it”. He argued that “there is unhappy evidence that mathematistry is not harmless. In such 1054 

areas as sociology, psychology, education, and even, I sadly say, engineering, investigators who are not 1055 

themselves statisticians sometimes take mathematistry seriously. Overawed by what they do not 1056 

understand, they mistakenly distrust their own common sense and adopt inappropriate procedures 1057 

devised by mathematicians with no scientific experience.” This sentiment was then echoed by the 1058 

prominent hydrologist Vit Klemeš (1986b, p. 177 and p. 185), who said “The danger increases with the 1059 

proliferation of computerized “hydrologic” models whose cheaply arranged ability to fit data is presented 1060 

as proof of their soundness and as a justification for using them for user‐attractive but hydrologically 1061 

indefensible extrapolations.” He continued, “The danger to hydrology from extrapolations based on 1062 

mathematistry is that they lead it on the path of bad science.” 1063 
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The point here is that the risk of mathematistry seems to be just as fresh as it must have been back then, 1064 

particularly when it comes to the application of AI tools in earth and environmental sciences. Due to the 1065 

very nature of such tools, this risk may even well extend to their original areas of application, to a point 1066 

that such practice has been referred to as a form of modern “alchemy”; see Rahimi and Recht (2017) for 1067 

the sentiment, LeCun (2017) for a rebuttal, and Hutson (2018) for a summary. This point is not to 1068 

undermine the benefits of AI technology, particularly for earth and environmental applications. Instead, 1069 

it calls for improved rigor and better appreciation of the knowledge base available. After all, it has been 1070 

long known in environmental sciences that complex models can be made to produce virtually any desired 1071 

behavior given their large degrees of freedom, as articulated by Hornberger and Spear (1981) three 1072 

decades ago. 1073 

Having such risks in mind, the new potential afforded by AI for earth and environmental sciences is great. 1074 

To realize this potential, we need to reconcile data-driven AI techniques and the theory-driven knowledge 1075 

base. The knowledge base is at the heart of ‘traditional programming’, which is still a major building block 1076 

of process-based or mechanistic modelling in earth and environmental sciences. Clearly, the traditional, 1077 

knowledge-based programming and AI are made up of two fundamentally different world views for 1078 

problem solving and, therefore, their reconciliation will not be straightforward. This paper tried to address 1079 

some critical questions in this regard and provide some perspective for this important endeavor, in 1080 

anticipation of new breakthroughs in earth and environmental sciences in an age of big data and 1081 

computational power. 1082 
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