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Abstract

A new four-component nonlinear Schrédinger equation is first proposed in this work and studied
by Riemann-Hilbert approach. Firstly, we derive a Lax pair associated with a 5 x 5 matrix spectral
problem for the four-component nonlinear Schrédinger equation. Then based on the Lax pair,
we analyze the spectral problem and the analytical properties of the Jost functions, from which
the Riemann-Hilbert problem of the equation is successfully established. Moreover, we obtain the
N-soliton solutions of the equation by solving the Riemann-Hilbert problem without reflection.
Finally, we derive two special cases of the solutions to the equation for N =1 and N = 2, and the
local structure and dynamic behavior of the one-and two-soliton solutions are analyzed graphically.

Key words: A four-component nonlinear Schrodinger equation; Riemann-Hilbert approach;
N-soliton solutions.

1 Introduction

The nonlinear Schrédinger equation (NLS) is an important integrable model. It is closely
related to many nonlinear problems in theoretical physics such as nonlinear optics and
ion acoustic waves of plasmas. Some higher-order coupled NLS equations are proposed,
to describe more deep physical effects, including self-deepening, self-frequency shifting,
and cubic-quintic nonlinearity. Among the different solutions of these models, soliton
solutions play a crucial role in explaining some related complex nonlinear phenomena.
With the development of nonlinear science, there are many ways to find solutions for
nonlinear integrable models, including inverse scattering transform [1], Darboux transform
[2], Hirota bilinear method [3], Lie group method [4], etc. Among them, inverse scattering
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transform method is one of the most effective tools for solving the initial value problem
of nonlinear integrable systems to get the soliton solutions. For second-order spectral
problems, inverse scattering theory is equivalent to Riemann-Hilbert (RH) approach, but
for higher-order spectral problems the development of inverse scattering theory is not
perfect, part of the inverse scattering problem needs to be transformed into RH problem.
RH approach is developed by Zakharov et al [5], applied to integrable systems [6]-[31] as a
more general method than inverse scattering method. This method has been successfully
used to study the integrable system with single component. However, to the best of
authors’ knowledge, there are very few studies on the multi-component problems. The
well-known general two-component coupled nonlinear Schrédinger equation of the form
32]

ipt + prx + 2(alpl* + clg* + bpg* + b*qp*)p = 0, 1)

iq + qua + 2(alpl® + clgl* + bpg™ + b*qp*)q =0, '
where a and c are real constants, b is a complex constant, and “ *x” denotes complex
conjugation. In physics, a and ¢ describe the SPM and XPM effects, and b and b* describe
the four-wave mixing effects.

In this work, we first propose an interesting equation named by a new four-component
nonlinear Schrédinger (FCNLS) equation
i1 + Qrae — 2[an1|q1|® + asolge|? + ass|gs|® + asalqal®
+ 2Re(a12¢7 g2 + a13¢1q3 + 14474 + 23G5G3 + a2445G4 + a34G3q4)]q1 = O,
it + Gz — 2[an1|q1|® + aso|ge|? + ass|qs|? + aalqal®
+ 2Re(a12¢1 g2 + a13q7 3 + a1447 g4 + a23G5q3 + 244594 + a34G3q4)]q2 = 0,
iq3t + @3ae — 2[an1|q1|® + asolge|? + ass|qs|® + aalqal®
+ 2Re(a12¢7 g2 + a13q7q3 + 01447 4 + a2305q3 + 249594 + a34G3q4)]g3 = 0,
iqat + Qaoe — 2[an1|q1|? + asalqal® + ass|gs|® + asslqal?
+ 2Re(a12¢1 g2 + a1347q3 + 1447 g4 + a2305q3 + 249594 + a34G3G4)]qa = 0,

(1.2)

where a1, age, ass and aqq are real constants, ais, ais, a4, a23, a4 and agy are complex
constant, “x” denotes complex conjugation, and “Re” denotes the real part. The FCNLS
equation includes group velocity dispersion, self-phase modulation, cross-phase modulation
and paired tunnel modulation. The RH problem of the FCNLS equation and its multi-
soliton solutions have not been studied so far, which is studied in this work. Here are the
reasons for taking the FCNLS equation as the model. The Eq. (1.2) can be reduced to
the three-component nonlinear Schrédinger equation (1.3) given by

ique + qrae — 2[alqi]? + ¢lga|* + flgs|? + 2Re(bgi g2 + dgiqs + eqiqs)]qr = 0,
i + q2oz — 2[alq1|* + clg2|® + flas|* + 2Re(bgt g2 + daiqs + eqiqs)]g2 = 0,
i3t + @32 — 2[alq1]® + clgo|® + flgs|* + 2Re(bgiqo + dgiqs + eq3qs)]as = 0,

(1.3)

where a, c and f are real constants, b, d and e are complex constant, “*” denotes complex
conjugation, and “Re” denotes the real part. This equation can be reduced to equation
(1.1). Eq. (1.3) is studied by extending the Fokas unified approach by Yan in [33].
Eq. (1.3) can be reduced to different three-component NLS equations with the different
conditions of the six parameters a, b, ¢, d, e and f, such as



e The three-component focused NLS equation fora=c= f=—-land b=d=¢e = 0.
e The three-component defocused NLS equation fora =c=f=1andb=d=¢e=0.

e The three-component mixed NLS equation fora = -1, c=f=1landb=d=e=0
ora=1,¢c=f=—-1and b =d = e = 0. If one takes other parameter values,
equation (1.3) can reduced to other three-component NLS equations.

As the same as the three-component NLS equations (1.3), the FCNLS equation (1.2) can
also be reduced to different four-component NLS equations with the different conditions
of the ten parameters. Therefore, it is of great significance to construct the RH problem
of FCNLS equation involving 5 x 5 matrix spectrum problem for finding the multi-soliton
solutions.

The structure of this work is as follows. In the second part, we derive a Lax pair
associated with a 5 x 5 matrix spectral problem for the FCNLS equation (1.2). Then
based on the Lax pair with a 5 x 5 matrix, we analyze the spectral problem and the
analytical properties of the Jost functions. In the third part, we establish the RH problem
based on the previous conclusions. Next, we give the symmetry of the scattering matrix,
and study the temporal and spatial evolution of the scattering data. In the fourth part, by
solving the RH problem, we obtain the N-soliton solutions of the FCNLS equation (1.2),
and analyze the propagation behaviors of one-soliton solutions and two-soliton solutions.
Finally, some conclusions are presented in the last section.

2 Spectral analysis

2.1 The Lax Pair and eigenfunction

We first derive the Lax pair of the FCNLS equation (1.2) via the following theorem.
Theorem 2.1. The FCNLS equation (1.2) admits the following Lax pair
P, =U9, D, =V, (2.1)
where ® is a column vector function, and matrices U and V are written as
—iA 0 0 0 ¢
0 —ix O 0 @
U= 0 0 —ix 0 g3 |, (2.2)
0 0 0 —iX ¢
p1 P2 p3  pi GA
V = —2iNA+2\P +Vy, Vo= —i(P: + P?), (2.3)
here X being the spectral parameter and p1 = a11q] + a21¢5 + a31q3 + as1qy, P2 = a5,q] +

a22q5 +a32q3 +a42qy, P3 = a31q] +a39q5 +a33q3 +a43qy, P4 = ay1q] +ayqs +ay3q3 +as4qy,
with

1 0 0 0 O 0O 0 0 0 q

01 0 0 O 0O 0 0 0 ¢
A=loo10 0|, P=l 0o 0o 0 0 ¢ |. (2.4)

0001 O 0O 0 0 0 gqq

0000 -1 p1 p2 p3 pa O



Proof. The compatibility condition of the two equations in Egs.(2.1)
U —Vy+[U, V] =0, (2.5)
with [U,V] = UV — VU, which is reduced to the FCNLS equation (1.2). O

Then we obtain that
D, +iAD = PO,

2.6
O, + 2INAD = QD, (2:6)
where @ = 2AP + Vj.
From Eqs.(2.6) when |z| — oo, one has
P o e~ MT2iN2AL (2.7)
Letting . .
[ = DeMTH2NAL (2.8)
then we can get the equivalent Lax pair
+iAA, p] = Pu,
pa + XA, ] = P (2.9)

pe + 20N [A, 1] = Qu,

where [A, pu] = Ap — pA is the commutator. We can get the following full differential

d (ei()\m—l—%?t)f\ u) = Q20N [(Pag 1 Qdt) pl, (2.10)

AN AA

where e = eM pe

2.2 Asymptotic analysis

To formulate an RH problem, we seek solutions of the spectral problem with the 5 x 5
unit matrix as A — oco. Let us consider the solution of Eq.(2.10) as follows

1) 2) 1
_ 0 M H

where 19, 1 and 4@ are independent of . Substituting Eq.(2.11) into Egs.(2.9), and
comparing the same order of frequency for A, we obtain
o(1) : pf? +iAA, M) = Ppl®,
o(\) : XA, Y] =0, (2.12)
o(\) : 2iN[A, V] = 22Pp®).
Eqs.(2.12) implies 19 is a diagonal matrix, ,ugo) = 0. This means that x(©) is not related
to x. Then

I=lim lim p=p©. (2.13)

A—00 |z|—00
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Now, two solutions p4 = p4(z, ) are constructed for Eq.(2.9)

et = (a1 ]2, [o]s, [t as [p]s)
p— = ([p-]1, [p-l2, (-3, [1-]as [0-]5) ,

with the asymptotic conditions

(2.14)

— 1 as x — o0,
H (2.15)
w— —1 as x — —o0,
here each [p];(I =1,2,3,4,5) denotes the I-th column of the matrices [u4], respectively.
The symbol [ is the 5 x 5 unit matrix, and the two solutions [u+] are uniquely determined
by the Volterra integral equations for A € R

+oo ) )
o (m7 )\) . / efz)\A(z*y)P(y)lu_’_(y’ )\)ez)\A(gc—y)dy7
””x (2.16)
po(@, ) =1+ / e MAETI Py u (y, A)e MV dy.

—00

Then we analysis the Eqgs.(2.16),

e—i)\A(m—y)PeiAA(m—y)

> o O O O
o O O O
>o O O O
> o O O O

|

N

<

pre2r@=y) o e2iX@=y)  pe2iM@-y) ) 2N (@ -Y) 0

(2.17)
To find the analytic area of each column, we just consider Re[2iA(x — y)] < 0 and
Re[—2i\(x — y)] < 0. One obtains [u_]1, [u—]2, [p—]3, [1—]s and [u+]5 are analytic in
the upper half-plane Ct. Similarly, [u4]1, [put]2, [#+]3, [4+]a and [p—]5 are analytic in
the lower half-plane C~. Now we investigate the properties of pi. Since tr(P) = 0 and
Liouville’s formula, we know that the determinants of uy are independent of the variable
x. Therefore we obtain from Eq.(2.15) that

det py =1, A €R. (2.18)

Since p4E are both matrix solutions of the spectral problem Egs.(2.9), where E =
e~ A% Therefore, these two solutions are interdependent, and they must be related by a
scattering matrix S(\) = (sk;)5x5

p—E =puyrES(A), Xe€R. (2.19)
From Eq.(2.18) and Eq.(2.19), we have
detS(\) =1, XeR. (2.20)

To formulate an RH problem for the FCNLS equations (1.2), we consider the inverse
matrices of p4 as

[y
[y

= =
HIHITHIHIHI

fay

—
N

=

: (2.21)
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=~
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=
—
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ot
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Theorem 2.2. Letting

where each [uz']', (I = 1,2,3,4,5) denotes the I-th row of uZ', respectively.

S$11 S12 S13 S14  S15

821 S22 823 S24 S25
S(A\) = s31 s32 s33 s34 S35 |,

S41 S42  S43 S44  S45

S51 Ss52 S53  S54 S5B

ri1 Tz T3 T4 T1s

21 T22 T23 T4 T25
R(XN) = r31 r32 r33 r3a 735 |,

T4l T42 T43 T44 T45

51 T52 T53 T54 T'55

511, 512, 513, S14, 521, 522, 523, 524, 531, 532, 533, S34, 541, 542, 543 and s44 are analytic for
X € CT, s55 is analytic in C~. rs5 is analytic in CF, r11, T12, 713, 714, T21, 722, T23, T24,
r31, 732, 133, T34, T41, T42, 43 and r44 are analytic for A € C~.

Proof. Using Eq.(2.9) it is easy to verify that ,u;l satisfy the equation of K

K, = —i\A, K] — KP. (2.22)
According to (2.19), it’s easy to find
EYuZt = ROVE it (2.23)
From Eq.(2.19), we have E~'u 'y E = S()).
7 7 P 7 Y7200 P 7w 7 O 1w 7208 P 7 V708
i Ple-l [y Plele i Ple-ls P e-la 03 Ple-ls
SN =B i Pleh i Pl 3 Pleols b Plela i Plels | B,
72 70 O 7l V720 P 7 o 7208 PO 7208 PR 17 o /70
Pl i Plule i Plucls ' Ple-ls [0y Plu-ls

according to the analytic property of ,ujrl and p_, we can proof the theorem. The matrix
R(\) can be analyzed in the same way. O

3 Riemann-Hilbert problem

In this part, an RH problem is formulated by using the properties of ur. We construct
matrix function P, = Py(z,A\) and P» = Pa(x,\). The function P, = P;(z, A) is analytic
in C*, and the function P, = Py(z, \) is analytic in C~.

Let

Py = ([p-]1, [-]2, [-]3, [-]a, [14]5) 5 (3.1)



(W]
(1]
Py = {H—Hi : (3.2)
pwZ
13

with
Pr—1I, as A — 400,

(3.3)
P,—1I, as A— —.

At present, we restrict P; to the left-hand side of the real A-axis as Py, and the restrict
P; to the right-hand side of the real A-axis as P_. On the real line, they are meet

P_(z,\)Py(xz,\) = G(z,\), XER, (3.4)
with .
1 0 0 0 T15€_2M$
0 1 0 0 rose” 2T
G(z,\) = 0 0 1 0 r3se 2N | (3.5)
0 0 0 1 ryse” 2T
S51 e2i>\z 5526%)\:0 853621')\1 5546%)\:6 1

According to Eq.(3.3), we obtain the canonical normalization conditions as follows
P—1, as X — 400,
P,—1I, as A — —oc.

To solve the RH problem, we consider the following theorem.

Proposition 3.1.

det P, = rss5, )\EC+,
det P, = ss55, reC.

Proof. According to Eq.(3.1) and Eq.(3.2), we write P; and P, in the form of

P =p Hi +p-Hy+ p-Hs+ p_Hy + py Hs,

-1 -1 -1 -1 -1 (3.6)
Py =Hyp~—" + Hop~" + Hyp—" + Hap—" + Hsp ",

where H; = dig(1,0,0,0,0), Hy = dig(0,1,0,0,0), Hs = dig(0,0,1,0,0), Hy = dig(0,0,0, 1,0)
and Hs = dig(0,0,0,0,1). Hence
det Pl()\) = det(ﬂle +pu_Ho+pu_Hs+p_Hy+ M+H5)
=det pu_ - det(Hy + Ho + Hy + Hy + ER(\)E™"Hs)

1 0 0 0 rge 2
—2i\x

01 00 To5€ 3.7
=1-det|] 0 0 1 0 rgze 2N (37)
0 0 0 1 rype 2N
0 0 0 O 55
= T's5,



apply the same method to Pa()\),
det PQ()\) — S55. (3.8)

From Eq.(2.18), we know that det u+ = 1, according to above analysis, we can get det P; =
7’55,/\€C+, and det P, = s55,A € C. ]

As we can see matrix P has the symmetry relation
Pl = _-BPB™!, (3.9)

symbol “}” represents the Hermitian of a matrix, and

air a3 azy apy 0
agr a2 CL§2 CLZQ 0
B = a3l asz2 ass CLZ3 0 (310)
aq1 ag2 ag3 agq 0
0 0 0 0 -1
According to Eq.(2.9) and Eq.(3.9), u+ meet the following relation
Bl (3\)B = pz' (), (3.11)
the scattering matrix S(\) satisfies the equation
B7IST(\)B = S71(\) = R(\). (3.12)
Eq.(3.12) evidently shows
7‘55()\) = 855()\*) A S C+
—s51(A\) = a11ris + as o5 + a3 35 + ay a5, A€ R,
8;2()\) = a91715 + 22725 + CL32T35 + CL427"45, A E R, (313)
—s53(A) = agir1s + agores +assrys +ajsras, A€ R,
—554(A) = @aa1715 + as2m25 + a43T3s + aaarss, A€ R
Theorem 3.2.
P/(\)=BP,(\)B™!, XeC . (3.14)

Proof. According to Eq.(3.6), we have P = u_Hy + p_Ho + p_Hs + p_Hy + py Hs,

PI(N") =(pu—(N*)Hy + p— () Ha + - (X)) Hs + p—(\) Hy + pe (V) Hs)F
=Hyp' (X*) + Hopl (A°) + Hyp? (V) + Haypt (V) + Hspl (A7) (3.15)
=BP,(\)B™!, NeC .

So that
P/(\) = BB,(\)B™', xe (.



From Eq.(3.7), Eq.(3.8) and Eq.(3.13), we see det P1(\) = (det Po(A*))*, if det P; have
a zero )\, det P, have a zero A*. So we suppose that det P; has N simple zeros {\;}{ in
C™, and det P, has N simple zeros {)\;‘}{V in C™. These zeros with the nonzero vectors v;
and 9;, set up of the full generic discrete data, which satisfy the equations

P1 ()\j)vj = 0,

5P — 0, (3.16)

where v; is column vector, and 9; is the row vector. From Eq.(3.14), Egs.(3.16) one obtains
that the eigenvectors admit the following relation.
b;=viB, 1<j<N. (3.17)

Then we analyze the time-spatial revolution with v;. We take the derivative of the first
equation of Eqs.(3.16) with respect to x, apply the same method to t.

Pl,z'Uj + Plvj@ =0,

(3.18)
Pl,tvj + Pﬂ]j,t =0.
On the basis of
P,=(pu-Hy +p_Ho+p Hz+ pyHy),
= N—,$H1 + M—,;EH2 + ,U/—JHS + N+,xH47
and the Lax pair Egs.(2.9), we have
Py =[—iAAp— — p-A) + Ppu_|Hy + [—iA(Ap— — p-A) + Pp_]Hy
+ [—iA(Ap- — poA) + Pp_]Hs + [—iA(Ap— — p-A) + Pp-]Hy
T [iMAs — s A) + Puy Hy (3.19)
= — i)\APl =+ i)\PlA + PP,
= —i\A, P|| + PP;.
Applying the same method to P, we get
Piy = —2i)*[A, P+ QP;. (3.20)

Inserting Eq.(3.19) and Eq.(3.20) into the first equation of Egs.(3.18) and the second

equation of Eqgs.(3.18), respectively. Noticing that Pjv; = 0, we have
iAMv; + v, =0,

o o (3.21)
21\ Avj + v =0.

According to Egs.(3.21), we have

—i(Ajz+2X3t)A

Uj =€ Uj70,

where v; are complex constant vectors. From Eq.(3.17), we have

b = U}()\j)B _ U}joei(A;x+2/\;2t)AB.



4 Multi-soliton solutions

Now, we are going to expand P;(\) at large-\ as
pW) P(2)

A =T+ + Do),

A A2
Inserting Eq.(4.1) into Eq.(2.9)

o(1) : i[A, PY] =
From Eq.(4.2), we can generate

a1(2,1) = 2i(P{V)15,

q2(x7t) = 2i(P1(1))257

g(x,t) = 2i(P{")3,

aa(w,t) = 2i(P{Y)ss,

where (Pl(l))ij is the (7, j)-entry of matrix Pl(l).

(4.1)

(4.2)

(4.3)

To obtain soliton solutions, we set G = I in (3.4). The solutions for this special RH

problem (3.4) can be given as

(4.5)

and (M ~')g; means the (k, j)-entry of the inverse matrix of M. From expression Eqs.(4.4),

one has

N N
—szkﬁj(M

k=1 j=1

Then setting nonzero vectors vk = (v, Bk Ty G, V)L

generate
e 0 0 0 0
0 e 0 0 0
v = eekAvk’o = 0 0 e 0 0
0 0 0 e* o
0 0 0 0 e %

Jkj-

and 6;

akeek

Byer
Tk efr

Cre
ye 0k

(4.6)

—i(Aex + 202t), we



f]j :’U}()\j)B
ail ay ay  ajp
a1 a2 A3y Ay

=(are’, Brel, e, Cre® e ™) | az1 asy ass ajy
as1 Q42 (43 Q44
0 0 0 0o -1

o O O O

0% 0% * * * * *
=(a11aje’s +anpie’ + a317'f69] + a414;603 ; a§10‘;69] + QQQﬂ;eej + a327—jeej

2 o 0 2 o 0 0
+aglie, a3 05e +ajpBie’s +aszsTie +ass(je, apaje’s + apfie’

0% o —or
+aysTie’d +aguie’s, —yie ).

Obviously
bi1 b2 b1z bua bis
ba1 bag boz bog  bos
vp0j = | b31 b3z b3z b3s b3s |, (4.9)
bar bao bz bag bys
bs1 bs2 bss bsa bss

Upv; =(aniaga; + a1 froy + asim 05 + an (o + ay a5 B + anfr B + asamy B
+ a4 B + a3 04T + a3 BET + assTi T + aasCeTy + ag oG+ alpBr (4.10)

0; —07 0,
+ a3 TG + aaa GGyl — yfy e 0
—07 —0% 05, —0* 0, —6*
bis = —ay, ’Yik@k 7, b25=*5k7;€k 7 bgs=—mpyjet T, bas = —Gpyjet T,
bss = —Vk 7*69’“ %

It should be noted that the parameter b;; (i <5, j <4) do not work on the construction
solutions, so the specific expression is not given for convenience.

As a consequence, general N-soliton solution for the FCNLS equation (1.2) can be
derived as follows

Q1=2ZZZO% 10 (M),

k= 1] 1
Q2—QZZZB OO (MY,
=1 j—1
= (4.11)
a3 = 2ZZZTW* WO (M),
k=1 j=1
Q4—QZZZC’Y* O (M )y,
k=1 j=1
where
1 * * * * * * *
M :ﬁ[(auak% + a2185aj + az1 T + anCrag + ay apfi + ae BB
= Ak
+ asaTy B + as2Q B + az1 g Tj + azeBeTi + assT Ty + a4y + ag (4.12)

+ a§oBiG + alsTiGG + aaa(p () el T — i e %1 <k, j < N,
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To make the expression (4.11) simpler, we define the following matrix F, G, H and K.

0 a1691 0@692 aNeeN
’7?6_91 M1 Mo ... Min
F=| 7e % My My ... My , (4.13)
’)/}:[679?\’ Myn1 Mpyo ... Myy
0 B1€91 ,32692 e ﬁNeeN
'yfe_el M, My ... Min
G=| %e Mxn My ... My |, (4.14)
yie % Myi Mys ... Myy
0 meht etz . ryefN
’yi‘e_ef My My ... Mn
H=| %e® My My ... My | (4.15)
vie % My Mo ... Myy
0 Gelr e . (yefn
er_er Mll M12 MlN
K=| wme® My My ... My |, (4.16)
Yive % My Mys ... Myy

On the basis of matrix (4.13), (4.14), (4.15) and (4.16), we can get

~det F' B 2,detG B 2,detH B 2,detK
Yot BT T e BT T qet i T T et M

q1 = (4.17)

In the remainder of this section, we figure out the soliton solutions in the case of N = 1
and NV = 2. In the case of N = 1, we obtain the one-soliton solution

01—0%
.opyre 1
Q= 21—,
My,
*691—01*
0o — 0PI
i w9
T1Y7 et 71
g3 =210
My,
*691791‘
=2
My
M _# 2 2 2 2 * *
1= ; [(a11|a1]” + age|f1]” + as3|T1|” + aaa|C1]” + a218f a1 + az17i o
1— A1

+ anliar + a507 61 + azeti B1 + a2 B1 + az,0qT1 + a3 BT + asz(i

01407 2 _—(61+06%
+6L110f{<1 WLQZQBTCI + CLZngCl)e 107 |’71| e 61+ 1)],
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where 0 = —i(A\jx + 2A\%t). Furthermore, fixing 41 = 1, Ay = n1 + im; and setting

—(an a1 * + a1 + azs|ni[* + aua| G P + anfian + amimiar +andan
+ aglc({ﬂl + a327'ik,31 + a42Ci“61 + agloff’ﬁ + aggﬁf'ﬁ + a43<ik7—1 + azkllcqcl (4'19)
+alofiG + alsmiG) = €2,
the expression (4.18) can be written as
@1 = 2miarvie e’ Pisech (05 + 01 + &),
g = 2m1 fryre e " Ysech (07 + 01 + &1),
g3 = 2mimiyie e Vsech (07 + 01 + &1),
&1 0107 (07 + 61+ &1).

(4.20)

g1 = 2mi(ivye sech

According to the notation above, we have

01 — 07 = —2inyx — din’t,

4.21
01+ 07 =2myx + 4im%t + 8nymat. ( )

Thus the one-soliton solutions in (4.18) can be further written as

gL = 2m1awi‘6_§1e_2i"1x_4i”%tsech(2m1:n + 4im%t + 8nymat + &),
@ = 2ma Bryte e 2ime4inttsoch (9my z + 4im3t + Snymat + &), (4.22)
q3 = 2m171’yfe_§1e_ginlx_4i”%tsech(2m1:v + 4im3t + 8nymat + &), '

qq = 2m1C1’y’1ke_§1e_zinlx_ﬁ‘i”%tsech@mlx + 4im3t + Snymat + &).
From the Eq.(4.22), we can know that the one-soliton solutions of ¢1, g2, g3 and g4 can be
described by hyperbolic cosecant function. Taking an example, ¢; has the peak amplitude

T, = 2m1a167£1,

and the velocity
w1 = 2imqt + 4nqt,

Similarly, we can know the peak amplitude and velocity of ¢2, g3 and g4, respectively.
To =2miBie™, Ys=2mime ¥, Tyq=2miCe ™,

wy = 2tmqt + 4dnit, ws = 2imqt 4+ 4dnit, w4 = 2imyt 4 4ngt.

From the expressions of Y1, Yo, T3 and Y4, w1, ws, ws, w4 we can know that all of them
rely on both the real part n; and the imaginary part mj of the eigenvalue A;. Figure 1,
Figure 2, Figure 3 and Figure 4 represent the localized structures and dynamic behaviors
of the single-soliton solution. All the analysis of g; be the same with ¢, ¢3 and ¢4.
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Figure 1. Plots of the single-soliton solution ¢;, with the parameters chosen as a11; = ag2 = ag3 =
agq =0, a21:a31:a41:a32:a42:a43:—%,a1:71:51:@:%—‘/7571,71:1,711:%,
my = 4. (@) three dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation

along the z-axis with different time.

(b) (c)

Figure 2. Plots of the single-soliton solution g2, with the parameters chosen as a1 = age = azg =
ass =0, a21=a31=a41=a32=a42=a43=—%7061=Tl2/31:(12%—\/752'771:17”1:%7
my = % (a) three dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation

along the z-axis with different time.

Figure 3. Plots of the single-soliton solution ¢z, with the parameters chosen as a11 = a2 = a3z =

ass =0, a21:a31:a41:(132:(142:(143:_%7041:7'1:ﬂlzglzé_\/?iia’}/l:l,nlzéy
my = 3. (a) three dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation
along the z-axis with different time.
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Figure 4. Plots of the single-soliton solution g3, with the parameters chosen as a11 = age = asg =
asq =0, 0212031=a41=a32=a42=a43=—%aa1=ﬁ251=C1=%—\/7§73771:1,n1=%,
my = 4. (@) three dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation
along the z-axis with different time.

In the case of N = 2, the two-soliton solutions can be obtained as

_2Z 0, —0% 01 —0*
= — * 1 M. XeV1=0% 7T
S VY M12M21( aryie 22 + a175€ 12
+ aoe?? % My — aoyie®?7% Myy),
-2 - 01—0%
- — M £ 0105 0
© = A M12M21( Bine 22 + Bivze 12
+ Boyi e Moy — Boyie® % Myy), (4.23)
—2i 5 0107 01-63 '
= e O £O105 0
g3 MMy — M12M21( st 22 + T172€ 12
+ 1ov; 9270 My — moy3e®2 %2 M),
Q4 (—Civy e =% Moy + ¢ivse® =% My

"~ My May — Mys Moy
+ Gt My — e M),
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where

My =

Mo =

My =

Moo

01 - —i()\lm
1 =" =1,

the following

1

W[(QHMHQ + ag|f1? + ass|mi|* + aaa| G * + a21 Bfar + azimi
L= M

+anCron +anarfi +asr B+ asn P+ az0i T + @3B+ ass(im

+ a21a>{<-1 + aZQﬁikcl + aZ3TfC1)691+91 — ‘71‘267(014’91)}7

1
N v ((enaias +anfias +agimias +andos + 43016k + a2 fif
27 M
+ aseri B + asali By + 10 + a5BiT + asTIT + ass(iT + ahioiG
* _p*_
+agpPCe +agm G + a44§f§2)€01+92 — 11 72e€ b 62],
1
A1 — A3
+ a3y B1 + asa(y B1 + az1a5T1 + azp a1 + aszTo T+ asz(y T + ag gty

0540 —05—0
+ aloB3C1 + alsTaC + aaa(5Cr)e2 T — Aiye 2T,

[(a110501 + az1B5a1 + as1T5 a1 + an(Gag + ayab B + a5

1
:m[(anlaa\z + ag|B2)? + ass|mal* + asa| G2l + an Bian + aziTias

+aa(ra2 + a3 @52 + azTy By + ainy P2 + az10572 + a3 + asz(am

+ @l aiCo + alioBCo + algiCa)el2 02 — |yo|2emPat02)],

+ 2X%t), Oy = —i(Aox + 2A3t), A1 = ny + imy and Ag = ng + img. If we let
a1 = g, B = B2, 1 = T2, (1 = (o and —(ani|aq|? + ag|B1* + ass|mi|? +
asa|C1? +a91 B +azi i ar +asn Fon +aby o Br 4 aseTi B+ asal B+ ak ol T +aky BiT +
as3CiT +ai ol +alyBi ¢ +ajsTi(r) = €%, then the two-soliton solutions in (4.23) have

form
My Moy — My Moy
92_6{M GZ—QSM
+ a9€ 21 — Qg€ 11)7
—2i - -
= (—=B1e” "1 Moy + B1e”1 772 Mo
M1 Moy — Mg Moy
05 —0%F 0o —0%*
+ 626 271 Moy — 526 2 QMll)a
—2i oo .
q3 = (—Tle 1 1]\4'22 + T1€ 1 2M12
M1 Moy — Mig Moy
+ 7_2692_91 Moy — 7'2@62_92 Mll),
—2i . .
U (=" 0 Moy + Gre %2 My

7M11M22 — Mo Mo
+ e My — Goe® % M),
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where

( _eé-l "
My = pr. cosh(0] + 01 + 1),
M —2eh h(6F + 6
= , cosh(67 + 62 + &),
2 e ilmy Fma) (07 + 02+ &1) .
_2651 ’
My = h(6%
2= T i+ ma) cosh(03 + 61 + &1),
—eft
Moy = —— cosh(0; + 62 + &).
\ 1ma

Figure 5. Plots of the double-soliton solution ¢, with the parameters chosen as a1; = asy =
as3 = agq = 0, ap1 = az1 = Gu1 = a3z = Qa2 = ay3 = —§, 01 =71 = P =C1=%—\/7§i,
Y1 = "Y2 = ]., a1 = Qg, 51 = ﬁz, 1 = T2, Cl = Cg ny = _?1, Ng = %, my = 025, mo = 05 (a) three
dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation along the z-axis with

different time.

Figure 6. Plots of the double-soliton solution ¢, with the parameters chosen as a1; = asy =
azz = agq = 0, ag1 = a31 = Qa1 = A3z = Qa2 = Qu3 = —5, 01 = 71 = [ =C1=%—\/7§i,
N=r2e=1ar=ay i =P =70=Cnm =7, n=3,m =025 my =05 (a) three
dimensional plot at time ¢ = 0, (b) density plot, (c) the wave propagation along the z-axis with

different time.

.
R P e
5%
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Figure 7. Plots of the double-soliton solution g1, with the parameters chosen as a1; = asy =
ass = aaq = 0, ap1 = G31 = Q41 = A32 = Qa2 = (43 = —g, 01 = T = 1=C1=%—§i,
i=v=1lLa=ay f1=011="7,G=C0n = %1, ng = %, my = 0.25, mg = 0.5. (a) three
dimensional plot at time ¢t = 0, (b) density plot, (c) the wave propagation along the z-axis with

different time.

Figure 8. Plots of the double-soliton solution ¢;, with the parameters chosen as a1; = asy =
a33:a44:0,a21:a31:a41:a32:a42:a43:—%,a1 27'1:51=C1=%—§i»
M=y =1La=ay f1=011="7G=C(n = %1, ng = %, my = 0.25, mg = 0.5. (a) three
dimensional plot at time ¢t = 0, (b) density plot, (c) the wave propagation along the z-axis with

different time.

5 Conclusions and discussions

In this work, we have proposed a FCNLS equation (1.2) associated with a 5 x 5 Lax pair,
which was investigated via the RH approach. Based on the Lax pair with a 5 x 5 matrix,
we start with the analyze of the spectral problem and the analytical properties of the Jost
functions, from which the RH problem of the equation is established. Then, we obtain
the N-soliton solutions of the FCNLS equation (1.2), by solving the RH problem without
reflection. Finally, we derive two special cases of the solutions to the equation for N =1
and N = 2, and the local structure and dynamic behavior of the one-and two-soliton
solutions are analyzed graphically.
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