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Abstract
A new four-component nonlinear Schrödinger equation is first proposed in this work and studied
by Riemann-Hilbert approach. Firstly, we derive a Lax pair associated with a 5×5 matrix spectral
problem for the four-component nonlinear Schrödinger equation. Then based on the Lax pair,
we analyze the spectral problem and the analytical properties of the Jost functions, from which
the Riemann-Hilbert problem of the equation is successfully established. Moreover, we obtain the
N -soliton solutions of the equation by solving the Riemann-Hilbert problem without reflection.
Finally, we derive two special cases of the solutions to the equation for N = 1 and N = 2, and the
local structure and dynamic behavior of the one-and two-soliton solutions are analyzed graphically.

Key words: A four-component nonlinear Schrödinger equation; Riemann-Hilbert approach;
N -soliton solutions.

1 Introduction

The nonlinear Schrödinger equation (NLS) is an important integrable model. It is closely
related to many nonlinear problems in theoretical physics such as nonlinear optics and
ion acoustic waves of plasmas. Some higher-order coupled NLS equations are proposed,
to describe more deep physical effects, including self-deepening, self-frequency shifting,
and cubic-quintic nonlinearity. Among the different solutions of these models, soliton
solutions play a crucial role in explaining some related complex nonlinear phenomena.
With the development of nonlinear science, there are many ways to find solutions for
nonlinear integrable models, including inverse scattering transform [1], Darboux transform
[2], Hirota bilinear method [3], Lie group method [4], etc. Among them, inverse scattering
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transform method is one of the most effective tools for solving the initial value problem
of nonlinear integrable systems to get the soliton solutions. For second-order spectral
problems, inverse scattering theory is equivalent to Riemann-Hilbert (RH) approach, but
for higher-order spectral problems the development of inverse scattering theory is not
perfect, part of the inverse scattering problem needs to be transformed into RH problem.
RH approach is developed by Zakharov et al [5], applied to integrable systems [6]-[31] as a
more general method than inverse scattering method. This method has been successfully
used to study the integrable system with single component. However, to the best of
authors’ knowledge, there are very few studies on the multi-component problems. The
well-known general two-component coupled nonlinear Schrödinger equation of the form
[32] {

ipt + pxx + 2(a|p|2 + c|q|2 + bpq∗ + b∗qp∗)p = 0,

iqt + qxx + 2(a|p|2 + c|q|2 + bpq∗ + b∗qp∗)q = 0,
(1.1)

where a and c are real constants, b is a complex constant, and “ ∗ ” denotes complex
conjugation. In physics, a and c describe the SPM and XPM effects, and b and b∗ describe
the four-wave mixing effects.

In this work, we first propose an interesting equation named by a new four-component
nonlinear Schrödinger (FCNLS) equation

iq1t + q1xx − 2[a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2

+ 2Re(a12q
∗
1q2 + a13q

∗
1q3 + a14q

∗
1q4 + a23q

∗
2q3 + a24q

∗
2q4 + a34q

∗
3q4)]q1 = 0,

iq2t + q2xx − 2[a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2

+ 2Re(a12q
∗
1q2 + a13q

∗
1q3 + a14q

∗
1q4 + a23q

∗
2q3 + a24q

∗
2q4 + a34q

∗
3q4)]q2 = 0,

iq3t + q3xx − 2[a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2

+ 2Re(a12q
∗
1q2 + a13q

∗
1q3 + a14q

∗
1q4 + a23q

∗
2q3 + a24q

∗
2q4 + a34q

∗
3q4)]q3 = 0,

iq4t + q4xx − 2[a11|q1|2 + a22|q2|2 + a33|q3|2 + a44|q4|2

+ 2Re(a12q
∗
1q2 + a13q

∗
1q3 + a14q

∗
1q4 + a23q

∗
2q3 + a24q

∗
2q4 + a34q

∗
3q4)]q4 = 0,

(1.2)

where a11, a22, a33 and a44 are real constants, a12, a13, a14, a23, a24 and a34 are complex
constant, “ ∗ ” denotes complex conjugation, and “Re” denotes the real part. The FCNLS
equation includes group velocity dispersion, self-phase modulation, cross-phase modulation
and paired tunnel modulation. The RH problem of the FCNLS equation and its multi-
soliton solutions have not been studied so far, which is studied in this work. Here are the
reasons for taking the FCNLS equation as the model. The Eq. (1.2) can be reduced to
the three-component nonlinear Schrödinger equation (1.3) given by

iq1t + q1xx − 2[a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗1q2 + dq∗1q3 + eq∗2q3)]q1 = 0,

iq2t + q2xx − 2[a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗1q2 + dq∗1q3 + eq∗2q3)]q2 = 0,

iq3t + q3xx − 2[a|q1|2 + c|q2|2 + f |q3|2 + 2Re(bq∗1q2 + dq∗1q3 + eq∗2q3)]q3 = 0,

(1.3)

where a, c and f are real constants, b, d and e are complex constant, “∗” denotes complex
conjugation, and “Re” denotes the real part. This equation can be reduced to equation
(1.1). Eq. (1.3) is studied by extending the Fokas unified approach by Yan in [33].
Eq. (1.3) can be reduced to different three-component NLS equations with the different
conditions of the six parameters a, b, c, d, e and f , such as
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• The three-component focused NLS equation for a = c = f = −1 and b = d = e = 0.

• The three-component defocused NLS equation for a = c = f = 1 and b = d = e = 0.

• The three-component mixed NLS equation for a = −1, c = f = 1 and b = d = e = 0
or a = 1, c = f = −1 and b = d = e = 0. If one takes other parameter values,
equation (1.3) can reduced to other three-component NLS equations.

As the same as the three-component NLS equations (1.3), the FCNLS equation (1.2) can
also be reduced to different four-component NLS equations with the different conditions
of the ten parameters. Therefore, it is of great significance to construct the RH problem
of FCNLS equation involving 5× 5 matrix spectrum problem for finding the multi-soliton
solutions.

The structure of this work is as follows. In the second part, we derive a Lax pair
associated with a 5 × 5 matrix spectral problem for the FCNLS equation (1.2). Then
based on the Lax pair with a 5 × 5 matrix, we analyze the spectral problem and the
analytical properties of the Jost functions. In the third part, we establish the RH problem
based on the previous conclusions. Next, we give the symmetry of the scattering matrix,
and study the temporal and spatial evolution of the scattering data. In the fourth part, by
solving the RH problem, we obtain the N -soliton solutions of the FCNLS equation (1.2),
and analyze the propagation behaviors of one-soliton solutions and two-soliton solutions.
Finally, some conclusions are presented in the last section.

2 Spectral analysis

2.1 The Lax Pair and eigenfunction

We first derive the Lax pair of the FCNLS equation (1.2) via the following theorem.

Theorem 2.1. The FCNLS equation (1.2) admits the following Lax pair

Φx = UΦ, Φt = V Φ, (2.1)

where Φ is a column vector function, and matrices U and V are written as

U =


−ı̇λ 0 0 0 q1

0 −ı̇λ 0 0 q2

0 0 −ı̇λ 0 q3

0 0 0 −ı̇λ q4

p1 p2 p3 p4 ı̇λ

 , (2.2)

V = −2ı̇λ2Λ + 2λP + V0, V0 = −ı̇(Px + P 2), (2.3)

here λ being the spectral parameter and p1 = a11q
∗
1 + a21q

∗
2 + a31q

∗
3 + a41q

∗
4, p2 = a∗21q

∗
1 +

a22q
∗
2 +a32q

∗
3 +a42q

∗
4, p3 = a∗31q

∗
1 +a∗32q

∗
2 +a33q

∗
3 +a43q

∗
4, p4 = a∗41q

∗
1 +a∗42q

∗
2 +a∗43q

∗
3 +a44q

∗
4,

with

Λ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 , P =


0 0 0 0 q1

0 0 0 0 q2

0 0 0 0 q3

0 0 0 0 q4

p1 p2 p3 p4 0

 . (2.4)
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Proof. The compatibility condition of the two equations in Eqs.(2.1)

Ut − Vx + [U, V ] = 0, (2.5)

with [U, V ] = UV − V U , which is reduced to the FCNLS equation (1.2).

Then we obtain that

Φx + ı̇λΛΦ = PΦ,

Φt + 2ı̇λ2ΛΦ = QΦ,
(2.6)

where Q = 2λP + V0.

From Eqs.(2.6) when |x| → ∞, one has

Φ ∝ e−ı̇λΛx−2ı̇λ2Λt. (2.7)

Letting
µ = Φeı̇λΛx+2ı̇λ2Λt, (2.8)

then we can get the equivalent Lax pair

µx + ı̇λ[Λ, µ] = Pµ,

µt + 2ı̇λ2[Λ, µ] = Qµ,
(2.9)

where [Λ, µ] = Λµ− µΛ is the commutator. We can get the following full differential

d
(
eı̇(λx+2λ2t)Λ̄µ

)
= eı̇(λx+2λ2t)Λ̄[(Pdx+Qdt)µ], (2.10)

where eλΛ̄µ = eλΛµe−λΛ.

2.2 Asymptotic analysis

To formulate an RH problem, we seek solutions of the spectral problem with the 5 × 5
unit matrix as λ→∞. Let us consider the solution of Eq.(2.10) as follows

µ = µ(0) +
µ(1)

λ
+
µ(2)

λ2
+ o

(
1

λ3

)
, λ→∞, (2.11)

where µ(0), µ(1) and µ(2) are independent of λ. Substituting Eq.(2.11) into Eqs.(2.9), and
comparing the same order of frequency for λ, we obtain

o(1) : µ(0)
x + iλ[Λ, µ(1)] = Pµ(0),

o(λ) : iλ[Λ, µ(0)] = 0,

o(λ) : 2iλ2[Λ, µ(1)] = 2λPµ(0).

(2.12)

Eqs.(2.12) implies µ(0) is a diagonal matrix, µ
(0)
x = 0. This means that µ(0) is not related

to x. Then

I = lim
λ→∞

lim
|x|→∞

µ = µ(0). (2.13)
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Now, two solutions µ± = µ±(x, λ) are constructed for Eq.(2.9)

µ+ = ([µ+]1, [µ+]2, [µ+]3, [µ+]4, [µ+]5) ,

µ− = ([µ−]1, [µ−]2, [µ−]3, [µ−]4, [µ−]5) ,
(2.14)

with the asymptotic conditions

µ+ → I as x→ +∞,
µ− → I as x→ −∞,

(2.15)

here each [µ+]l(l = 1, 2, 3, 4, 5) denotes the l-th column of the matrices [µ±], respectively.
The symbol I is the 5×5 unit matrix, and the two solutions [µ±] are uniquely determined
by the Volterra integral equations for λ ∈ R

µ+(x, λ) = I −
∫ +∞

x
e−iλΛ(x−y)P (y)µ+(y, λ)eiλΛ(x−y)dy,

µ−(x, λ) = I +

∫ x

−∞
e−iλΛ(x−y)P (y)µ−(y, λ)eiλΛ(x−y)dy.

(2.16)

Then we analysis the Eqs.(2.16),

e−iλΛ(x−y)PeiλΛ(x−y) =


0 0 0 0 q1e

−2iλ(x−y)

0 0 0 0 q2e
−2iλ(x−y)

0 0 0 0 q3e
−2iλ(x−y)

0 0 0 0 q4e
−2iλ(x−y)

p1e
2iλ(x−y) p2e

2iλ(x−y) p3e
2iλ(x−y) p4e

2iλ(x−y) 0

 .

(2.17)
To find the analytic area of each column, we just consider Re[2iλ(x − y)] < 0 and
Re[−2iλ(x − y)] < 0. One obtains [µ−]1, [µ−]2, [µ−]3, [µ−]4 and [µ+]5 are analytic in
the upper half-plane C+. Similarly, [µ+]1, [µ+]2, [µ+]3, [µ+]4 and [µ−]5 are analytic in
the lower half-plane C−. Now we investigate the properties of µ±. Since tr(P ) = 0 and
Liouville’s formula, we know that the determinants of µ± are independent of the variable
x. Therefore we obtain from Eq.(2.15) that

detµ± = 1, λ ∈ R. (2.18)

Since µ±E are both matrix solutions of the spectral problem Eqs.(2.9), where E =
e−iλΛx. Therefore, these two solutions are interdependent, and they must be related by a
scattering matrix S(λ) = (skj)5×5

µ−E = µ+ES(λ), λ ∈ R. (2.19)

From Eq.(2.18) and Eq.(2.19), we have

detS(λ) = 1, λ ∈ R. (2.20)

To formulate an RH problem for the FCNLS equations (1.2), we consider the inverse
matrices of µ± as

µ−1
± =


[µ−1
± ]1

[µ−1
± ]2

[µ−1
± ]3

[µ−1
± ]4

[µ−1
± ]5

 , (2.21)
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where each [µ−1
± ]l, (l = 1, 2, 3, 4, 5) denotes the l-th row of µ−1

± , respectively.

Theorem 2.2. Letting

S(λ) =


s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s31 s32 s33 s34 s35

s41 s42 s43 s44 s45

s51 s52 s53 s54 s55

 ,

R(λ) =


r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

r31 r32 r33 r34 r35

r41 r42 r43 r44 r45

r51 r52 r53 r54 r55

 ,

s11, s12, s13, s14, s21, s22, s23, s24, s31, s32, s33, s34, s41, s42, s43 and s44 are analytic for
λ ∈ C+, s55 is analytic in C−. r55 is analytic in C+, r11, r12, r13, r14, r21, r22, r23, r24,
r31, r32, r33, r34, r41, r42, r43 and r44 are analytic for λ ∈ C−.

Proof. Using Eq.(2.9) it is easy to verify that µ−1
± satisfy the equation of K

Kx = −iλ[Λ,K]−KP. (2.22)

According to (2.19), it’s easy to find

E−1µ−1
− = R(λ)E−1µ−1

+ . (2.23)

From Eq.(2.19), we have E−1µ−1
+ µ−E = S(λ).

S(λ) = E−1


[µ−1

+ ]1[µ−]1 [µ−1
+ ]1[µ−]2 [µ−1

+ ]1[µ−]3 [µ−1
+ ]1[µ−]4 [µ−1

+ ]1[µ−]5
[µ−1

+ ]2[µ−]1 [µ−1
+ ]2[µ−]2 [µ−1

+ ]2[µ−]3 [µ−1
+ ]2[µ−]4 [µ−1

+ ]2[µ−]5
[µ−1

+ ]3[µ−]1 [µ−1
+ ]3[µ−]2 [µ−1

+ ]3[µ−]3 [µ−1
+ ]3[µ−]4 [µ−1

+ ]3[µ−]5
[µ−1

+ ]4[µ−]1 [µ−1
+ ]4[µ−]2 [µ−1

+ ]4[µ−]3 [µ−1
+ ]4[µ−]4 [µ−1

+ ]4[µ−]5
[µ−1

+ ]5[µ−]1 [µ−1
+ ]5[µ−]2 [µ−1

+ ]5[µ−]3 [µ−1
+ ]5[µ−]4 [µ−1

+ ]5[µ−]5

E,

according to the analytic property of µ−1
+ and µ−, we can proof the theorem. The matrix

R(λ) can be analyzed in the same way.

3 Riemann-Hilbert problem

In this part, an RH problem is formulated by using the properties of µ±. We construct
matrix function P1 = P1(x, λ) and P2 = P2(x, λ). The function P1 = P1(x, λ) is analytic
in C+, and the function P2 = P2(x, λ) is analytic in C−.

Let
P1 = ([µ−]1, [µ−]2, [µ−]3, [µ−]4, [µ+]5) , (3.1)
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P2 =


[µ−1
− ]1

[µ−1
− ]2

[µ−1
− ]3

[µ−1
− ]4

[µ−1
+ ]5

 , (3.2)

with

P1 → I, as λ→ +∞,
P2 → I, as λ→ −∞.

(3.3)

At present, we restrict P1 to the left-hand side of the real λ-axis as P+, and the restrict
P2 to the right-hand side of the real λ-axis as P−. On the real line, they are meet

P−(x, λ)P+(x, λ) = G(x, λ), λ ∈ R, (3.4)

with

G(x, λ) =


1 0 0 0 r15e

−2iλx

0 1 0 0 r25e
−2iλx

0 0 1 0 r35e
−2iλx

0 0 0 1 r45e
−2iλx

s51e
2iλx s52e

2iλx s53e
2iλx s54e

2iλx 1

 . (3.5)

According to Eq.(3.3), we obtain the canonical normalization conditions as follows

P1 → I, as λ→ +∞,
P2 → I, as λ→ −∞.

To solve the RH problem, we consider the following theorem.

Proposition 3.1.

detP1 = r55, λ ∈ C+,

detP2 = s55, λ ∈ C−.

Proof. According to Eq.(3.1) and Eq.(3.2), we write P1 and P2 in the form of

P1 = µ−H1 + µ−H2 + µ−H3 + µ−H4 + µ+H5,

P2 = H1µ
−1
− +H2µ

−1
− +H3µ

−1
− +H4µ

−1
− +H5µ

−1
+ ,

(3.6)

whereH1 = dig(1, 0, 0, 0, 0), H2 = dig(0, 1, 0, 0, 0), H3 = dig(0, 0, 1, 0, 0), H4 = dig(0, 0, 0, 1, 0)
and H5 = dig(0, 0, 0, 0, 1). Hence

detP1(λ) = det(µ−H1 + µ−H2 + µ−H3 + µ−H4 + µ+H5)

= detµ− · det(H1 +H2 +H3 +H4 + ER(λ)E−1H5)

= 1 · det


1 0 0 0 r15e

−2iλx

0 1 0 0 r25e
−2iλx

0 0 1 0 r35e
−2iλx

0 0 0 1 r45e
−2iλx

0 0 0 0 r55


= r55,

(3.7)
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apply the same method to P2(λ),

detP2(λ) = s55. (3.8)

From Eq.(2.18), we know that detµ± = 1, according to above analysis, we can get detP1 =
r55, λ ∈ C+, and detP2 = s55, λ ∈ C−.

As we can see matrix P has the symmetry relation

P † = −BPB−1, (3.9)

symbol “†” represents the Hermitian of a matrix, and

B =


a11 a∗21 a∗31 a∗41 0
a21 a22 a∗32 a∗42 0
a31 a32 a33 a∗43 0
a41 a42 a43 a44 0
0 0 0 0 −1

 . (3.10)

According to Eq.(2.9) and Eq.(3.9), µ± meet the following relation

B−1µ†±(λ∗)B = µ−1
± (λ), (3.11)

the scattering matrix S(λ) satisfies the equation

B−1S†(λ∗)B = S−1(λ) = R(λ). (3.12)

Eq.(3.12) evidently shows

r55(λ) = s∗55(λ∗), λ ∈ C+,

−s∗51(λ) = a11r15 + a∗21r25 + a∗31r35 + a∗41r45, λ ∈ R,
−s∗52(λ) = a21r15 + a22r25 + a∗32r35 + a∗42r45, λ ∈ R,
−s∗53(λ) = a31r15 + a32r25 + a33r35 + a∗43r45, λ ∈ R,
−s∗54(λ) = a41r15 + a42r25 + a43r35 + a44r45, λ ∈ R.

(3.13)

Theorem 3.2.
P †1 (λ∗) = BP2(λ)B−1, λ ∈ C−. (3.14)

Proof. According to Eq.(3.6), we have P1 = µ−H1 + µ−H2 + µ−H3 + µ−H4 + µ+H5,

P †1 (λ∗) =(µ−(λ∗)H1 + µ−(λ∗)H2 + µ−(λ∗)H3 + µ−(λ∗)H4 + µ+(λ∗)H5)†

=H1µ
†
−(λ∗) +H2µ

†
−(λ∗) +H3µ

†
−(λ∗) +H4µ

†
−(λ∗) +H5µ

†
+(λ∗)

=BP2(λ)B−1, λ ∈ C−.

(3.15)

So that
P †1 (λ∗) = BP2(λ)B−1, λ ∈ C−.
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From Eq.(3.7), Eq.(3.8) and Eq.(3.13), we see detP1(λ) = (detP2(λ∗))∗, if detP1 have
a zero λ, detP2 have a zero λ∗. So we suppose that detP1 has N simple zeros {λj}N1 in
C+, and detP2 has N simple zeros {λ∗j}N1 in C−. These zeros with the nonzero vectors vj
and v̂j , set up of the full generic discrete data, which satisfy the equations

P1(λj)vj = 0,

v̂jP2(λ∗) = 0,
(3.16)

where vj is column vector, and v̂j is the row vector. From Eq.(3.14), Eqs.(3.16) one obtains
that the eigenvectors admit the following relation.

v̂j = v†jB, 1 ≤ j ≤ N. (3.17)

Then we analyze the time-spatial revolution with vj . We take the derivative of the first
equation of Eqs.(3.16) with respect to x, apply the same method to t.

P1,xvj + P1vj,x = 0,

P1,tvj + P1vj,t = 0.
(3.18)

On the basis of

P1,x = (µ−H1 + µ−H2 + µ−H3 + µ+H4)x

= µ−,xH1 + µ−,xH2 + µ−,xH3 + µ+,xH4,

and the Lax pair Eqs.(2.9), we have

P1,x =[−iλ(Λµ− − µ−Λ) + Pµ−]H1 + [−iλ(Λµ− − µ−Λ) + Pµ−]H2

+ [−iλ(Λµ− − µ−Λ) + Pµ−]H3 + [−iλ(Λµ− − µ−Λ) + Pµ−]H4

+ [−iλ(Λµ+ − µ+Λ) + Pµ+]H5

=− iλΛP1 + iλP1Λ + PP1

=− iλ[Λ, P1] + PP1.

(3.19)

Applying the same method to P1,t, we get

P1,t = −2iλ2[Λ, P1] +QP1. (3.20)

Inserting Eq.(3.19) and Eq.(3.20) into the first equation of Eqs.(3.18) and the second
equation of Eqs.(3.18), respectively. Noticing that P1vj = 0, we have

iλΛvj + vj,x = 0,

2iλ2Λvj + vj,t = 0.
(3.21)

According to Eqs.(3.21), we have

vj = e−i(λjx+2λ2j t)Λvj,0,

where vj,0 are complex constant vectors. From Eq.(3.17), we have

v̂j = v†j(λj)B = v†j,0e
i(λ∗jx+2λ∗2j t)ΛB.

9



4 Multi-soliton solutions

Now, we are going to expand P1(λ) at large-λ as

P1(λ) = I +
P

(1)
1

λ
+
P

(2)
1

λ2
+ o(

1

λ3
), λ→∞. (4.1)

Inserting Eq.(4.1) into Eq.(2.9)

o(1) : i[Λ, P
(1)
1 ] = P. (4.2)

From Eq.(4.2), we can generate

q1(x, t) = 2i(P
(1)
1 )15,

q2(x, t) = 2i(P
(1)
1 )25,

q3(x, t) = 2i(P
(1)
1 )35,

q4(x, t) = 2i(P
(1)
1 )45,

(4.3)

where (P
(1)
1 )ij is the (i, j)-entry of matrix P

(1)
1 .

To obtain soliton solutions, we set G = I in (3.4). The solutions for this special RH
problem (3.4) can be given as

P1(λ) = I −
N∑
k=1

N∑
j=1

vkv̂j(M
−1)kj

λ− λ̂j
,

P2(λ) = I +

N∑
k=1

N∑
j=1

vkv̂j(M
−1)kj

λ− λj
,

(4.4)

where M is a N ×N matrix with entries

Mkj =
v̂kvj

λj − λ̂k
, (4.5)

and (M−1)kj means the (k, j)-entry of the inverse matrix of M . From expression Eqs.(4.4),
one has

P
(1)
1 = −

N∑
k=1

N∑
j=1

vkv̂j(M
−1)kj . (4.6)

Then setting nonzero vectors vk,0 = (αk, βk, τk, ζk, γk)
T and θk = −i(λkx + 2λ2

kt), we
generate

vk = eθkΛvk,0 =


eθk 0 0 0 0
0 eθk 0 0 0
0 0 eθk 0 0
0 0 0 eθk 0
0 0 0 0 e−θk




αk
βk
τk
ζk
γk

 =


αke

θk

βke
θk

τke
θk

ζke
θk

γke
−θk

 , (4.7)

10



v̂j =v†j(λj)B

=(αke
θk , βke

θk , τke
θk , ζke

θk , γke
−θk)


a11 a∗21 a∗31 a∗41 0
a21 a22 a∗32 a∗42 0
a31 a32 a33 a∗43 0
a41 a42 a43 a44 0
0 0 0 0 −1


=(a11α

∗
je
θ∗j + a21β

∗
j e
θ∗j + a31τ

∗
j e
θ∗j + a41ζ

∗
j e
θ∗j , a∗21α

∗
je
θ∗j + a22β

∗
j e
θ∗j + a32τ

∗
j e
θ∗j

+ a42ζ
∗
j e
θ∗j , a∗31α

∗
je
θ∗j + a∗32β

∗
j e
θ∗j + a33τ

∗
j e
θ∗j + a43ζ

∗
j e
θ∗j , a∗41α

∗
je
θ∗j + a∗42β

∗
j e
θ∗j

+ a∗43τ
∗
j e
θ∗j + a44ζ

∗
j e
θ∗j ,−γ∗j e

−θ∗j ).

(4.8)

Obviously

vkv̂j =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55

 , (4.9)

v̂kvj =(a11α
∗
kαj + a21β

∗
kαj + a31τ

∗
kαj + a41ζ

∗
kαj + a∗21α

∗
kβj + a22β

∗
kβj + a32τ

∗
kβj

+ a42ζ
∗
kβj + a∗31α

∗
kτj + a∗32β

∗
kτj + a33τ

∗
k τj + a43ζ

∗
kτj + a∗41α

∗
kζj + a∗42β

∗
kζj

+ a∗43τ
∗
k ζj + a44ζ

∗
kζj)e

θ∗k+θj − γ∗kγje−θ
∗
k−θj .

(4.10)

b15 = −αkγ∗j e
θk−θ∗j , b25 = −βkγ∗j e

θk−θ∗j b35 = −τkγ∗j e
θk−θ∗j , b45 = −ζkγ∗j e

θk−θ∗j ,

b55 = −γkγ∗j e
θk−θ∗j .

It should be noted that the parameter bij (i ≤ 5, j ≤ 4) do not work on the construction
solutions, so the specific expression is not given for convenience.

As a consequence, general N -soliton solution for the FCNLS equation (1.2) can be
derived as follows

q1 = 2i

N∑
k=1

N∑
j=1

αkγ
∗
j e
θk−θ∗j (M−1)kj ,

q2 = 2i
N∑
k=1

N∑
j=1

βkγ
∗
j e
θk−θ∗j (M−1)kj ,

q3 = 2i

N∑
k=1

N∑
j=1

τkγ
∗
j e
θk−θ∗j (M−1)kj ,

q4 = 2i

N∑
k=1

N∑
j=1

ζkγ
∗
j e
θk−θ∗j (M−1)kj ,

(4.11)

where

Mkj =
1

λj − λ̂k
[(a11α

∗
kαj + a21β

∗
kαj + a31τ

∗
kαj + a41ζ

∗
kαj + a∗21α

∗
kβj + a22β

∗
kβj

+ a32τ
∗
kβj + a42ζ

∗
kβj + a∗31α

∗
kτj + a∗32β

∗
kτj + a33τ

∗
k τj + a43ζ

∗
kτj + a∗41α

∗
kζj

+ a∗42β
∗
kζj + a∗43τ

∗
k ζj + a44ζ

∗
kζj)e

θ∗k+θj − γ∗kγje−θ
∗
k−θj ], 1 ≤ k, j ≤ N.

(4.12)
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To make the expression (4.11) simpler, we define the following matrix F , G, H and K.

F =


0 α1e

θ1 α2e
θ2 . . . αNe

θN

γ∗1e
−θ∗1 M11 M12 . . . M1N

γ∗2e
−θ∗2 M21 M22 . . . M2N
...

...
...

...
...

γ∗Ne
−θ∗N MN1 MN2 . . . MNN

 , (4.13)

G =


0 β1e

θ1 β2e
θ2 . . . βNe

θN

γ∗1e
−θ∗1 M11 M12 . . . M1N

γ∗2e
−θ∗2 M21 M22 . . . M2N
...

...
...

...
...

γ∗Ne
−θ∗N MN1 MN2 . . . MNN

 , (4.14)

H =


0 τ1e

θ1 τ2e
θ2 . . . τNe

θN

γ∗1e
−θ∗1 M11 M12 . . . M1N

γ∗2e
−θ∗2 M21 M22 . . . M2N
...

...
...

...
...

γ∗Ne
−θ∗N MN1 MN2 . . . MNN

 . (4.15)

K =


0 ζ1e

θ1 ζ2e
θ2 . . . ζNe

θN

γ∗1e
−θ∗1 M11 M12 . . . M1N

γ∗2e
−θ∗2 M21 M22 . . . M2N
...

...
...

...
...

γ∗Ne
−θ∗N MN1 MN2 . . . MNN

 . (4.16)

On the basis of matrix (4.13), (4.14), (4.15) and (4.16), we can get

q1 = −2i
detF

detM
, q2 = −2i

detG

detM
, q3 = −2i

detH

detM
, q4 = −2i

detK

detM
. (4.17)

In the remainder of this section, we figure out the soliton solutions in the case of N = 1
and N = 2. In the case of N = 1, we obtain the one-soliton solution

q1 = 2i
α1γ

∗
1e
θ1−θ∗1

M11
,

q2 = 2i
β1γ

∗
1e
θ1−θ∗1

M11
,

q3 = 2i
τ1γ
∗
1e
θ1−θ∗1

M11
,

q4 = 2i
ζ1γ
∗
1e
θ1−θ∗1

M11
,

(4.18)

M11 =
1

λ1 − λ̂1

[(a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2 + a21β
∗
1α1 + a31τ

∗
1α1

+ a41ζ
∗
1α1 + a∗21α

∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1 + a∗31α

∗
1τ1 + a∗32β

∗
1τ1 + a43ζ

∗
1τ1

+ a∗41α
∗
1ζ1 + a∗42β

∗
1ζ1 + a∗43τ

∗
1 ζ1)eθ1+θ∗1 − |γ1|2e−(θ1+θ∗1)],
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where θ1 = −i(λ1x+ 2λ2
1t). Furthermore, fixing γ1 = 1, λ1 = n1 + im1 and setting

−(a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2 + a21β
∗
1α1 + a31τ

∗
1α1 + a41ζ

∗
1α1

+ a∗21α
∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1 + a∗31α

∗
1τ1 + a∗32β

∗
1τ1 + a43ζ

∗
1τ1 + a∗41α

∗
1ζ1

+ a∗42β
∗
1ζ1 + a∗43τ

∗
1 ζ1) = e2ξ1 ,

(4.19)

the expression (4.18) can be written as

q1 = 2m1α1γ
∗
1e
−ξ1eθ1−θ

∗
1 sech(θ∗1 + θ1 + ξ1),

q2 = 2m1β1γ
∗
1e
−ξ1eθ1−θ

∗
1 sech(θ∗1 + θ1 + ξ1),

q3 = 2m1τ1γ
∗
1e
−ξ1eθ1−θ

∗
1 sech(θ∗1 + θ1 + ξ1),

q4 = 2m1ζ1γ
∗
1e
−ξ1eθ1−θ

∗
1 sech(θ∗1 + θ1 + ξ1).

(4.20)

According to the notation above, we have

θ1 − θ∗1 = −2in1x− 4in2
1t,

θ1 + θ∗1 = 2m1x+ 4im2
1t+ 8n1m1t.

(4.21)

Thus the one-soliton solutions in (4.18) can be further written as

q1 = 2m1α1γ
∗
1e
−ξ1e−2in1x−4in2

1tsech(2m1x+ 4im2
1t+ 8n1m1t+ ξ1),

q2 = 2m1β1γ
∗
1e
−ξ1e−2in1x−4in2

1tsech(2m1x+ 4im2
1t+ 8n1m1t+ ξ1),

q3 = 2m1τ1γ
∗
1e
−ξ1e−2in1x−4in2

1tsech(2m1x+ 4im2
1t+ 8n1m1t+ ξ1),

q4 = 2m1ζ1γ
∗
1e
−ξ1e−2in1x−4in2

1tsech(2m1x+ 4im2
1t+ 8n1m1t+ ξ1).

(4.22)

From the Eq.(4.22), we can know that the one-soliton solutions of q1, q2, q3 and q4 can be
described by hyperbolic cosecant function. Taking an example, q1 has the peak amplitude

Υ1 = 2m1α1e
−ξ1 ,

and the velocity
$1 = 2im1t+ 4n1t,

Similarly, we can know the peak amplitude and velocity of q2, q3 and q4, respectively.

Υ2 = 2m1β1e
−ξ1 , Υ3 = 2m1τ1e

−ξ1 , Υ4 = 2m1ζ1e
−ξ1 ,

$2 = 2im1t+ 4n1t, $3 = 2im1t+ 4n1t, $4 = 2im1t+ 4n1t.

From the expressions of Υ1, Υ2, Υ3 and Υ4, $1, $2, $3, $4 we can know that all of them
rely on both the real part n1 and the imaginary part m1 of the eigenvalue λ1. Figure 1,
Figure 2, Figure 3 and Figure 4 represent the localized structures and dynamic behaviors
of the single-soliton solution. All the analysis of q1 be the same with q2, q3 and q4.
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(a) (b) (c)

Figure 1. Plots of the single-soliton solution q1, with the parameters chosen as a11 = a22 = a33 =

a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i, γ1 = 1, n1 = 1

3 ,

m1 = 1
2 . (a) three dimensional plot at time t = 0, (b) density plot, (c) the wave propagation

along the x-axis with different time.

(a) (b) (c)

Figure 2. Plots of the single-soliton solution q2, with the parameters chosen as a11 = a22 = a33 =

a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i, γ1 = 1, n1 = 1

3 ,

m1 = 1
2 . (a) three dimensional plot at time t = 0, (b) density plot, (c) the wave propagation

along the x-axis with different time.

(a) (b) (c)

Figure 3. Plots of the single-soliton solution q3, with the parameters chosen as a11 = a22 = a33 =

a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i, γ1 = 1, n1 = 1

3 ,

m1 = 1
2 . (a) three dimensional plot at time t = 0, (b) density plot, (c) the wave propagation

along the x-axis with different time.
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(a) (b) (c)

Figure 4. Plots of the single-soliton solution q3, with the parameters chosen as a11 = a22 = a33 =

a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i, γ1 = 1, n1 = 1

3 ,

m1 = 1
2 . (a) three dimensional plot at time t = 0, (b) density plot, (c) the wave propagation

along the x-axis with different time.

In the case of N = 2, the two-soliton solutions can be obtained as

q1 =
−2i

M11M22 −M12M21
(−α1γ

∗
1e
θ1−θ∗1M22 + α1γ

∗
2e
θ1−θ∗2M12

+ α2γ
∗
1e
θ2−θ∗1M21 − α2γ

∗
2e
θ2−θ∗2M11),

q2 =
−2i

M11M22 −M12M21
(−β1γ

∗
1e
θ1−θ∗1M22 + β1γ

∗
2e
θ1−θ∗2M12

+ β2γ
∗
1e
θ2−θ∗1M21 − β2γ

∗
2e
θ2−θ∗2M11),

q3 =
−2i

M11M22 −M12M21
(−τ1γ

∗
1e
θ1−θ∗1M22 + τ1γ

∗
2e
θ1−θ∗2M12

+ τ2γ
∗
1e
θ2−θ∗1M21 − τ2γ

∗
2e
θ2−θ∗2M11),

q4 =
−2i

M11M22 −M12M21
(−ζ1γ

∗
1e
θ1−θ∗1M22 + ζ1γ

∗
2e
θ1−θ∗2M12

+ ζ2γ
∗
1e
θ2−θ∗1M21 − ζ2γ

∗
2e
θ2−θ∗2M11),

(4.23)
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where

M11 =
1

λ1 − λ∗1
[(a11|α1|2 + a22|β1|2 + a33|τ1|2 + a44|ζ1|2 + a21β

∗
1α1 + a31τ

∗
1α1

+ a41ζ
∗
1α1 + a∗21α

∗
1β1 + a32τ

∗
1β1 + a42ζ

∗
1β1 + a∗31α

∗
1τ1 + a∗32β

∗
1τ1 + a43ζ

∗
1τ1

+ a∗41α
∗
1ζ1 + a∗42β

∗
1ζ1 + a∗43τ

∗
1 ζ1)eθ

∗
1+θ1 − |γ1|2e−(θ∗1+θ1)],

M12 =
1

λ2 − λ∗1
[(a11α

∗
1α2 + a21β

∗
1α2 + a31τ

∗
1α2 + a41ζ

∗
1α2 + a∗21α

∗
1β2 + a22β

∗
1β2

+ a32τ
∗
1β2 + a42ζ

∗
1β2 + a∗31α

∗
1τ2 + a∗32β

∗
1τ2 + a33τ

∗
1 τ2 + a43ζ

∗
1τ2 + a∗41α

∗
1ζ2

+ a∗42β
∗
1ζ2 + a∗43τ

∗
1 ζ2 + a44ζ

∗
1ζ2)eθ

∗
1+θ2 − γ∗1γ2e

−θ∗1−θ2 ],

M21 =
1

λ1 − λ∗2
[(a11α

∗
2α1 + a21β

∗
2α1 + a31τ

∗
2α1 + a41ζ

∗
2α1 + a∗21α

∗
2β1 + a22β

∗
2β1

+ a32τ
∗
2β1 + a42ζ

∗
2β1 + a∗31α

∗
2τ1 + a∗32β

∗
2τ1 + a33τ

∗
2 τ1 + a43ζ

∗
2τ1 + a∗41α

∗
2ζ1

+ a∗42β
∗
2ζ1 + a∗43τ

∗
2 ζ1 + a44ζ

∗
2ζ1)eθ

∗
2+θ1 − γ∗2γ1e

−θ∗2−θ1 ],

M22 =
1

λ2 − λ∗2
[(a11|α2|2 + a22|β2|2 + a33|τ2|2 + a44|ζ2|2 + a21β

∗
2α2 + a31τ

∗
2α2

+ a41ζ
∗
2α2 + a∗21α

∗
2β2 + a32τ

∗
2β2 + a42ζ

∗
2β2 + a∗31α

∗
2τ2 + a∗32β

∗
2τ2 + a43ζ

∗
2τ2

+ a∗41α
∗
2ζ2 + a∗42β

∗
2ζ2 + a∗43τ

∗
2 ζ2)eθ

∗
2+θ2 − |γ2|2e−(θ∗2+θ2)],

θ1 = −i(λ1x + 2λ2
1t), θ2 = −i(λ2x + 2λ2

2t), λ1 = n1 + im1 and λ2 = n2 + im2. If we let
γ1 = γ2 = 1, α1 = α2, β1 = β2, τ1 = τ2, ζ1 = ζ2 and −(a11|α1|2 + a22|β1|2 + a33|τ1|2 +
a44|ζ1|2 +a21β

∗
1α1 +a31τ

∗
1α1 +a41ζ

∗
1α1 +a∗21α

∗
1β1 +a32τ

∗
1β1 +a42ζ

∗
1β1 +a∗31α

∗
1τ1 +a∗32β

∗
1τ1 +

a43ζ
∗
1τ1 +a∗41α

∗
1ζ1 +a∗42β

∗
1ζ1 +a∗43τ

∗
1 ζ1) = e2ξ1 , then the two-soliton solutions in (4.23) have

the following form

q1 =
−2i

M11M22 −M12M21
(−α1e

θ1−θ∗1M22 + α1e
θ1−θ∗2M12

+ α2e
θ2−θ∗1M21 − α2e

θ2−θ∗2M11),

q2 =
−2i

M11M22 −M12M21
(−β1e

θ1−θ∗1M22 + β1e
θ1−θ∗2M12

+ β2e
θ2−θ∗1M21 − β2e

θ2−θ∗2M11),

q3 =
−2i

M11M22 −M12M21
(−τ1e

θ1−θ∗1M22 + τ1e
θ1−θ∗2M12

+ τ2e
θ2−θ∗1M21 − τ2e

θ2−θ∗2M11),

q4 =
−2i

M11M22 −M12M21
(−ζ1e

θ1−θ∗1M22 + ζ1e
θ1−θ∗2M12

+ ζ2e
θ2−θ∗1M21 − ζ2e

θ2−θ∗2M11),

(4.24)
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where 

M11 =
−eξ1
im1

cosh(θ∗1 + θ1 + ξ1),

M12 =
−2eξ1

n2 − n1 + i(m1 +m2)
cosh(θ∗1 + θ2 + ξ1),

M21 =
−2eξ1

n1 − n2 + i(m1 +m2)
cosh(θ∗2 + θ1 + ξ1),

M22 =
−eξ1
im2

cosh(θ∗2 + θ2 + ξ1).

(4.25)

(a) (b) (c)

Figure 5. Plots of the double-soliton solution q1, with the parameters chosen as a11 = a22 =

a33 = a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i,

γ1 = γ2 = 1, α1 = α2, β1 = β2, τ1 = τ2, ζ1 = ζ2 n1 = −1
3 , n2 = 1

3 , m1 = 0.25, m2 = 0.5. (a) three

dimensional plot at time t = 0, (b) density plot, (c) the wave propagation along the x-axis with

different time.

(a) (b) (c)

Figure 6. Plots of the double-soliton solution q1, with the parameters chosen as a11 = a22 =

a33 = a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i,

γ1 = γ2 = 1, α1 = α2, β1 = β2, τ1 = τ2, ζ1 = ζ2 n1 = −1
3 , n2 = 1

3 , m1 = 0.25, m2 = 0.5. (a) three

dimensional plot at time t = 0, (b) density plot, (c) the wave propagation along the x-axis with

different time.

(a) (b) (c)
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Figure 7. Plots of the double-soliton solution q1, with the parameters chosen as a11 = a22 =

a33 = a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i,

γ1 = γ2 = 1, α1 = α2, β1 = β2, τ1 = τ2, ζ1 = ζ2 n1 = −1
3 , n2 = 1

3 , m1 = 0.25, m2 = 0.5. (a) three

dimensional plot at time t = 0, (b) density plot, (c) the wave propagation along the x-axis with

different time.

(a) (b) (c)

Figure 8. Plots of the double-soliton solution q1, with the parameters chosen as a11 = a22 =

a33 = a44 = 0, a21 = a31 = a41 = a32 = a42 = a43 = − 1
9 , α1 = τ1 = β1 = ζ1 = 1

2 −
√
2
2 i,

γ1 = γ2 = 1, α1 = α2, β1 = β2, τ1 = τ2, ζ1 = ζ2 n1 = −1
3 , n2 = 1

3 , m1 = 0.25, m2 = 0.5. (a) three

dimensional plot at time t = 0, (b) density plot, (c) the wave propagation along the x-axis with

different time.

5 Conclusions and discussions

In this work, we have proposed a FCNLS equation (1.2) associated with a 5× 5 Lax pair,
which was investigated via the RH approach. Based on the Lax pair with a 5× 5 matrix,
we start with the analyze of the spectral problem and the analytical properties of the Jost
functions, from which the RH problem of the equation is established. Then, we obtain
the N -soliton solutions of the FCNLS equation (1.2), by solving the RH problem without
reflection. Finally, we derive two special cases of the solutions to the equation for N = 1
and N = 2, and the local structure and dynamic behavior of the one-and two-soliton
solutions are analyzed graphically.
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