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Abstract13

Population dynamics models combine density-dependence and environmental effects.14

Ignoring sampling uncertainty might lead to biased estimation of the strength of15

density-dependence. This is typically addressed using state-space model approaches, which16

integrate sampling error and population process estimates. Such models seldom include an17

explicit link between the sampling procedures and the true abundance, which is common in18

capture-recapture settings. However, many of the models proposed to estimate abundance19

in the presence of heterogeneity lead to incomplete likelihood functions and cannot be20

straightforwardly included in state-space models.21

We assessed the importance of estimating sampling error explicitly by taking an22

intermediate approach between ignoring uncertainty in abundance estimates and fully23

specified state-space models for density-dependence estimation based on autoregressive24

processes. First, we estimated individual capture probabilities based on a heterogeneity25

model, using a conditional multinomial likelihood, followed by a Horvitz-Thompson26

estimate for abundance. Second, we estimated coefficients of autoregressive models for the27

log abundance. Inference was performed using the methodology of integrated nested28

Laplace approximation (INLA). We performed an extensive simulation study to compare29

our approach with estimates disregarding capture history information, and using30

R-package VGAM, for different parameter specifications. The methods were then applied31

to a real dataset of gray-sided voles Myodes rufocanus from Northern Norway.32

We found that density-dependence estimation was improved when explicitly33

modelling sampling error in scenarios with low innovation variances, in which differences in34

coverage reached up to 8% in estimating the coefficients of the autoregressive processes. In35

this case, the bias also increased assuming a Poisson distribution in the observational36

model. For high innovation variances, the differences between methods were small and it37

appeared less important to model heterogeneity.38
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Incorporating sampling error in the estimation of autoregressive coefficients of animal41

population dynamics using capture-recapture data42

1 Introduction43

Models used to analyze population dynamics include a combination of density-dependence44

and environmental effects. Ignoring the uncertainty in abundance estimates biases45

estimates of the strength of density-dependence, and different approaches exist to achieve46

better accuracy (see Lebreton and Gimenez (2012) for a review). In particular, state-space47

models combining an observation model – linking the observations such as counts to the48

true abundance - and a process model – describing the processes driving population49

dynamics – have become a standard approach in many analyses (Dennis & Taper, 1994).50

However, these models rarely include an explicit model of the link between how counts51

were obtained and true abundance, often relying on a non-specific observation model such52

as log-normal or Poisson distribution (for instance, Ono, Langangen, and Stenseth (2019),53

but see below).54

Capture-recapture methods have been extensively used to estimate abundance, and many55

methods have been developed to take different sources of variability in capture probabilities56

into account. Estimating abundance is a challenging statistical problem (Link, 2003), and57

heterogeneity in capture probabilities can lead to large biases in abundance estimates when58

using models assuming no heterogeneity (Carothers, 1973; Otis, Burnham, White, &59

Anderson, 1978). However, many of the models that have been proposed to estimate60

abundance in the presence of heterogeneity do not lead to observation models that can be61

included in state-space models as they do not lead to likelihood functions in a closed form62

(Chao & Huggins, 2006; Huggins & Hwang, 2011).63

Many studies investigating density dependence have used simple process models such as64

the Gompertz model - i.e. a model which is a first order autoregressive model on a log scale65

(Ono et al., 2019; Thibaut & Connolly, 2019). However, ecological processes such as66

trophic interactions (Bjørnstad, Falck, & Stenseth, 1995) or intrinsic ecological properties67
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such as age structure (Lande, Engen, & Sæther, 2002) may lead to more complex process68

models such as a second-order autoregressive model (AR(2)). An important case is the69

population cycles observed in many small mammal populations, particularly in northern70

environments (Elton, 1924; Stenseth, 1999). These quasi-periodic fluctuations are quite71

well approximated by AR(2) models on a logarithmic scale (Bjørnstad et al., 1995).72

Whereas most analyses have ignored the uncertainty in abundance estimates (Bjørnstad et73

al., 1995), some have used state-space models (Cornulier et al., 2013; Ims, Yoccoz, &74

Killengreen, 2011; Kleiven, Henden, Ims, & Yoccoz, 2018; Stenseth et al., 2003). However,75

none of these approaches used a capture-recapture approach dealing with capture76

heterogeneity, an issue that had been emphasized in earlier reviews (Otis et al., 1978;77

Yoccoz, Ims, & Stenseth, 1993).78

Here we investigated the performance of an intermediate approach between ignoring79

uncertainty in abundance estimates (i.e. using the raw population counts) and fully80

specified state-space models. Specifically, we first used a multinomial observation model to81

estimate capture probabilities followed by estimating abundance at each time point using82

the Horvitz-Thompson estimator (Horvitz & Thompson, 1952). Second, we fitted an AR(2)83

process model to the log-abundance to estimate direct and delayed density-dependence84

given by the first and second coefficient of the AR(2) model, respectively. Both estimation85

steps were performed in a unified way, incorporating the models within the general class of86

latent Gaussian models (Rue, Martino, & Chopin, 2009). Full Bayesian inference was then87

obtained using the methodology of integrated nested Laplace appproximation (INLA) (Rue88

et al., 2009, 2017).89

We based our analyses on a large-scale study of population dynamics of the dominant small90

mammal species in northern Fennoscandia, the grey-sided vole Myodes rufocanus (Ims et91

al., 2011). This species shows large fluctuations with a 4 to 5 year periodicity (Ims et al.,92

2011; Marolla et al., 2019). We monitored populations of grey-sided voles along a 200 km93

gradient from coast to inland, using live capture-recapture methods, starting in 2000.94
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Previous analyses have shown that there was large heterogeneity in capture probabilities95

(Yoccoz & Ims, 2004). Our goal was to understand spatial patterns of population dynamics96

by going further than analyzing spatial correlations in seasonal or annual population97

growth (Bjørnstad, Stenseth, & Saitoh, 1999), doing so by including spatial variation in the98

autoregressive parameters as well as spatial environmental effects (i.e. the residual or99

stochastic process term). INLA provides a convenient approach to analyze such complex100

spatial patterns, but we needed first to assess the robustness of using an approach based on101

estimated abundances but without implementing a full state-space model. In this paper,102

we therefore use a simulation study built around the case study (adaptable to other103

situations from the code provided) to assess the estimation accuracy of the104

density-dependence, both including and excluding capture-history information.105

The structure of this paper is as follows. Section 2 provides our methodological background106

to analyse capture-recapture data and describes the Bayesian framework to perform107

parameter estimation. This includes using INLA to estimate individual capture108

probabilities and the direct and delayed density-dependence given by the coefficients of109

AR(2) models. Section 3 contains an extensive simulation study, investigating how110

density-dependence estimates are influenced when individual capture probabilities are111

taken into account. In section 4, we study the population cycles of grey-sided voles. We112

first compare different observation models in estimating individual capture probabilities113

and then assess whether incorporation of individual capture probabilities influence114

density-dependence estimates. A summary and concluding remarks are given in Section 5.115

2 Methodology116

Capture-recapture experiments are important to assess heterogeneity in individual capture117

probabilities. This section describes our approach to incorporate capture-recapture118

information in the estimation of density-dependence. First, we define an observation model119

in which capture probabilities are modelled in terms of individual features and then used to120
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estimate abundance. Second, we fit an AR(2) process model to the estimated121

log-abundance to assess density-dependence. When using state-space approaches, the122

parameters of the observation and process model are estimated simultaneously. This is not123

possible in our case as the capture probabilities are estimated based on a conditional124

multinomial likelihood, due to individuals that were not observed. Instead, we apply a125

sequential approach, first estimating the capture probabilities and then the AR(2)126

coefficients. This allows us to use an explicit sampling model to estimate capture127

probabilities, instead of assuming that the observed counts have a Poisson or log-normal128

distribution. The given sequential approach is computationally efficient using the R-INLA129

package which is freely available at www.r-inla.org.130

2.1 Statistical background on capture-recapture data131

Assume a closed population with a total of N individuals and a capture-recapture

experiment with τ capture sessions. Let

w′i = (wi1, . . . , wiτ ), i = 1, . . . , N,

denote the capture history for the ith individual. If wij = 1, the individual was captured at

the jth capture session while wij = 0 otherwise, i.e. wij ∼ Bernoulli(pij), j = 1, . . . , τ . For

each individual, the probability of a given capture history is then

pwi
=

τ∏
j=1

p
wij

ij (1− pij)1−wij , i = 1, . . . , N.

Assuming that all individuals are captured independently, the complete likelihood becomes

L(N, {pij} | {wij}) =
N∏
i=1

τ∏
j=1

p
wij

ij (1− pij)1−wij

where both N and the set of probabilities {pij} are unknown. Due to the unknown number132

of non-captured individuals, computation of the likelihood is unfeasible. This is a133

well-known problem (Huggins & Hwang, 2011) and requires alternative strategies to134

perform parameter estimation.135

www.r-inla.org
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A commonly applied approach is to maximise the conditional likelihood for the n136

individuals that were captured at least once. Let cik, k = 0, . . . , 2τ − 1, denote the137

probability that the capture history of individual i is equal to category k. The different138

categories are defined by all possible permutations of the capture session vector, giving a139

total of m = 2τ − 1 categories for the captured individuals.140

From here onwards we will refer to data sets with only two capture events, in which141

mortality and emigration are disregarded considering capture events on adjacent days. The142

event that an individual is never captured is then defined as category 0, while the143

categories 1, 2 and 3 refer to the capture histories (1, 0), (0, 1) and (1, 1), respectively. To144

perform parameter estimation, we need to make realistic assumptions on the capture145

probabilities for different capture sessions. Otis et al. (1978) propose a total of eight146

different models characterising capture probabilities for different sessions depending on147

time, behaviour and homogeneity of the individuals, also including combinations of these148

three factors. Here, we consider a heterogeneity model including a temporal effect, Mth.149

This implies that the capture probabilities depend on different features of the individuals.150

Further, we assume that the capture probability on the first and second capture sessions151

are independent. The probabilities for the different categories are then specified as152

ci0 = (1− pi1)(1− pi2), ci1 = pi1(1− pi2), ci2 = (1− pi1)pi2, ci3 = pi1pi2, i = 1, . . . , N.

(1)

To estimate abundance based on individuals that were captured, we use the153

Horvitz-Thompson estimator (Horvitz & Thompson, 1952)154

N̂ =
n∑
i=1

(1− ĉi0)−1 (2)

where ĉi0 denotes the estimated probability that individual i was not captured. This155

probability is estimated using a regression model as explained in the next section.156
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2.2 A multinomial capture-recapture regression model including a Poisson157

transformation158

An important question in analysing population processes from capture-recapture data is159

whether features of the captured individuals give valuable information in further analysis of160

density-dependence. To estimate the probabilities in (2), it is natural to assume a161

multinomial regression model for the captured individuals, incorporating covariate162

information which helps to separate different capture categories. Define the vector163

Y ′i = (Yi1, . . . , Yim) where Yik = 1 for an individual classified to category k, while the164

remaining elements of Y i are 0. Each of the vectors Y 1, . . . ,Y n has a multinomial165

distribution. Based on (1), probabilities for the m = 3 observed categories are defined by166

c̃ik = cik/(1− ci0), k = 1, . . . ,m, ensuring that the probabilities sum to 1. These167

probabilities can then be modelled in terms of observed individual features like weight, sex,168

age, etc.169

We denote the individual features or covariates by z′r = (z1r, . . . , znr). Further, define the170

linear predictor171

Vik =
p∑
r=1

γkrzir, i = 1, . . . , n, k = 1, . . . ,m. (3)

where the coefficient γkr is specific for category k and covariate r, while p is the number of172

covariates. The scaled probabilities for the captured individuals are then expressed as173

c̃ik = eVik∑m
k=1 e

Vik
, i = 1, . . . , n, k = 1, . . . ,m (4)

The resulting multinomial likelihood is174

LM(γ1, . . . ,γp | y1, . . . ,yn) ∝
n∏
i=1

m∏
k=1

(c̃ik)yik (5)

where γ ′r = (γ1r, . . . , γmr), r = 1, . . . , p. Notice that in maximizing (5), the denominator of

c̃ik does not simplify using the ordinary logarithmic transformation. It is therefore common

to apply the well-known multinomial-Poisson transformation (Baker, 1994) in which the
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likelihood is rewritten as

LP (γ1, . . . ,γp,β | y1, . . . ,yn) ∝
n∏
i=1

m∏
k=1

e−µikµyik
ik .

Here, µik = eVik+βi represents the rate of a Poisson distributed random variable Yik. The175

given transformation from a multinomial likelihood to the Poisson likelihood introduces176

auxiliary parameters β′ = (β1, . . . , βn), in which βi is proportional to ln(∑m
k=1 e

Vik). This is177

just a technical detail to make the approximation work correctly. The likelihood LP (.) is178

proportional to LM(.) and gives the same maximum likelihood estimates for the coefficient179

vectors γr. The resulting regression model is then summarized in terms of linking the180

expectation of the Poisson variables to the linear predictor using the log-transform, i.e.181

ln(E(Yik)) = ln(µik) =
p∑
r=1

γkrzir + βi + εi, i = 1, . . . , n, k = 1, . . . ,m, (6)

where εi ∼ N(0, κ−1) denotes small independent random error terms.182

In fitting the given model to a data set, the vectors {γr}
p
r=1 will not be identifiable.183

However, in our case we only need estimates of the differences of these coefficients as these184

represent ratios of log-probabilities between the different categories. For categories k and l,185

we notice that186

ln
(
c̃ik
c̃il

)
= Vik − Vil =

p∑
r=1

(γkr − γlr)zir.

In estimating the parameters of the model, this implies that the auxiliary parameters and187

error terms disappear, but these are still included in fitting (6) to a data set. In the case of188

assuming (1), the estimated individual probabilities are then given by189

ln
(

p̂i1
1− p̂i1

)
=

p∑
r=1

(γ̂3r − γ̂2r)zir (7)

ln
(

p̂i2
1− p̂i2

)
=

p∑
r=1

(γ̂3r − γ̂1r)zir. (8)

or equivalently190

p̂i1 = e
∑p

r=1(γ̂3r−γ̂2r)zir

1 + e
∑p

r=1(γ̂3r−γ̂2r)zir
(9)

p̂i2 = e
∑p

r=1(γ̂3r−γ̂1r)zir

1 + e
∑p

r=1(γ̂3r−γ̂1r)zir
. (10)
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These probabilities are then used to estimate ĉi0 in (2).191

2.3 Implementation using a Bayesian framework192

To fit (6) to a dataset and estimate the capture probabilities, we choose to apply a193

Bayesian approach. This implies that all parameters in (6) are viewed as random variables.194

Specifically, the resulting regression model can be incorporated within the computational195

framework of latent Gaussian models. This is a flexible class of three-stage hierarchical196

models, which can be analysed in a unified way using INLA. The model in (6) is then197

reformulated in terms of having conditionally independent observations, given a latent field198

and hyperparameters.199

The three stages of a latent Gaussian model are expressed as follows, where π(.) is generic200

notation for probability densities:201

1. The first stage specifies the likelihood where the observations are assumed

conditionally independent given a latent field x and hyperparameters θ. In our case,

let y′ = (y′1, . . . ,y′n) denote the stacked vector of the m categories for the n

individuals. The likelihood is then expressed as

L(x,θ | y) =
nm∏
i=1

π(yi | xi,θ).

2. The latent field x collects all random variables of the linear predictor202

x = {γ1, . . . ,γp,β, ε} (11)

where we could also include the predictor itself. The latent field models the

dependency structure of the observations and is assigned a multivariate Gaussian

prior

π(x | θ) ∼ N(0,Q−1(θ)).

The precision (inverse covariance) matrix Q is typically sparse such that x has203

Markov properties and is then referred to as a Gaussian Markov random field.204
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3. The hyperparameters θ of a latent Gaussian model are usually assigned205

non-Gaussian priors. Here, we only have one hyperparameter being the precision206

parameter of the random error terms, θ = κ. This parameter is assigned a penalised207

complexity prior (Simpson, Rue, Riebler, Martins, & Sørbye, 2017), implying that208

κ−1/2 has an exponential density.209

The joint posterior for all elements of the latent field and the additional hyperparameter is

then described as

π(x, θ | y) ∝
nm∏
i=1

π(yi | xi, θ)π(x | θ)π(θ).

The main interest is to calculate the marginal posteriors for each of the latent field210

components and each of the hyperparameters.211

For the multinomial model, INLA is used to estimate the marginal posteriors for all the

coefficients

π(γkr | y), k = 1, . . . ,m, r = 1, . . . , p.

These provide posterior mean estimates of the differences γkr − γlr which are used to212

estimate the individual capture probabilities and the abundance by (2).213

2.4 Estimating density-dependence214

Our final step is to fit a process model to study population dynamics of a species.215

Specifically, we focus on estimating density-dependence by fitting an AR(2) model to a216

given time series, reflecting the population cycle for the relevant species. Let ln(Nt) denote217

the true log-abundance at time t. The AR(2) model is then defined by218

ln(Nt) = ln(K) + φ1 ln(Nt−1) + φ2 ln(Nt−2) + εt, t = 1, . . . , T (12)

where ln(K) denotes an offset while the noise terms are independent Gaussian variables,219

εt
iid∼ N(0, σ2

ε ). T denotes the length of the time series while the coefficients φ1 and φ2220

characterize the direct and delayed density-dependence of the series. The given process is221

stationary when −1 ≤ φ2 ≤ 1− |φ1| < 1 and has pseudo-periodic behaviour when222
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φ2
1 + 4φ2 ≤ 0. Estimation of the coefficients of AR(2) is not influenced by the offset ln(K).223

This implies that if the number of captured individuals at different time points are224

proportional to the underlying true abundance, we would get identical parameter estimates.225

The AR(2) model is fitted within the framework of latent Gaussian models using INLA. In226

this case the model has three hyperparameters, including κ = σ−2
ε and the coefficients φ1227

and φ2. These parameters are all assigned PC priors (Simpson et al., 2017; Sørbye & Rue,228

2017). Of main interest is to study how the estimates of φ1 and φ2 vary when capture229

heterogeneity is accounted for using the multinomial observational model.230

Often, simplifying assumptions regarding the data generating process are made, e.g by231

assuming a Poisson process (Stenseth et al., 2003) or a Log-normal distribution232

(Santin-Janin et al., 2014) for the observed counts. These assumptions can be implicit233

while defining the observation models in state-space approaches. We study the Poisson234

distribution assumption in an additional step also fitted using INLA. The log-rate of the235

assumed underlying Poisson process for the abundance is expressed in terms of the linear236

predictor237

λt = ln(E(Nt)) = β0 + et, t = 1, . . . , T. (13)

Here β0 denotes an intercept while e1, . . . , eT denote independent and identically238

distributed random variables, ei ∼ N(0, κ−2
e ). These error terms are included to model239

random variation as a function of time. As detailed in the next section, the AR(2) model240

will be fitted either to the estimated log-abundance ln(N̂1), . . . , ln(N̂T ) or to the posterior241

means of the log-rates of the corresponding Poisson process, denoted λ̂1, . . . , λ̂T .242

3 Simulation study comparing methods to estimate density-dependence243

This section provides an extensive simulation study to assess how the inclusion of capture244

history information influences estimation of density-dependence. We start by simulating245

data to approximate a realistic capture-recapture sampling scenario. The underlying246

log-population of the sampled species is generated as an AR(2) process in time, using247
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different fixed combinations of the coefficients (φ1, φ2) and the innovation variance σ2
ε .248

Each resulting individual is then assigned a random weight, and a two-day capture history249

according to a multinomial model with probabilities defined by (1). We then fit an AR(2)250

process model to the estimates of log-abundance or log-rates obtained by different251

methods. These different methods are described in Section 3.1, while Section 3.2 specifies252

the simulation procedure and the method performance criteria used. Finally, Section 3.3253

provides simulation results and an evaluation of the different methods.254

3.1 Estimation methods255

An overview of the different estimation methods used in the simulation study is given in256

Figure 1. The left-hand side of the figure shows the additional steps needed to implement257

the observation model, incorporating sampling error in terms of capture-history258

information. We employ two methods of estimating individual capture probabilities. The259

first is described in Sections 2.2 using INLA (method: CR-INLA), and corresponds to our260

suggested approach. The second, for comparison, estimates individual capture probabilities261

using the R-package VGAM (Yee, 2019). Among other utilities, the VGAM (vector262

generalised additive model) framework can be used to analyse closed population263

capture-recapture data, allowing the incorporation of individual covariates while using the264

conditional likelihood (Yee, Stoklosa, & Huggins, 2015). This application of VGAM allows265

for a flexible and efficient estimation of capture probabilities for all of the eight266

heterogeneity models given by Otis et al. (1978) (method: CR-VGAM). From the267

estimated capture probabilities from either of the two methods, we proceed to estimate the268

true log-abundance using the Horvitz-Thompson estimator in (2). At this point, we have269

two possible variants in estimating density-dependence: we either fit the AR(2) model to270

the times series of estimated log-abundance {ln(N̂t)}Tt=1 (A variant); or we fit the AR(2)271

model to the corresponding estimated log-rate of a Poisson process, {λ̂t}Tt=1 (P variant).272

The right-hand side of Figure 1 illustrates the approach disregarding capture history,273
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fitting the AR(2) model directly to the observed log-counts, or to the log-rate of the274

corresponding Poisson process (method: ObsCount). Finally, the performance of the275

different estimation methods is compared with the optimal results, fitting the AR(2) model276

to the true generated log-abundance or estimated log-rate (method: Baseline).277

3.2 Simulation procedure278

For each combination of AR(2) coefficients, (φ1, φ2), we generated M = 200 time series.279

Specifically, we chose φ1 ∈ (−1,−0.5, 0, 0.5, 1) and φ2 ∈ (−0.8,−0.5,−0.2), giving a total of280

fifteen combinations of the coefficients. These combinations ensure that the resulting281

generated time series were stationary, also having pseudo-periodic behaviour. To282

investigate the effect of varying the innovation variance of the AR(2) process, we further283

compared density-dependence estimates for the values σ2
ε ∈ (0.04, 0.08, 0.16, 0.32, 0.64).284

The details of the simulation procedure can be described in the following steps:285

1. Generate the series {lnNt}Tt=1 according to (12) where T = 20, using different fixed286

combinations of (φ1, φ2). To remove the effect of sample size on the estimation of287

capture probability, we assumed that E(Nt) = 20 by using an offset288

ln(K) = ln(20)− 1
2Var(ln(Nt)). The series was rounded to give integer-values for289

{Nt}Tt=1, representing the abundance of an animal population. The total number of290

individuals generated for one simulated AR(2) process was then Ñ = ∑T
t=1 Nt.291

2. For each of the Ñ individuals, we generated a random weight

zit|µt ∼ Lognormal(ln(µt), ln(σw))

where σw = 1.2 while µt ∼ Lognormal(ln(30), ln(5)). The weight was then scaled by292

the sample standard deviation of the generated weights to make it dimensionless.293

The resulting variable was used as an individual specific covariate in (3). In this294

context, weight is a proxy for detectability. We varied the expected value of weight295

with time to model varying detectability, reflecting changes in the composition of the296
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population at different time points. Thus, the varying mean reflects biological297

variation which we considered more realistic than assuming constant capture298

probabilities for different time points. The parameters relating to the weight299

distribution were here chosen to illustrate this biological variation.300

3. Assume a temporal effect Mth for the capture-recapture process with τ = 2. To

assign a capture history to each individual, we first assumed that the capture

probabilities for day 1 and 2 were pi1 ≡ p1 = 0.55 and pi2 ≡ p2 = 0.75 for the total

generated population. These probabilities were used to find reasonable values for the

specific coefficients for the observed categories in terms of

γ31 − γ21 = ln
(

p1

1− p1

)
and γ31 − γ11 = ln

(
p2

1− p2

)
.

The final individual capture probabilities were then computed according to (9) - (10)301

including the generated random weight as a covariate, implying p = 1.302

4. Remove individuals with capture history according to category 0 (undetected).303

5. Estimate abundance using each of the methods described in Section 3.1, and fit an304

AR(2) model to the resulting time series including both the A and P variants.305

The choices made in this simulation study intended to approximate the characteristics of a306

real ecological data set. Specifically, we have chosen to simulate rather short time series,307

having similar length as the real data set used in Section 4. Also, the initial capture308

probabilities for day 1 and day 2 were close to the proportions of captured individuals in309

the real data set (being 0.55 and 0.77, respectively).310

Our next step was to apply INLA and fit the AR(2) process model to the generated time

series. This provided estimates of the marginal posterior distributions for the two

AR-coefficients φ1 and φ2, for all approaches. Based on the posterior distributions, we

could then calculate summary statistics, including the posterior mean of the coefficients,

the standard deviations and credible intervals. To evaluate and compare the quality of the
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different density-dependence estimates, we computed the estimated root mean squared

error (RMSE), defined by

RMSE(φ̂k) =

√√√√ 1
M

M∑
i=1

(φ̂k − φk)2, k = 1, 2.

Here φ̂k denotes the posterior mean estimate of the kth AR coefficient while M is the311

number of simulations. We also compared the frequentist coverage properties using the312

different approaches. This corresponded to finding the proportion of times the true AR313

coefficient was inside the M estimated 95% equi-tailed credible intervals.314

3.3 Simulation results315

Table 1 displays the average performance in terms of coverage and RMSE for the different316

methods used to estimate density-dependence, including the two variants A and P. The317

averages were computed across all the given combinations of (φ1,φ2) and for each of the five318

fixed values of σ2
ε . Due to the short time series length, coverage using the Baseline method319

will not achieve the nominal level of 0.95 (nominal for the A variant). It is well-known that320

estimators for the coefficients of AR processes are biased for small sample sizes (Shaman &321

Stine, 1988). Thus the Baseline method provides the practical optimal results for this322

length.323

The differences for the different methods were rather small, except for the two lowest324

innovation variance levels where there was a clear benefit from including capture history.325

CR-INLA provided the highest coverage, followed by CR-VGAM and ObsCount. Using326

CR-INLA, the coverage was within the range (0.83 – 0.89) for φ1 and within the range327

(0.80 – 0.86) for φ2. Further, the results indicated that fitting the AR(2) model to the328

log-rate of a Poisson process (P variant) provided generally higher coverage than using the329

A variants. When comparing the different methods using RMSE, which considers both bias330

and variance, we see that CR-INLA had the smallest error in all cases, while the method331

ObsCount had the largest error. Again, the differences between the methods were very332

small except for the lowest levels of the innovation variance. In general, RMSE was333
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reduced for all methods as the innovation variance increased. Moreover, RMSE was higher334

for the P variants compared to the A variants at the two lowest innovation variance levels,335

using all methods.336

This was due to both an increased variance and bias, which explains why the P variants337

had higher coverage.338

The estimation bias of the different methods can be assessed explicitly in Fig. 2, containing339

the posterior mean estimates (φ̂1, φ̂2) for each of the fixed combinations. The figure340

includes point estimates both using the A variant (left-hand side) and P variant (right-hand341

side) of the different methods. Here, the results refer to σ2
ε = 0.08 (upper panels) and342

σ2
ε = 0.32 (lower panels). The corresponding results using the other variance levels are343

given in the supplementary material (Figs A1–A9). For the two lowest levels of innovation344

variance, the estimation bias using CR-INLA was slightly lower than using the other345

methods for all combinations of (φ1, φ2). When the innovation variance was increased, the346

different methods gave approximately the same point estimates. The bias was slightly347

larger using the P variants compared with the A variants. This was in correspondence with348

the higher averages of the RMSE-values for the P variants, as already observed.349

To further study coverage and RMSE for each of the 15 combinations, we computed a joint

coverage being the proportion of times both of the estimated 95% credible intervals

contained φ1 and φ2, respectively. We also computed a joint RMSE for both parameters,

defined by

RMSE(φ̂1, φ̂2) =

√√√√ 1
M

M∑
i=1

2∑
k=1

(φ̂k − φk)2.

The results for coverage and RMSE are shown in Fig. 3 and Fig. 4, respectively. The results350

indicated that coverage decreases and RMSE increases as the direct density-dependence351

measured by |φ1| gets stronger. This pattern might become more clear, if the number of352

simulations is increased. CR-INLA was seen to give the highest coverage and lowest RMSE353

for most of the combinations when σ2
ε = 0.08, at least for the A variants. When σ2

ε = 0.32,354

the results were very similar for all methods. In summary, we can conclude that including355
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capture-history information improved the estimation of density-dependence in process356

models having low innovation variance. Out of the tested method, our suggested approach357

CR-INLA, performed best, followed by CR-VGAM. For the given simulated data, the358

additional step of estimating log-rates of a Poisson process resulted in larger RMSE.359

Finally, we notice that both of the two AR coefficients were underestimated, and this bias360

increased with the absolute values of the coefficients.361

The given simulation study was based on certain choices to illustrate a capture-recapture362

scenario using an AR(2) process model. Here we have assumed independent capture363

probabilities for the two capture sessions. The given approach could have easily been364

adapted to other models given by Otis et al. (1978), such as to also include a behavioural365

effect. Longer time series would have improved the estimation results using all of the366

suggested methods, albeit being less realistic from an ecological point of view.367

4 Estimating density-dependence for a real data set368

In this section, we estimated density-dependence for a real capture-recapture data set of369

small mammals, collected at 20 different spatial locations over a period of 18 years. Our370

main focus was to assess density-dependence estimates, studying how inclusion of capture371

history influenced the estimation. Using the CR-INLA approach, we estimated capture372

probabilities by the regression model in (6), including individual-specific covariate373

information and random effects. We proceeded to estimate the true abundances at each374

time point for each spatial location using (2). Finally, we fitted the AR(2) model to375

estimate density-dependence and compared the results with using the methods CR-VGAM376

and ObsCount. For all three methods, we assessed both the A and P variants.377

4.1 Data description378

The data included a total of 3090 grey-sided voles, captured alive in the Porsanger region379

(latidude 70◦N), in Northern Norway. The data were collected at 20 different stations,380

evenly spaced in a transect of 200 km in the period 2000-2017. Sampling was conducted381
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twice a year, in spring and fall, and each capture session consisted of two visits. Two382

individual-specific variables were recorded, including weight and sex. Animals captured383

dead during the first trapping session were excluded from the analysis.384

4.2 Observation model selection, estimating capture probabilities385

To estimate individual capture probabilities, we used the whole data set across time points386

and stations. Our first step was to select a reasonable observation model. Fitting the387

regression model in (6), we considered inclusion of the following variables388

1. Weight (continuous standardized variable);389

2. Sex (categorical variable for male or female);390

3. Season (categorical variable for spring or fall);391

4. Station (index variable for the evenly spaced stations);392

5. Time (index variable for year)393

To select which variables should be included, we evaluated different models using various394

information criteria. When applying CR-INLA, we used the estimates for the Deviance395

Information Criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002) and396

Watanabe-Akaikes Information Criterion (WAIC) (Watanabe, 2010). When using397

CR-VGAM, we used the estimates of Akaike’s Information Criterion (AIC) (Akaike, 1973)398

and the Bayesian Information Criterion (BIC) (Schwarz, 1978).399

An overview of the different models and the estimated information criteria are shown in400

Table 2, comparing the two methods for a total of 8 different models. The VGAM package401

does not allow for inclusion of random effect terms (Yee et al., 2015), which implies that402

Time could not be included in the CR-VGAM model explicitly. Using INLA, we can403

straightforwardly include nonlinear effects of covariates. Applying the method CR-INLA,404

we chose to model Time as a first-order random walk process (rw1) (Rue & Held, 2005;405



AR COEFFICIENT ESTIMATION INCLUDING SAMPLING ERROR 21

Sørbye & Rue, 2014). Also, we considered to include season as a categorical covariate, both406

using CR-INLA and CR-VGAM. However, using the CR-INLA approach, season is not407

included simultaneously with time to avoid confounding.408

The resulting optimal observation model for CR-INLA, minimizing both DIC and WAIC,

included all variables except season. The linear predictor as defined by (6), is here given by

ln(E(Yik)) = γk1weighti+γk2sex i+γk3stationi+f(timei)+βi+εi, i = 1, . . . , n, k = 1, 2, 3,

where f(timei) denotes the rw1-model, specifying a non-linear random effect of time. In409

selecting an observation model for the CR-VGAM approach, we observed rather small410

differences in the values of the goodness-of-fit criteria for the different models. The optimal411

observation model according to AIC included weight and sex, while BIC was minimized412

when only weight was included. In the case of vole species, sex is known to have an effect413

on detectability (Bryja et al., 2005), so we chose to include both weight and sex in414

estimating the capture probabilities.415

Fig. 5 illustrates the distributions of the estimated capture probabilities for the two416

capture sessions, {p̂i1}ni=1 and {p̂i2}ni=1, using both CR-INLA and CR-VGAM. The mean417

capture probability is seen to increase on the second day using both methods. CR-VGAM418

gave higher estimates of the capture probabilities, having a low variance for both days.419

Using CR-INLA, the estimated individual capture probabilities showed more heterogeneity,420

having a larger variance for both days. Using the given estimated capture probabilities for421

the observed categories, we can estimate the probability that an individual is never422

captured, corresponding to category ci0 in (1). The resulting 95% percentile interval for ci0423

was (0.19–0.32) using CR-INLA. Using CR-VGAM, the corresponding interval was424

(0.08–0.12).425

4.3 Fitting the AR(2) process model to estimate density-dependence426

Given the estimates of the capture probabilities for each individual, we used the427

Horvitz-Thompson estimator to compute abundance at each time point for each station.428
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We then fitted the AR(2) model to the resulting estimated log-abundance, providing429

estimates of both direct and delayed density-dependence. We split the time series into430

spring and fall, to account for a possible seasonal influence in the parameter estimation.431

This resulted in two time series of length T = 18 for each of the 20 stations. The AR(2)432

model was fitted using the three presented methods (CR-INLA, CR-VGAM and433

ObsCounts) using both the A and P variants. Station 9 did not have enough observations434

for the parameters to be estimated, and was thus not included in the results.435

The main results are displayed in Fig. 6, showing the posterior mean estimates of the AR436

coefficients for the two seasons, for variants A and P. The estimates of both direct and437

delayed density-dependence were very similar using all the given methods, and were thus438

lumped together (see Figs B1–B2 for detailed values). Interestingly, the differences seen in439

the capture probability estimates between CR-INLA and CR-VGAM do not seem to have440

influenced the density-dependence estimates. This is in correspondence with the simulation441

study in Section 3, as the innovation variance σ2
ε for all of the stations was quite high, with442

the overall average being σ2
ε = 0.9. In both spring and fall, the estimates of φ1 varied from443

around −0.25 to 0.6, whereas the estimates of φ2 ranged from around 0 to −0.8. For all444

stations, except 3 and 13, the estimated time series showed a semi-periodic behaviour. We445

also notice that the AR(2) coefficients varied with season for the same station, which446

suggests a seasonal effect in the density-dependence. Additionally, during both seasons, the447

results indicate a decreasing trend in the value of φ2 along the given transect (from coast to448

inland).449

5 Discussion450

The main goal of this paper was to assess the importance of including capture history451

information (individual heterogeneity) in the estimation of density-dependence, thus452

incorporating sampling error in the observation model. To investigate this, we performed453

an extensive simulation study in which we generated AR(2) time series, representing the454



AR COEFFICIENT ESTIMATION INCLUDING SAMPLING ERROR 23

true log-abundance of an animal population, and simulated a CR sampling scenario from455

that population. We then tested the performance of different methods, both including456

capture history information and disregarding it. For the first method, CR-INLA, we457

defined an observation model to estimate individual capture probabilities through a458

Multinomial likelihood, and followed it with a Horvitz-Thompson estimate of the true459

abundance. The second method, CR-VGAM, used the existing VGAM methodology to460

estimate abundance from CR data, establishing it as a control method. Finally, we461

compared these two methods with a simple (yet common) approach, disregarding the462

capture history information (effectively assuming a homogeneous capture process), to463

estimate the true autoregressive coefficients from the observed counts directly. We further464

investigated the assumption of using a Poisson distribution for the capture data, fitting the465

AR(2) process to the estimated log-rates. This was chosen as an example of an observation466

model used in the ubiquitous state-space models, where the observation model typically467

assumes some type of homogeneous capture process, such as Poisson or log-normal.468

We found that incorporating capture history information was important when modelling469

density-dependence in AR(2) settings with low innovation variance. In such scenarios, both470

methods including capture-history outperformed the method disregarding it, with reduced471

estimation bias and improved parameter coverage (8% higher in CR-INLA (A) compared472

to ObsCount (A) for the lowest tested innovation variance, see Table A1). However, in473

scenarios with a large innovation variance, the methods which estimated capture474

probability did not stand out, producing extremely similar results compared to the475

observed counts approach. Furthermore, parameter estimates for both AR coefficients were476

generally biased towards 0, using all the methods, increasingly underestimating the477

absolute values of the parameters. In the context of quasi-periodic dynamics described by478

an AR(2) process, this means underestimating the strength of direct φ1 and delayed φ2479

density-dependence, and overestimating the innovation variance of the AR(2) model (see480

Fig. A10).481
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The data collected in Porsanger showcased vole populations with very large fluctuations in482

abundance, as is typical of such systems (Cornulier et al., 2013; Henttonen & Hanski,483

2000). Moreover, the estimated capture probabilities were relatively high, resulting in a484

relatively small bias when comparing the observed counts and the estimated abundance.485

This resulted in all methods, and respective variants, producing similar results - this could486

have been expected given the observation variance is, in that case, only a minor component487

of the total variance. Other populations, such as large mammals, may show much smaller488

abundance fluctuations and therefore a larger contribution of the observation error to the489

total variance (e.g. Besbeas and Morgan (2019)). In the case of other animal populations,490

such as snakes, contrary, capture probabilities are often very low (Rose, Wylie, Casazza, &491

Halstead, 2018). The difference between the different approaches could then be substantial.492

Extending our approach to other observation process models (e.g. spatial493

capture-recapture models (Royle, Fuller, & Sutherland, 2017), including individual494

heterogeneity (Efford & Mowat, 2014), would provide a general approach to reducing biases495

in population dynamic models. One disadvantage of the CR-INLA method is that it would496

be cumbersome to apply in CR data sets with more than 3 days, given the data expansion497

necessary to fit Multinomial likelihoods in INLA, where all the category combinations,498

observed and not, must be present. This could potentially be automatised as in Bayesian499

fitting of capture-mark-recapture models (McCrea, 2014).500

In summary, we have found that using capture-recapture information contributes to501

improve density-dependence estimates in low innovation variance processes. At least with502

such processes, we recommended that individual heterogeneity is accounted for in the503

observation model, as it can constitute an important part of the total sampling error.504
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Table 1

The estimated average coverage and RMSE for all combinations of (φ1, φ2) in the four

methods, using five levels of σ2
ε . The AR(2) process was either fitted to the log-abundance

(A) or the log-rate of the corresponding Poisson process (P).

Coverage RMSE

φ1 φ2 φ1 φ2

Method σ2
ε A P A P A P A P

Baseline

0.04

0.91 0.85 0.88 0.86 0.21 0.40 0.20 0.36

CR-INLA 0.83 0.87 0.80 0.85 0.27 0.38 0.27 0.35

CR-VGAM 0.80 0.83 0.77 0.83 0.29 0.40 0.28 0.37

ObsCount 0.77 0.81 0.75 0.82 0.31 0.42 0.29 0.38

Baseline

0.08

0.91 0.92 0.89 0.90 0.20 0.26 0.20 0.25

CR-INLA 0.87 0.89 0.85 0.87 0.25 0.27 0.24 0.26

CR-VGAM 0.86 0.88 0.84 0.86 0.26 0.29 0.25 0.27

ObsCount 0.84 0.87 0.82 0.85 0.27 0.31 0.26 0.29

Baseline

0.16

0.92 0.91 0.88 0.88 0.20 0.22 0.20 0.21

CR-INLA 0.89 0.89 0.86 0.86 0.23 0.24 0.22 0.23

CR-VGAM 0.88 0.88 0.86 0.85 0.24 0.25 0.23 0.24

ObsCount 0.87 0.88 0.85 0.85 0.24 0.25 0.23 0.24

Baseline

0.32

0.91 0.91 0.88 0.88 0.21 0.21 0.20 0.21

CR-INLA 0.89 0.89 0.86 0.87 0.23 0.23 0.22 0.22

CR-VGAM 0.88 0.88 0.87 0.86 0.23 0.23 0.22 0.23

ObsCount 0.88 0.88 0.86 0.86 0.23 0.24 0.23 0.23

Baseline

0.64

0.91 0.90 0.89 0.87 0.21 0.22 0.20 0.21

CR-INLA 0.88 0.88 0.85 0.85 0.23 0.23 0.22 0.22

CR-VGAM 0.88 0.87 0.84 0.84 0.23 0.23 0.23 0.23

ObsCount 0.87 0.87 0.84 0.84 0.23 0.24 0.23 0.23
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Table 2

Observation model selection for CR-INLA and CR-VGAM, using the selected information

criteria.

CR-INLA CR-VGAM

Model Covariates DIC WAIC AIC BIC

1 intercept 19400 19613 6568 6580

2 weight 19251 19455 6560 6578

3 weight+sex 19201 19396 6556 6580

4 weight+sex+season 19177 19371 6557 6588

5 weight+sex+station 19187 19381 6558 6587

6 weight+sex+time 19146 19335 - -

7 weight+sex+season+station 19151 19344 6559 6595

8 weight+sex+station+time 19125 19313 - -
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Figure 1 . Methodological flowchart.
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Figure 2 . Posterior mean estimates of φ1 and φ2, for the A variants on the right panels, a

and c, and P variants on the left, b and d. The points of intersection of the dotted grey

lines correspond to the true parameter values. The intersections, at which each set of dots

lean to, correspond to the true value of that given set. Panels a and b show results when

σ2
ε = 0.08, whereas c and d correspond to σ2

ε = 0.32.
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Figure 3 . Joint coverage for different combinations of (φ1,φ2) for σ2
ε = 0.08 (panels a and

b) and σ2
ε = 0.32 (panels c and d). A variants are represented on the left (panels a and c)

and P variants on the right (panels b and d). The results were split into 3 sets (φ2

∈ (−0.8,−0.5,−0.2), where each set includes the coverage results for

φ1 ∈ (−1,−0.5, 0, 0.5, 1).
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Figure 4 . Joint RMSE for different combinations of (φ1,φ2) for σ2
ε = 0.08 (panels a and b)

and σ2
ε = 0.32 (panels c and d). A variants are represented on the left (panels a and c) and

P variants on the right (panels b and d). The results were split into 3 sets (φ2

∈ (−0.8,−0.5,−0.2), where each set includes the RMSE results for

φ1 ∈ (−1,−0.5, 0, 0.5, 1).
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Figure 5 . Estimates for p1 and p2 for the CR-INLA (panel a) and CR-VGAM (panel b)

models.
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Figure 6 . Estimates for φ1 (panel a) and φ2 (panel b) for the mean coefficients of both A

and P variants, for the spring (green hue) and fall (orange hue) seasons separately.
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Appendix A

Simulation results
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Figure A1 . Estimates of the different methods for σ2
ε = 0.04.
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Figure A2 . Estimates of the different methods for σ2
ε = 0.16.
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Figure A3 . Estimates of the different methods for σ2
ε = 0.64.
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Figure A4 . Coverage for different combinations of (φ1,φ2) for σ2
ε = 0.04 in both variants.
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Figure A5 . Coverage for different combinations of (φ1,φ2) for σ2
ε = 0.16 in both variants.
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Figure A6 . Coverage for different combinations of (φ1,φ2) for σ2
ε = 0.64 in both variants.
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Figure A7 . RMSE for different combinations of (φ1,φ2) for σ2
ε = 0.04 in both variants.
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Figure A8 . RMSE for different combinations of (φ1,φ2) for σ2
ε = 0.16 in both variants.
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Figure A9 . RMSE for different combinations of (φ1,φ2) for σ2
ε = 0.64 in both variants.



AR COEFFICIENT ESTIMATION INCLUDING SAMPLING ERROR 48

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

True σ
ε

2

E
s
ti
m

a
te

d
 σ

ε2

Baseline  CR−INLA  CR−VGAM ObsCount

Figure A10 . Mean innovation variance estimate for the A variants in the simulation

exercise, across all combinations of parameters. The dashed grey line corresponds to the

theoretical optimum. The green line provides the practical optimum. The three methods

provide similar estimates of the innovation variance, increasingly overestimating it for

larger σ2
ε values.



AR COEFFICIENT ESTIMATION INCLUDING SAMPLING ERROR 49

Table A1

Values of average joint coverage and joint RMSE for all combinations of simulations for

the four different methods, in 5 levels of variance σ2
ε . (A) columns represent the

log-Abundance variants, while (P) columns show values for the log-Poisson rate variants.

Joint Coverage Joint RMSE

Method σ2
ε A P A P

Baseline

0.04

0.81 0.75 0.41 0.75

CR-INLA 0.71 0.76 0.54 0.72

CR-VGAM 0.66 0.72 0.58 0.77

ObsCount 0.63 0.69 0.61 0.80

Baseline

0.08

0.82 0.84 0.40 0.51

CR-INLA 0.76 0.80 0.48 0.53

CR-VGAM 0.74 0.78 0.51 0.57

ObsCount 0.72 0.77 0.53 0.60

Baseline

0.16

0.82 0.82 0.41 0.43

CR-INLA 0.79 0.79 0.46 0.46

CR-VGAM 0.77 0.77 0.47 0.48

ObsCount 0.77 0.77 0.48 0.49

Baseline

0.32

0.82 0.81 0.41 0.43

CR-INLA 0.79 0.79 0.45 0.45

CR-VGAM 0.79 0.79 0.45 0.46

ObsCount 0.79 0.78 0.46 0.47

Baseline

0.64

0.83 0.80 0.40 0.43

CR-INLA 0.77 0.77 0.45 0.45

CR-VGAM 0.76 0.76 0.46 0.46

ObsCount 0.76 0.76 0.46 0.47
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Appendix B

Real data results
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Figure B1 . Estimates for φ1 for the different methods in both variants, per season.
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Figure B2 . Estimates for φ2 for the different methods in both variants, per season.
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