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Abstract

The purpose of the present paper is to formulate some new supplements to
perturbation theory of linear operators [15] by considering a non-analytic perturbation
involving more than one perturbation parameter. An application to a Gribov operator
in Bargmann space illustrates the mathematical problem involved in this paper.
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1 Introduction

Perturbation theory of linear operators has been pioneered by L. Rayleigh [16] and E.
Schrodinger ([18] and [19]) and is the object of many researches until now [12]. In [16],
L. Rayleigh has given a formula for computing the natural frequencies and modes of
a vibrating system deviating slightly from a simpler system which admits a complete
determination of the frequencies and modes. Mathematically speaking, the method was
equivalent to an approximation solution of the eigenvalue problem for a linear operator
slightly different from a simpler operator for which the problem is completely solved.
E. Schrodinger ([18] - [19]) has developed a similar method, with more generality and
systematization, for the eigenvalue problems that appear in quantum mechanics. Later,
T. Kato [13] and F. Rellich [17] have been mainly concerned with the regular perturbation
of self-adjoint operators on a Hilbert space, while some attempts have also been made
towards the treatment of non-regular cases which are not less important in applications.
Another generalization of the theory has been given by B. Sz. Nagy [15]. By his elegant
and powerful method of contour integration, he has been able to transfer most of the
theorems for self-adjoint operators to a wider class of closed linear operators in Banach



space. More precisely, let A(e) be a perturbed operator on a Banach space X, depending
on a complex parameter € as a convergent power series

Ale) :=Ag+ Ay +2Ag+ -+ A+, (1.1)

where ¢ € C and Ay, Ay, Ay, As... are linear operators on X, having the same domain D
and satisfying the relative boundedness condition

14kl < ¢*Hallell + bl Aoell) (1.2)

for all ¢ € D and for all k£ > 1, with a,b,q > 0. Among basic results already obtained by
B. Sz. Nagy [15], we focus our attention on the following:
(7) The series

Agp +eAip+e2lsp+ - +ePAp+ -

converges for all ¢ € D and for all |¢] < ¢~!. Setting A(e)p its limit, we have A(e) is a
linear operator with domain D.

(ii) If Ag is closed, then A(e) is also closed, for |e| < (¢ + )~

(#4i) Suppose that the unperturbed operator Ay has an isolated eigenvalue A, with mul-
tiplicity one. Then A(e) has a unique eigenvalue \,(¢) in the neighborhood of A, for
sufficiently small || and this eigenvalue can be expanded into a convergent series

)\”<€> = )‘n + 5)\n,1 + 52)\7%2 4.,

Moreover, the eigenvector ¢, () of A(e) corresponding to the eigenvalue \,(g) depends
analytically on € near 0 :

Spn(g) = ¥n + EPn,1 + 52907%2 + e
Here ¢, is an eigenvector of A, corresponding to the eigenvalue \,.

Later, the basis of eigenvectors property was confirmed for the operator A(e) in order
to describe the radiation of a vibrating structure in a light fluid and to study strong
interactions in the context of Reggeon theory (see [3], [6], [7], [8] and [11]). After that
[5], it has been proved that the family of exponentials associated to the eigenvalues of
the operator A(e) forms a Riesz basis. This result was of importance for application to a
non-selfadjoint problem deduced from perturbation method for sound radiation.

We now ask what conclusions can be drawn if we consider a more general type of
non-analytic perturbation involving more than one perturbation parameter?
Indeed, we investigate under this question and we give new variants to B. Sz. Nagy’s
results [15]. To this end, we consider the operator

TE) =To+ 6T +&To+ -+ &Ti+ - (1.3)

where £ = (§)r>1 is a sequence of complex numbers such that 7(&) = > 72, |&] < oo,
To is a closed linear operator on a Banach space X with domain D(Tj) and (Ty)g>1 are
linear operators on X, having the same domain D such that D(7,) C D and

[Thell < allll + bl Toell, for all ¢ € D(Ty), (1.4)
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where a, b > 0. We emphasize on the fact that under those considerations, we give an
essential improvement to the results developed by B. Sz. Nagy [15] since we deal with a
non-analytic perturbation involving more than one perturbation parameter and covering
cases where the results developed in [15] can not be applied.

Based on the analysis started in [15], we study the behavior of spectral properties of T'().
More precisely, we prove that:

(7) The series
Top + & Tip + &Top + -+ &I + -+

converges for all ¢ € D(Ty). If T'(£)p denotes its limit, then 7'(€) is a linear operator with
domain D(Ty). Moreover, T'(€) is closed if 7(§) < ¢.

(17) Let A, be the eigenvalue number n of Tj. If A, is isolated with multiplicity one, then
for 7(£) enough small, T'(£) has a unique simple eigenvalue A, (§) in a small neighborhood
of \,. Setting ¢, (£) an eigenvector of T'(§) associated to A, (§), then one can develop A, (&)
and ¢, (£) into series:

An(€) = A+ An 1 (&) + An2(§) + -+ A (§) + - - (1.5)

and

Notice here that if in particular we take &, = £F¢*! and T}, = qk%lAk (k > 1) in Egs
(1.3) and (1.4), we recognize the B. Sz. Nagy’s perturbation model of linear operators
(see [14]-[15]). Moreover, we regain the spectral study of the operator A(e) (see Egs (1.1)
and (1.2)) investigated in [15]. The main novelty in this paper is that we give the exact
expressions of the coefficients (A, ;);>1 and (¢y,;)i>1 in Egs (1.5) and (1.6) (see Theorems
3.2 and 3.3).

The key tool here was the following equalities,

o) o) n o) o)
E Qp, E Sk = E Qp, E E Si1Sis *** Sip
n=1 k=1

n=1 l=n i1+i2+...+in=l

and

ian<mAk> =§janfj > AAL - A,
k=1

n=1 n=1 l=n 11+i2+...+in=I

where (ag)r>o is a complex bounded sequence and (si)r>o (resp., (Ag)r>0) is a complex
sequence (resp., is a sequence of bounded linear operators in a Banach space) satisfying
some convergence conditions (see Section 2).

To illustrate the applicability of the abstract results described above, we consider a
Gribov operator in Bargmann space (see [1], [2], [9] and [10]) originated from Reggeon
theory. This theory was introduced by V. N. Gribov [9] in 1967 to study strong interac-
tions, i.e., the interaction between protons and neutrons among other less stable particles.
It is governed by a non-selfadjoint Gribov operator constructed as a polynomial in the
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standard annihilation operator A and the standard creation operator A*, defined in the
Bargmann space:

E = {gp : C — C entire such that /e_z|2|g0(z)|2dzdz < o0 and ¢(0) = O} :
C

More precisely, we deal with the operator
H)\”,)\’,u,)\ =\ (A*A)3 + )\/A*QA2 + LLA*A + ’L)\A*(A + A*)A, (17)

where A7, X, and A are real numbers. The Bargmann space F is a Hilbert space for the
scalar product (.,.) defined by
(,):ExE—C

(0, ¥) — (oY) = / e PP o(2)0(2) dzdz,
C
and the associated norm is denoted by || . ||

The annihilation operator A and the creation operator A*, are defined by:
A:D(A)CEF— FE

0 — Aplz) = S (2)
D(A) = {¢ € E such that Ap € E}
and
A DAY CE—E
p — Ap(2) = 20(2)
D(A*) = {p € E such that A*p € E}.

So, the expression of Hy» y , » becomes

43 d? d
d_zf(z) + (BN + X)22 4 idz) S (2) + (A2 + (N + p)z) d_j(z)'

H)\// Nl - — )\//23
»A dZQ

Regarding the aforementioned theoretical part, we give a characterization of the spectrum
of H/\//)\/”u’)\.

The paper is organized as follow: in Section 2 we develop some preliminary results for
future use. Section 3 constitutes the main results of the paper. An illustrative application
to a Gribov operator in Bargmann space is the topic of Section 4.

2 Preliminaries

The objective of this section is to establish the equalities

n=1 l=n i1+i2+...+1n=1
and
) 1) n 00 0
E (7% E Ak = E Qnp, § § Ail Aig e Ain7
n=1 k=1 n=1 l=n i14+i2+4...4+in=I
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where (ag)r>1 is a complex bounded sequence and (sg)g>1 (resp., (Ag)k>1) is a complex
sequence (resp., is a sequence of bounded linear operators in a Banach space) satisfying
some convergence conditions.

To attain this goal, we shall first introduce the following technical results for future use.

Lemma 2.1 Let s = (s)r>1 be a sequence in C and s* = (s})k>0 be the transformed
sequence given by

k—1
so=1, sp=» ) Sgy, forevery k> 1. (2.2)
v=0
Then,
k
sy = Z Z Si, SiySig---Siy, forevery k > 1. (2.3)
=1 i1+’i2+...+il=k‘
(Here 1 <i; <k, for every [=1,2,--- k and k>1) &

Proof. Let us proceed by induction on £ > 1. For k = 1, the recurrence property is valid,
since s} = sjs1 = 51 = 211:1 > i,—15i;- Suppose that the recurrence property is valid up
to the order k& (k > 1) and let’s show that it remains valid to the order &k + 1.

From the recurrence hypothesis and the fact that sj = 1, we get

k

* § : *
Sk+1 T SySk+1—v

v=0
k

* *
= 5)Sk+1 T E S, Sk+1—v
v=1

= Sk+1 + E <§ E 541549 543-+-54 )sk’Jrl v

=1 t1+i2+...+i;=v

= Skt E (E E 8i18¢2---5il> Sk+1-v

v=Il i1+io+... 4=V
k+1

= 5k+1+§ E E SiySig---Siy_y | Sk+1-v
1=2

v=Il—1 t1+i2+...+9_1=V
k+1

= Sgy1t+ E E Siy Sig---Si,
=2 ’i1+i2+...+il:k’+l
k41

= E E Si1Sig-+-Sip-

=1 i1+4is+...+i;=k+1

This finishes the proof of the lemma. Q.E.D

Remarks 2.1



1. For any fized X in C, let s, = A, for all k > 1. By an easy induction, we can show
that st = A1+ \)*L, for all k > 1.

2. Due to (2.2), for any sequences s = (si)g>1 andt = (tg)k>1 in C satisfying |si| < |txl,
for all k > 1, we have
|si] < |tx]", for every k > 0. (2.4)

&

Lemma 2.2 For any fized x and y in C, the following properties hold.

(i) If we set ty, = ya*, for all k > 1, then t} = ya*(1 +y)*=1, for all k > 1.

k
(ii) Zyl Z 1 =y(1+y)", for every integer k > 1.

=1 i1+i2+...+il:k
(i) D5 virgimk 1 = Ci7t, for every integers 1 <1 <k and k > 1.

such

(iv) Let s = (si)p>1 be a sequence in C. Suppose there exist A >0 and 0 < g < )\+1

that |sp| < Ag¥, for every integer k > 1, then
Sl 2 Shle ot o

Proof. (i) If ¢, = 0, for all integer k > 0, it is clear that ¢} = 0, for all integer k > 1.
Assume that x and y are non zero complex numbers and let ¢, = y*, for all integer k& > 1.
By induction on the integer & > 1, let us show that ¢} = yz*(1 + y)*~! for all integer
k > 1. For k = 1, the recurrence property is true since ¢J = t; = yx. Suppose that the
recurrence property is valid to the order & (k > 1), and let’s show that it remains valid
to the order k + 1. By the recurrence hypothesis and Eq. (2.2), we obtain

k
Z—&-l = Zt; tht1—v
v=0
k
— tk+1+zyxu(1+y)u—lyxk+1—y
v=1

k

_ yxk+1+$k+1y2 Z(1+y)u—1
v=1

1—(1 k
KL gkt 2 (1+vy)
Yy

= yl‘
=y 14y~

(ii) Due to (i) and Lemma 2.1, we get

y(1+y)t = Zyl Z 1, for every integer k > 1 and every y in C.
=1 i1+io+...+i=k



(iii) From (ii) and the binomial expansion formula, we have

k

k—1 k
2 2L 1= Gyt =) any
I=0 I=1

=1 i1+io+...+i=k

By identification, it follows that
Zi1+i2+...+il:k 1= C,i:ll, for every integers 1 <[ <k and k > 1.

(iv) Let (sg)r>1 be a sequence in C satisfying |sz| < A¢¥, for every integer k > 1, where
A>0and 0 < g < 5. Clearly, 307 [sx| S A2 ¢F = 1’\7"(1 < +oo. Besides, |si| < |tx],
for every integer k > 1, where t;, = A\¢", for every integer k > 1. By (i) and Remark 2.1,
(Eq. (2.4)), it follows that |s;| < [tx]* = Ag"(1 4+ A\)*7!, for every integer k > 1.

Thus,

SoIstl < 1+ Y ful
k=0

N
[S—y
+
o)
[S—y
+
=
—=

IN
—_
+

IN

Q.ED

Now, let’s recall the Fubini’s absolute convergence inversion criterion.
Lemma 2.3 Let (Up)ni>1 be a double sequence in C satisfying:

(i) For every fived integer n > 1, the series Y -, |Un | converge.

(if) The series D~ > =1 [Uni| converge.

Then, we can interchange the order of summation in a doubly indexed infinite series:

ZZUn,l:ZZUn,Z- <>

n=1 =1 I=1 n=1
Having obtained these results, we are ready to prove Eq. (2.1) when (ag), = 1.

Proposition 2.1 For any sequence s = (sg)k>1 in C such that 7(s) =3 oo |sk] <1 and
Y reo |8k < 400, where s* = (s})k>0 is given by (2.2), the following properties hold.

WS (i) 5D DD SRR

n=1 k=1 n=1 =1 i1+i2+...4+14;=n



(i) If > o, |skl* < 400, then we have

<>z(z) YT s

=1 k=l i1+i2+...+il=k

oo l o
(b) (Z sk> = Z Z SiySiy * +* Siy, for every integer [ > 1.

k=1 k=l i1+is+...+i;=k

oo ! oo
(c) (Z skzk> = Z ( Z Siy Siy - -~sil) 28 for z in C such that |z| < 1
k=1

k=l i1+i2+...+il=k
and every integer [ > 1. &
Proof. (i) Setting

s—OO(isk) YOy e

n=1 =1 i1+i2+...4+15;=

By Eq. (2.3) and the fact that s = 1, we can write

S = Z (Zsk> —Zs;.
n=0 \k=1 n=0

Putting so = 0 and applying the Cauchy product formula of two absolutely convergent
series, we obtain after taking (2.1) into account,

00 n+1 ) 0
s(X) - X (2] -xaxe
k=1 =0 n=0 k=0
SOOI of D SRR
n=0 k=1 n=0 v=0
00 0 n ) n—1
= Z(Zsk —1—2( sl*,sn_y>
n=0 k=1 n=1 v=0
SO SR IES oF
=0 k=1 n=1
= Z(Zsk —Zs;:S.
=0 n=0

Hence, S(3 po, sk —1) = 0. Since D77, skl < D opo;lsk] < 1, it comes that S =
Accordingly, we get

n=1 =1 i1+iz2+...+7;=n

(ii) Assume that >, |sg|* < +o0. Due to (i), we have
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2

1

DTN 5 o S ) D

k=1 n=1 =1 i1+iz2+...+4;=n n=1 =1

where Uy, = Xqj1,n(1) Zi1+i2+...+il:n 8§, Siy -+ - 8y, for every m, 1 > 1 and xyj1,») is the char-
acteristic function of [| 1,n || = {1,2,...,n}.

For any fixed integer n > 1, we have

n

21Ul =2
I=1

=1

E SiySig =+ Sy | < +00.
i1+i2+...+i=n

Besides,

SIS o n 00
DAY D D sullsnl sl ) [sal” < 4o0.

n=1 [=1 n=1 [=1 11+i2+...+19;=n n=1
Using Lemma 2.3, it follows that
oo 0o n SIS
>(Xx) - 2y
n=1 \k=1 n=1 [=1

= 22 Uu

=1 n=1

0o 00
= E E E SiySig t Sil-

=1 n=l i1+iz2+...+15;=n
Hence, (a) holds.

Let z be a fixed complex number such that | z |< 1. Setting vy = zsy, for all k& > 1.
Clearly |vg| < |sg| for every k > 1. From Eq. (2.3), we have |vg|* < |sg|*, V k> 1.

By the assumption, it comes that

o0

o 9] 9]
Dol <Y lsel <1 and > o[t <) [sel* < +oo.
k=1 k=0 k=0

k=1

So, while using (a), we obtain

= n=1 [=1 11+i2+...+;=n 1

00
E E Uiy Uiy ** + Uy

1 k=l i1+i2+“.+’il=k

o0

ie.,
oo [e.e] ! o0 oo
z Sk = z Si1Sip " Sq |
=1 k=1 =1 k=l i1+io+...+i;=k
for every z in C with | z |< 1.

By identification, we infer that



o0 l [e.e]
(Z 8k> = Z Z SiySiy ++ 84y, for every integer [ > 1.
k=1

k=l i1+i2+...+il:k

Hence, (b) holds.

For a fixed z in C, with |2] < 1, let (wy),>, be the sequence in C, given by w; = 2Fsy,, for
every k > 1. Clearly, |wg| < |sg| for all £ > 1. By Eq. (2.3), we get |wg|* < |sg|*, V£ > 1.

By the assumption, it comes that

o0 oo o0 o0
Dl <D skl <1 and ) fwl < [sil* < o0
k=1 k=1 k=0 k=0

Due to (b), it follows that

o0 l (o]

k k
E Spz = E E SiySip Sy | 2,
k=1 k

k=l i1+i2+...Fi =

for every z € C with |z] < 1 and every integer [ > 1.
Hence (c) holds. Q.E.D

More general, we have the following result.

Theorem 2.1 Let a = (ax)r>1 and s = (Sg)k>1 be two compler sequences such that a =
(ar)k>1 1s bounded, T(s) = > 22 Isk] <1 and Y ooy |skl* < +oo, where |s|* = (|sk]*)r>0
is defined as:

|80|* =1,

k
|Sk’*:Z Z |Si1|’8i2|”'|3iz|> kzl

=1 i1+i2+...+il=k

Then, we have:

0 0o n ) o0
E Ay, E Sk = E Cbng Si1Sig * 0 " Siy,

n=1 k=1 n=1 l=n 11+i0+...+1p=I

00 l
= E E Ay E Si1Sig * " Siyy -

=1 n=1 i1+io+...Fin=l

&

Proof. The first equality can be deduced from Proposition 2.1 (b). To prove the second
equality, we write Y 0 a, (D pe, sk)" as
> (L] -3 v
n=1 k=1 n=1 [=1
with
Vn,l = ap X[|n,+oo|[(l) Z Si1Sig " Siyy

i1+i2+...Fin=l
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for every integers n,1 > 1 and where X[, oo/ is the characteristic function of [| n, 400 | [.

From the assumption and Proposition 2.1 (b), we have

Z Vil < Jan] Z Y Isullsul - Isi) = laal (7(s)" < 400,

I=n i1+io+...+in=l

for every integer n > 1.
Besides,

I <Z|an

n=1 =1

Taking nto account the fact that a = (%)@1 is a bounded sequence, i.e., there exists
M > 0 such that |a,| < M, for every n > 1 and since 7(s) < 1, we obtain

ZZ'an|<MZ n—M+(SS)><+oo.

n=1 [=1
By virtue of Lemma 2.3, this implies

n=1 [=1

-y Z Vas
I=1 n=1
o0 l
=1 n=1 i1t+io+...+in=I
Hence, the second equality holds. Q.E.D

Lemma 2.1, Proposition 2.1 and Theorem 2.1 remain true if we replace the complex
sequence (si)r>1 by a sequence of bounded linear operators (Ax)r>1 on a Banach space
X. To this end, let (A})r>0 denote the transformed sequence defined as:

k—1
Ay=1, A;= ZAZ Ay, forevery k>1 (2.5)

v=0
and (|| Ax]|*)k>0 the sequence given by:

k—1
Ioll* =1, 14 = Y 1A " [As-ll, for every k > 1. (2.6)

v=0
Then, we can deduce the following results:

Lemma 2.4 Let (Ag)r>1 be a sequence of bounded linear operators on a Banach space X
and (A})k>o the transformed sequence defined in Fq. (2.5). Then, we have

k
= Z Z Si,8iySig---Si,, forevery k > 1.

=1 i1+is+...+9,=k

11



(Here 1 <4, <k, for every [=1,2,--- k and k>1) &

Proof. The proof is similar to that of Lemma 2.1. Q.E.D

Proposition 2.2 Let (Ag)r>1 be a sequence of bounded linear operators on a Banach
space X and (A)k>o (resp., (||Ak||")k>0) the transformed sequence defined in Eq. (2.5)
(resp., BEq. (2.6)). If > oo || Akll < 1 and >0~ ||A}]l < 400, then the following assertions
hold.

o;(ZAk)n:ii > ALAL AL

n=1 [=1 11+i2+...4+9;=n

(ii) If D02, Il Akll* < 400, then we have

(a);(ZAk>n:ii > ALAL AL

=1 k=l i1+io+...+i9;=k

(b) (Z Ak) = Z Z A A, -+ Ay, for every integer [ > 1.

k=l i1+io+...+1i;=k

(c) (Z Agz ) = Z ( Z Ai A, - ~Ail> 2F| for z in C such that |z| < 1

11+12+ A=k
and every mteger &

Proof. (i) The proof can be sketched in a similar way to that in Proposition 2.1 (i) since
the Cauchy product formula of two absolutely convergent series remains true for series
with terms in a Banach algebra.

(ii) To prove (a), it suffices to apply the Fubini’s absolute convergence inversion criterion
for double sequences of a Banach space (see [20, Théoréme 12]) to the sequence of oper-
ators (Api)ni>1, where A, = xqn(0) Zi1+ig+...+il:n A Ay, -+ Ay, for every n,l > 1 and
X[1,n]] denotes the characteristic function of [| 1,n || = {1,2,...,n}.

To show (b), we apply (a) to the sequence of operators (By)x>1, where By, = z Ay, Vk > 1,
with z is a complex number such that |z| < 1.

Finally, the equality of (c) can be deduced from the one of (b) by considering the sequence
of operators (Cy)g>1, with Cy = 2*Ag, Vk > 1, and 2 is a complex number such that
2] < 1.

We close this section by the following result.

Theorem 2.2 Let (ap)g>1 be a bounded complex sequence and (Ap)g>1 a sequence of
bounded linear operators on a Banach space X such that >~ || Akl <1 and Yo, | Axll* <
+00, where (|| Ag||*)k>0 is defined in Eq. (2.6)).

12



Then, we have:

o0

ian<§:Ak>n S Y A,

n=1 l=n i1+io+...+ipn=1

oo 1
= ZZan Z A“AZQAM

=1 n=1 i1+ig+...+in=l

&

Proof. The first equality follows immediately from Proposition 2.2. To prove the sec-
ond equality, it suffices to apply the Fubini’s absolute convergence inversion criterion for
double sequences of a Banach space (see [20, Théoréme 12]) to the sequence of opera-
tors (Bn)n>1, where By, = ap, X[jn,+o0][(1) Zi1+i2+.“+in:l A Ay, -+ A, for every integers
n,1 > 1 and X 40| is the characteristic function of [| n, 400 | [. Q.E.D

3 Main results

Throughout this section, we will consider the following hypotheses:

(H1) Let Tj be a linear operator on a Banach space X with domain D(7}) such that Tj
is closed and has isolated discrete eigenvalues.

(H2) Let T1,T5,Ts,... be some linear operators on X having the same domain D and
satisfying:

D(Ty) C D and there exist a,b > 0 such that for every k£ >1
IThell < allell + bl Towll,  for all ¢ € D(To). (3.1)

(H3) Consider (&)r>0 a sequence of complex numbers verifying § = 1 and 7(§) =
2521 €k] < oo

The first result of this section is formulated in the following theorem.

Theorem 3.1 Assume that the assumptions (H1)- (H3) hold. Then the series ) ;o & Thp
converges for all p € D(Ty). If T(§)e denotes its limit, then we define a linear operator

T(€) with domain D(Tp). In addition, if T(§) < § then T(£) is closed. &
Proof. Let ¢ € D(1,) and n € N*. Using Eq. (3.1) we get
> GTee| <> I&IITeell
k=0 k=0 .
< || Toell + Z|€k”|Tk‘P“
[
< |Towell + Y I&l (allell + bl Toeell)
k=1

< 7(@allell + (1 4+ 7(6)b) [ Towll

13



Hence, the series ), & Thyp is convergent. Setting T'(§)y its limit, we define a linear
operator T'(¢) with domain D(Tp). Similarly, by Eq. (3.1), we obtain

I(T(€) = To)ell < 7(&allell + 7)1l Topll, for all o € D(Tp).

Since Ty is a closed operator and 7(§) < 3, we deduce in view of [15, Théoréme 1| that

the operator T'(€) is also closed. Q.E.D

In particular, if we take &, = ef¢*~!, Ty = Ay and T}, = qk%l A Vk >1, where ¢ >0, ¢
is a complex number and (Ay),>1 are linear operators on X verifying Eq. (1.2), we regain
the analytic perturbation A(e) (see Eq. (1.1)) considered by B. Sz. Nagy in [15]. More
precisely, we have the following result.

Corollary 3.1 Let Agy, Ay, Ay, Az, ... be linear operators on X such that Ag is closed with
domain D(Ag) and Ay, As, As, ... are with the same domain D D D(Ay) and verifying:

1Al < " (alloll + b Aogll) . for all o € D(A), (3.2)

where a,b and q are strictly positive numbers. Then the series Zkzo ek Ao converges for
all p € D(Ag) and for |e| < L. If A(e)p denotes its limit, then we define a linear operator

q
A(e) with domain D(Ag). For |e| < ﬁ, the operator A(e) is closed. O

Proof. We have 7(£) = >"02, |&k] = le| Yo (lelg)®. I Je] < %, then 7(¢§) = - < 4o0.

1—[elq
Hence, the series ;- ek A converges for all |g| < é. Moreover, 7(§) < 3 if and only if

le] < ﬁ. So, A(e) is closed for |g| < qﬁ). Q.E.D

Remark 3.1 Notice here that Corollary 3.1 was first cited in [15, Théoreme 3]. Then,
we can say that the perturbation T'(&) is more general than the one adressed in [14] — [15]
where B. Sz. Nagy dealt with an analytic operator with one perturbation parameter . <

Let n € N*, )\, the isolated eigenvalue number n of the operator T with multiplicity one,
dy, = d(An,0(To) \ {\n}) : the distance between A, and o(Tp) \ {\,} and C,, = C(\,, 1) :

the closed circle with center A, and radii r, = %. Since (Ty — zI)~" is a regular analytic

function of z € p(Ty), ||(To — 2I)~*!|| is a continuous function. So, we denote by:

M, = max ||(Ty — z,1) 7",

zn€ln

Ny = ma | To(Ty — 200) 7| = ma 11 + 20(To — z0) 7"
zn€Cn

2n€Cln

and
ay, = aM,, + bN,,.

Proposition 3.1 Assume that the assumptions (H1)-(H3) hold. If () < ai", then the
resolvent of T(£) at z, € C, is well defined. Let R, (£) = (T(§) — z,1)7", then for
T(§) < i, the following assertions hold:

14



(1) the operator R., (&) can be developed into a series

R., (&) == R 0(§) + Rz 1 (§) + Rep2(8) + -+ Rept(§) 4+

where

R. o) = R. = (Ty— 21"
R = (- Y &&,& R, TR, T,R., - T,R.,, VI>1
k=l i1+io+-+i;=k
(3.3)

(17) we have

[ R., (€] < Mn(anT(g))l7 Jor every 1> 0. &

Proof. (i) Let z, € C,. Using Eq. (3.1), we infer that for all g € X \ {0} and for all
k> 1,

| Te(To — 2ad) gl < all(To — zd) " gll + Bl To(To — 2ad) g
< (all(To = 2 )7 + Bl To(To = 2 D)D) gl -
So,
| T (To — 2o1)7Y| < @, forall k> 1. (3.4)

We claim that C,, C p(T'(§)). Indeed, for z, € C, we have

T(g) —Zn[ = T0+£1T1 —|—€2T2—|— —ZnI
= ([+&4T(To — z]) "+ & (To — 2o D) + ) (To — 241)

= ([ —+ ngTkRzn) (TO - an)

k=1
= ([ +5)(To — z), (3.5)
where S =372 & Ty R.,. In view of Eq. (3.4), we have if 7(¢§) < Z- then

”SH < Zzil|’§kaRzn|| < a,7(§) < 1.

Hence, I + S is invertible with bounded inverse. Since z, € C, C p(Tp), then Eq. (3.5)
implies that T'(§) — 2,1 is also invertible with bounded inverse. Hence z, € p(T(§)),
which ends the proof of the claim.

15



Now Eq. (3.5) yields

R.. (&) = R,(I+95)7"

v=0
= R, (Z - @TkRzn)
v=0 k=1
- Rzn + Rzn ( - ngkRzn> .
v=1 k=1

Since Y o || — &TkR., || < 1, then by Proposition 2.2 (ii) (a) we get

R, (§) = Ry, +R.> > Y  (=&TR.,) (=,TuR.,) - (=&, TiRz,)

=1 k=l i1+io+--+i;=k

= R, +R., > > Y (-D'&& & ThR., TuR., - T,R.,

=1 k=l i1+i2+~~~+il:k
o
= ZRZn,l (5)7
=0

where
R, 0(&) =R, = (To— 2z,0)7 "

Ro(€) =D > &&n-& Ry TR, TR, - TyR.,, VI>1

k=l i1+ig+--+ij=k

(77) By the fact that ||R,, || < M, and ||[TxR., || < a,, for every k > 1 (see Eq. (3.4)) and
using Proposition 2.1 (ii) (b), the following estimations hold

IR 0O < MDY > ablél €l 16

k=l i1+’i2+~~+il=k‘

k=l i1+io+-+i=k
< Myuag(7(6)),

for every [ > 1. This implies that
|R., (O < My(an7(€))!, for every 1> 0. Q.E.D

Consider the operator A(e) := Ay + €Ay 4+ e?Ay + *A3 + - + " Ay + - -+ defined in
Corollary 3.1. Analogously, let A, be the isolated eigenvalue number n of the operator Ay
with multiplicity one, d,, = d(\,, 0(Ag) \ {\n) : the distance between A, and o(Ap) \ {\.}

16



and C, = C(/\~n, 7n) : the closed circle with center X, and radii 7, = %. Denoting by M,,
.7\7n and «,, the following numbers

M, == max || (Ao — z.1) '],

zZn€Cn
N,, := max ||Ag(Ap — zn])_1|| = max || + z,(A4p — zn[)_1||,
Znec'n, ZnGCn
= aM, + bN,),

we can see the following result.

Corollary 3.2 Suppose that the assumptions of Corollary 3.1 hold. Let R, () = (A(e)—
2,1)7! denote the resolvent of A(e) at z, € C,. If || < ﬁ;dn, then:

(i) the operator R, (¢) can be developed into an entire series

RZH(E) = Rzn,o + 5R2n,1 + 52}?%2 + i+ gl}?zml 4+

where
Rzn,O = R (AO_Z’VZ ) !
k
R, = Y (1" > R, AR, AR, - AR, VI>1 (36
1=l i1+io+-+i=k
(17) we have
HRzan < Mndn(q +a,)"t, for every 1> 1. o

Proof. (i) Let & = e*¢"* !, Ty = Ay and T}, = qk%l Ay, Yk > 1. In view of Proposition
3.1, we obtain

= R Z Z Z 521512 e f’L Rzn Tlil Rzn Tzigézn e Elézn
=1 k= lz1+12+ =k ~ - ~
N il S A R. A.R. AR,
l:l k=l i1+io+-+iu =k q q q
= Rzn -+ Z 1)l Zéfk Z Rzn A“Rzn AZ?RZn e Aizﬁzn
=1 k=l i1+io+-+i=k
) k
=R, +> #Y (-1 Y R, AyR., AyR. - AR,
k=1 =1 i14io+-+i=k
=D R
k=0
where
Rzn 0= Rzn (Ao — Zn[) 1
k
Rzn,k = Z(—l)l Z Rzn Aillfizn Aigézn te Ailéznu v k? Z 1.
=1 1141444 =k



(4i) In view of Eq. (3.2), we get ||AxR., || < ¢"'a,. So, by Lemma 2.2 (ii) we have for
every k > 1

1Rz, il < Z > Mu(q" ) (¢ ) (g7 )

=1 iy +io+-+ij=k

k ~ N\ !
<med S ()
=1 t1+io++i;=k q
<y (7 ) >
=1 i1+io+-+i =k
~ ~ \ k-1
q q
< MO%(Q"‘O%) o

Q.ED

Remarks 3.1 (i) Notice that Corollary 3.2 improves [15,p. 133]. Indeed, in [15], B. Sz.
Nagy has proved that the resolvent R, (¢) of A(e) at z, € C, can be developed into an
entire series without giving the explicit expression of the coefficients of this series. Besides,
he has given the estimation of these coefficients by comparing them to those of an other
series. The main novelty here, is that we give the explicit expression of the coefficients
(R, x)k>1, which allows us to estimate them.

(1) Proposition 3.1 extends [15, p. 133] since in our considerations, we deal with a non-analytic
perturbation including more than one parameter, whereas in [15], B. Sz. Nagy has dealt
with an analytic operator with one perturbation parameter €. &

Having obtained these results, we are now ready to investigate under the spectral prop-
erties of the perturbed operator T'(§). In that line our first result asserts:

Theorem 3.2 Assume that hypotheses (H1)-(H3) hold. Let p, (respectively, ¢}) be an
eigenvector of Ty (respectively, T : the adjoint of Ty) associated to the eigenvalue \,
(respectively, \,) such that ||p,| = ||@%l| = w. and ¢’ (p,) = 1. Then, the following
assertions hlod.

(0) If 7(¢) < m, then T'(&) has a unique point \,(§) of its spectrum in the
netghborhood of X\, and this point is also with multiplicity one,

(i1) If 7(&) < m, then the eigenvalue A, (&) can be developed into a series

An(§) == An + An1(€) + An2(§) + -+ Ani(§) + -+,

where
i—1

Ai(€) =D bni(§) cnia(€) for all i > 1,

=0

18



with

bn,[)(g) = ]-7
bi(€) = Y, >, BBy By VI

k=l i1+io+---+i;=k

B = —on (Par(&en), VE=>1,
Parl®) = o [ Beunl®) dene ¥ 21 (3.7
(&) = @ (Bua(©pn), Y k=1,
Buale) = % [ M Ra(@) e ¥ k21,

and (R, 1(§));>, is defined in Eg. (3.3),

(1ii) We have

M (L= aur(©) [ (wraMacr(©)) A
)] < e Co0rO) (( rnenrd)) —<am<€>>>, Vis1

&

Proof. (i) Let P,(§) (resp., P,) be the spectral projection of T'(§) (resp., Tp) correspond-
ing to the eigenvalue A\,(&) (resp., A,) and R, (§) (resp., R,) the eigenspace for A, (€)
(resp., A,). In view of Proposition 3.1, we have

-1

Pn - Rz d n
© =5 | RO 2
-1 ©
- 5 2z z d n
omi ). (Rn +;Rn,k<§>> 2
= Pn + ZPn,k(g)a
k=1
where
-1
B == > 1.
n,k(&) 2 /cn Rzn,k(g) dZn, vV k =
Since

1
PO < 5= [ WO d < (07O

19



then, for 7(¢) < m we have

||Pn(§) - Pn” =

< D lIPa(©)
k=1

ZrnMn(anT(g))k

rnMnanT(g)

S 1 - O{nT(f)
< 1

IN

Consequently, dim R,,(§) = dimR,, = 1. So, T'(¢) has a unique eigenvalue A\, () in C,, for
T(§) < m Moreover, A, (§) is with multiplicity one.

(1) Let
__ B©en
o R
be an eigenvector of T'(£) associated to the eigenvalue A, (§). We have
_n = N ( n( )
e - 3
5 (¢n(E))
wn (T(€ ) n(§) = Angn(§))
2 (#n(6))
_ P (T(E) = M) Pu(§)en)
B ©3(Pa(§)en) 39
Since ¢} (P,on) = ¢5(pn) = 1, then Eq. (3.8) implies that
oy ¥ ((T'(€) = M) Pa(§)n)
) A G ((P©) ~ P &9
Or, for 7(§) < m we have
ln ((Pa(€) = Po)en)ll < llonll 1(Fa(€) — Pu)enl
< N2a(E) = Pull llnll 7l
rnMyo0,7(§) 2
S o)
< 1.
So,
1 - Vi B v
A Re) SV L BO P 610



On the other hand, we have

—1 -1
= 5%; CnZnR%AS)dZn—-An (i%g)lz;f%%(f)dzn
—1
= % cn(zn — )\n)Rzn(f) dzy,
-1 e
= i o, (RZ”+;RZ""“@> o
= G AR d +§: _—1/( —\)R., 1(6) d
— 27TZ c Zn n Zn Zn £ 27_[_2 c Zn n 2Zn,k Zn
k=1
where
—1
Bn k(f) 2_71'7/ e Zn — )\n>Rznk(£) dzn
Consequently, Egs (3.9), (3.10) and (3.11) imply that
An(§) = A = Z(_l)y [orn (Pa(§) — Pa)en)]” o, (ZBM )
v=0

= Z(—l)” (Z@Z(&A&)%)) Z@Z(Bn,z(f)son)
v =1

-0
v=0 \k=1 =1
Denoting by 8 = —¢f (Pox(€)en) . ¥V k > 1, we can easily check that if 7(§) < m,

00 0 N ) k
then Y 7, |Bk] < 1land )~ 0F < 400, where 57 = >, Zil+i2+---+il:k 1Bir | 1Bis] -+ 1Bal-
Hence, in view of Proposition 2.1 (ii)(b), we get

i(i—m k(€ ) anl

v=0 k=1

where b, (&) = 1, byu(&) = > py Zz‘1+i2+~--+il:k Biy Biy -+ B, VI > 1. So, using Eq.

(3.12) we get
— A= bni(€) Y enn(d)
=0 k=1

where ¢, £(§) = ¢ (Bug(&)en), V k> 1.By the Cauchy product of two series, we get

—Ap = i}n,i(g), where A, (¢ anl Cnii(
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(477) In order to estimate the coefficients (|\,;(£)|)i>1, we shall first estimate (|b,,(€)])i>0
and (|, x(€)|)k>1- Indeed, in view of Proposition 2.1 (ii)(b), we have for [ > 1

00 &) !
k=1

k=l i1+ig++i;=k

Since
1Bkl < Nl Pas (Ol Nlnll < wi Myr(anT(€))F, VE > 1,

w2 M, rpo,(€) !
o) < (BB sy

we obtain

As b,0(€) =1, we get

w2 M0, 7(€) :
|bn,l(§)|§( e (® > , VI>0. (3.13)

On the other hand, we have for [ > 1

1
a1 < WelBaOl ol <5 | [ oo = A Rea(©)dn| < rbt(cnr(E).
Cn

(3.14)

Consequently, combining Eqgs (3.13) and (3.14), we get

i—1

Ma(©l < D [baa(©)] lenizi(©)]

AN
E
RS

&,
i
>
Q
3,
v@
¥/N
o
3
\]
o
1

Regarding that M, > ;- and w; > 1, we obtain 1 — w:M,r, < 0. So, 7(§) # (1 -

w2 M,r,). Hence, % # a,7(€) and then we get
w2ry MponT ¢ %
L, (#hzptteoer©) — (a,7(¢))
‘)\nyi (f)’ S wnrnMnaTLT(g) WQTnMnanT(f)
ety — a7 (§)
2 o 2 7 4
S wnrnMn (1 Oé;ﬂ'(é)) (wnTnMnanT(g)) . (CYnT(g))Z .
a,7(&) — 1+ wir, M, 1 —a,7(§)
QE.D

We have the analogue of Theorem 3.2 if we consider the analytic operator

Ae) = Ag+eA, +e2 A+ + P AL + - -
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Corollary 3.3 Suppose that the assumptions of Corollary 3.1 are satisfied. Let @, (respectively,
oF) be an eigenvector of Ag (respectively, A§: the adjoint of Ay) associated to the eigenvalue

An (respectively, N,) such that ||@nl| = @] = @n and $*(@,) = 1. Then:
1
of A\ and this point is also with multiplicity one,

(i) for |e] < A(e) has a unique point \,(€) of its spectrum in the neighborhood

(@t) if |el < m, then \,(€) can be developed into an entire series
5\n(g) = 5\n + gj\n,l + 525\%2 4+ 4+ E:kj\n,k 4+

where

T
L

Mok =Y bni Copin, forall k>1,

I
o

with

k
bk = Y (=D' > By By By ¥V k=1,

=0 i1+tig+-+i=k

B = @ (Pustn). ¥ k21,

. 1 .

Pup = =— [ R, pdz, ¥V k>1, (3.15)
2T Jo,

b = @ (Buin), ¥ k21,

. -1 .

Bux = — | (zo—M)R. 1 dzn, ¥V k>1,
2w Ja, ’

and (Rznk> is defined in Fq. (3.6).

k>1

(1i1) we have

—

i ((q -+ G+ G2 MaG) ™ = (g + @) ) forall k=1, (3.16)

&

n,k| S (Z}if

Proof. (i) The result is an immediate consequence of Theorem 3.2, it suffices to take
To = Ao, Tp, = qk%l Ay and &, = e¥¢"1, VE > 1. In this case, we have

1
q+n 4+ Mpén

(&) = 1JT‘5‘q < dn(1+1ann) if and only if |¢] <

(i1) Let P,(¢) (resp., P,) be the spectral projection of A(e) (resp., Ag) corresponding to
the eigenvalue A, (¢). Consider @, (g) = —2(&)en
~ (&5 (Pa(e)$n)]2
the eigenvalue \,(¢). Making the same reasoning as the one in the proof of Theorem 3.2
(1), we obtain

an eigenvector of A(e) associated to

IR ((A(e) = Aul) Pu(e)n)

n\&) — An

(3.17)

1+ @Z((ﬁn(g) - Pn)@ﬂ)



If || < + we have ||@%((P,(¢) — P,)@n)| < 1. So,

1 v | =x - S
e T~ 2 A (B - a)

¥ (z —sw;;(ﬁmm) |

v=0 \k=1

Since > o, |eFor (Pnkgén) < 1, for |g] < m, we get in view of Proposition
2.1 (i),
oo o
5 (Z o nk%)) Z@ » (3.18)
v=0 \k=1

where 0,0 =1 and Bnk’ = 25:1(_1)1 Zi1+i2+-~+il=k Biy Biy -+ Bi, and By = &, (pnk@n> )
Vk>1.

On the other hand, in view of Corollary 3.2 and proceeding as in Theorem 3.2, we get

—1

n_:\n ~z dn, k?>1
27mc( Ve dzn, V2

(A(g) - :\nl> P ( Z B, 1, where B, =
So we deduce that,
Pn ((A(€) - 5\n1> P.(e)¢ ) Z €"Cp, where ¢, = @r (Bmk@n) , VYk>1. (3.19)

Consequently, Eqgs (3.17), (3.18) and (3.19) yield

o0 0 9] k—1

_ § : kT § : k~ _ § : kY 3 _ 7 ~

= S bn,k ECpk = 9 )\n,k; where )\n,k = bn,i Cnk—i-
k=0 k=1 k=1 =0

(74i) We have

k
bkl <D Y 1Bl [Bul 18-

=1 i1+io+--+i;=k

Or,

|8k = < @2 Myl (q 4 G )2

Hence,
. . k
bkl < @pFAMadn Y Y (g F ) TN g )P (g )

=1 i1+ig+-+i;=k
k

< @ My, > (gt an)t!
1=1 iy +ig+-+iy=Fk
. k 1
< D Myl (q + ) Ty > oL
=1 4T On i1+iot-+i =k



Using Lemma 2.2 (ii), we deduce that

< 2P Myyéin (14 ¢ 4 éy,) 2 (3.20)

On the other hand, we have

< D272 My éin (g + Gn)* 1 (3.21)

@Z (Bn,k)@n>

|5n,k| S

Consequently, Eqgs (3.20) and (3.21) imply

k—1
|)\n,k| S Z |bn,i| |En,k—i’
=1
~ k-1 ~ i—1 .
< G MRA? (q + &, + wnanno?n> (q+ @)
=1
~ N N
(e G+ @RALG) T — (g + )
< GARMG: E—
WATy My 0t
~ - k—1
< 02 My, ((q + Gy + wiannan> —(q+ dn)k1> .

Q.ED

Remarks 3.2 (i) As in [15,p. 136], we prove that the eigenvector Xn(s) of A(e) can be
developed into an entire series. The main contribution here is that we give the explicit
expression of the coefficients (A, )i>1, which enables us to estimate them; whereas in [15)],
the author has given the estimation of these coefficients by comparing them to those of an

other series. This approach can’t be applied if we consider the non-analytic operator T(§).

(1) Its is clear here that Theorem 3.2 is more general than [15,p. 136] since we deal with
a non-analytic perturbation including more than one parameter. &

Now, setting ¢, (£) an eigenvector of T'(§) associated to the eigenvalue \,(§), we prove
the analogue of Theorem 3.2 for ¢, (¢).

Theorem 3.3 Assume that the hypotheses (H1)-(H3) hold. Let p,, (respectively, ;) be

an eigenvector of Ty (respectively, T : the adjoint of Ty) associated to the eigenvalue A,
(respectively, \,) such that ||p,| = ||@k|| and ©%(pn) = 1. Then, for 7(§) < m
we have: !

(1) the eigenvector v, (&) can be developed into a series
Son(g) = Pn T+ (Pn,l(g) + ¢n,2(€) +ot @n,z(g) +-
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where

( i
Pni(€) Zdnk Poiw(&)pn, Vix1
dn,O(g) = 10’0
dns(§) =) Ol,% Yo Ve VU1,
k=l i1+ig+tij=k
(0= (Pai(§) @n), ¥V 121

and (P, 1(§)),>, is defined in Eq. (3.7).

(1) the coefficients (pn,i(§));5, satisfy

lons(©)]] < ——arn [(“iT"M"“"T@) - <anr<5>>i] .

w2r, M, — 1+ a,7(§) 1 —a,7(§)
&
Proof. (i) We have
I A
#@) = E©w
= [0a(Pu(©)pn)] 2 Pul€)pn
= (14 G((Pal€) = P)ea)) 2 S Pui(€)pn,
=0
where (P, x(€))k>1 is defined in Eq. (3.7). Since for 7(§) < m, we have
lgn((Pa€) = P)pw)]l <1 then
(1+ o ((Pal€) — )7 = ZC”, 0% (Pa(€) = P)gn)]” -

So,

Son(g) = ZCV Qon n anl
= ZC% (SOZ (Z&k(é)%)) ZPn,z(é)son. (3.22)

Setting v, = ¢! (Pox(§)pn), ¥V k > 1, we can easily check that if 7(§) < m,

then Zk 1kl < 1and Zk oYk < +00, where y; = Zl 1 Zi1+i2+---+il:k Vil [¥ial = 1y
Consequently, in view of Theorem 2.1 (i), we get

ZOV <Zson i gon> )
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where

dn70 (g) = 17

§) = Cl_%z Z YirYis * Vi V12> 1

k=l di1+is+-+i;=k

By the Cauchy product of the two series we get

where
Pn, 0(5) = 90717

Spnz Zdnk nz k )Sony \V/ZZI

<3, Vw>1, then for every [ > 1 we have

(#4) Since ‘Cﬁl

2

%Z Z Vi | [l v

k=l i1+io+-+i=k

Denoting that for all [ > 1

il = 195 (Pas(€) @n)| < wirnMy (anT (€)'

we get in view of Proposition 2.1 (ii)(b),

N | —

|dni(§)] < Z Yo (WM (T ()
=l

i1+i94-- -Hl k

< UMY S (e

k=l i1+io+-+i=k

< % (wiry M,,)! (Z (om(é))’“)

k=1
Lo ! a7 (§) :
< emn (72500)
Hence,
l
|dni(€)] E% (wilri‘]\i’gzg@) , forall 1>0. (3.23)

On the other hand, we have
| Pri i (€)onll < wnrn My, (am(€))F, Vi >1 and Vk > 0. (3.24)
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Consequently, Eqgs (3.23) and (3.24) imply that for all ¢ > 1

leni(E) < Zldnk M- (&)l

(AN
VR

zgw
==
|3
o |2
502
A s
s pul

o
~__
&

3

3

3
=
Q

3
pul
o

1

-

IN

&

3

<

3

=

7 N
&
SN
=
3
=
o
3
pug
2y
S~—
N———

)

3

P

a2y

S~—

~
-

= 1 —a,7(§)
wi3r2 Mo, 7(€) ! W2r, Mo, 7(€) bl ik
< e L (args) o e

Now, making the same reasoning as the one in the proof of Theorem 3.2, we have
%’M # a,7(§). So, Eq. (3.25) yields for every i > 1

1— anT

w%rnMnanq—(g) @ i
W?zTngOZnT(f) ( 1—an7(§) ) —(anT(f))

1 —a,7(§) w%gn_fg::é(rg(&) — a,7(£)

S ( (@Y
< anT(€) — 14 wr, M, (( 1— ant(€) ) — (an7(8)) ) .

leni( <

Q.ED

Let us consider the analytic perturbation A(e) (see Eq. (1.1)) and let @,,(g) be an eigen-
vector of A(e) associated to the eigenvalue A, (¢). Then, we can see the following result.

Corollary 3.4 Suppose that the assumptions of Corollary 3.1 are satisfied. Let @, (respectively,

oF) be an eigenvector of Ag (respectively, A§: the adjoint of Ay) associated to the eigenvalue

1

. (respectively, A n) such that ||| = |@%|| and 5 (P,) = 1. Then, for |e| < PRV TE T

we have:
(i) the eigenvector ¢, (g) can be developed into an entire series

Pn(€) == Pn + EPn1 + €2g5n,2 4+ 4 5’“@7% SE
where

@nz- Zdnk n,i— k@n, VZ>]—

nk_Ck Z Z 711712""71'1) v /fZl,

=1 d1+io+-+i=k

Ak = 05(Puk @n)y ¥V k>1
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and (]Snk> is defined in Eq. (3.15).
k>1
(#7) the coefficients (Pn,i);s, satisfy

(4 @ + @27 M0in) = (a4 )’

o 3.26
¢+ (3.26)

|Bnill < FnMyd,

Proof. (i) We have

Making the same reasoning as the one in the proof of Theorem 3.3 and using Theorem
2.1, we get

(14 8B~ Pop) =D

where

Jmk - Z Cl_% Z 5/2'1;?732 o ':Vila vV k> 1,
=1 i1+ig+-+i=k

Ve =5 (Pag @), V k>1,

- -1 .
Py ==— | R, 1dz,, V k>1.
\ 227’( C~n ’

So, we have
@n(g) = ngdn,k ngpn,kgan = Zei@n,ia
k=0 k=0 =0

where
Qpn,O = Pn,

an,z’ = Zdn’k Pn,i—k@n; Y 1 2 1.
k=1

(77) We have

dn,k

k
= >l Fal Al Y k=1

=1 d1+iz+--+u=k

Since i
k] < @27 My (q + @)t ¥V k> 1,
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then using Lemma 2.2 (ii)(b) we deduce that for all £ > 1

k
~ l
dogl < 3 (@2Fhdn) DD (g )

=1 irtig i =k
k N l
Wy, T My, 00,
< —i—ozn 1
= ;(qﬂrn)..z.
=1 i14ig+-+i =k
o~ o o~ N\ k-1
~ \k wzrnMnOén wgrnMnan
< (g+an) - 1+ -
- - k—1
< @ ldin (g4 G+ 02 Mol ) (3.27)

Noting that

\ p

n,k

‘ < P M (q + a,)" Y, VE > 1,

we get in view of Eq. (3.27) that for all i > 1,

: 5 k—1 )
I@nil < w2r2M2a2 37 (q+ do + G2alldn) g+ )
k=1

WIr2 M2a2 & ~ k=1 ik
< mninn < + a, +¢D2ann&n> +a,)”
k=1
< wAr2 M2a? (q + an + @%ann&n> — (g +dn)'
T q+ay Q27 My,
(g G+ @ITG) (g4 Ga)'

q+ap,

Q.ED

Remarks 3.3 (i) In Corollary 3.4, we give some supplements to [15,p. 136]. Indeed, in
[15) has proved that the eigenvector M, (¢) of A(e) can be developed into an entire series of
e and he has given the estimation of the coefficients (Pni)i>1, by comparing them to those
of an other series. In our considerations, we estimate the coefficients (pn;)i>1 by means
of their expression. The obtained estimations are more precise than the one given by B.
Sz. Nagy since Eq. (3.26) implies that

(a+ dn + @27 i )

IN
<

n,t nMndn ~
[[on,il o

IN
I

M (q+an—|—w rnM ozn>

IN

wnrnM (q +a, +w TnM ozn> )
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(17) Theorem 3.3 extends [15,p. 136] to a new type of perturbed operator depending on
many parameters. This new situation is much wider in the scope of applications. &

4 Application to a Gribov operator

In this section, we consider the Gribov operator Hy» v, » defined in Eq. (1.7).
Let S, Hy and H; be the operators defined by:

S:DS)CE—EFE
p — Sp(z) = A% A%(2)
D(S) = {¢ € E such that Sy € E},

Hy:D(H) CE— E
p — Hop(z) = A"Ap(2)
D(Hy) = {¢ € E such that Hyp € E'}

and

H :DH)CE-—E
p — Hip(z) = A"(A+ A") Ap(2)
D(H,) = {p € E such that Hyp € E}.

Remark 4.1 Due to [10, Lemme 3 p. 112], Hy is a self-adjoint operator with compact
resolvent. Moreover, {e,(z) = \j—%}j’o is a system of eigenvectors associated to the eigenvalues

{n}. So, the spectral decomposition of Hy is given by:

Hy = Zn(.,en)en. ¢
n=1

Let G = HJ. So, G is defined by

(G DG)CE—E

o — Gp=> n*p en)en

n=1

D(G) = {@ € F such that Zn6|<g0,en>|2 < oo} :

n=1

\

The expression of Hy» v, » becomes then:
H)\vvy)\/’M’)\ = NG + )\,S + ,uHO + l)\Hl
Regarding [10], we can see the following result:
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Proposition 4.1 We have the following assertions:

(1) G is a closed linear operator with dense domain.

(17) The resolvent set of G is not empty. In fact, 0 € p(G).

(i13) G is a self-adjoint operator with compact resolvent.

(iv) The eigenvalues of G are simple and isolated. &

Let Ty := N"G, D = D(S)ND(Hy)ND(H, ) and T} (respectively, T, and T3) the restriction
&

1+2f) —2——H;) to D, where ¢ = H
operators (Tx)1<k<3 have the same domain D and we have D(Tp) C D

. Hence, the

of \”S (respectively, A H, and

Moreover, the operator Hy» v, » can be written as:
Hy» xrpuxn = To + & + T + §3T5,

N c (142v/2)cA
where §; = §5, & =% and & =5

The first result of this section is formulated in the following proposition.

Proposition 4.2 The operators (T})1<k<3 satisfy the following estimation
[Thell < allell + bl Toell,  for all ¢ € D(Ty),
where a:% and bz%. &
Proof. Due to [4, Lemma 4.1, (ii)], we have
IS¢l < IGll* flgll*, for all p € D(G).
Using Young’s inequality, we obtain

1 9
S| < 3 ol + 3 |Gel, for all p € D(G).

Hence,

7

A 2
1Tl < - llell + 5 1 Topll, - for all o € D(To).

Moreover, we have

%
3
\Hosou—(an,en ) (Zn (¢, en) ) < |

Taking into account Cauchy Schwartz’s inequality, we get

for all cpED( 0%>

4.1)

32 3 3
|Hée| = (Hiw. Hi o) = (Hp.0) < IHZNGN,  forall €D (H}).
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So, Eq. (4.1) together with the fact that D (HJ) C D (Hé) yield
[ Hopll < [1Hgell2 [lollz, forall p € D (H;). (4.2)
On the other hand, since 0 € p(Hy), we get for ¢ € D (HS’)

1 1
|E3ell* llelt = H ) w1 el

Consequently, Eqgs (4.2) and (4.3) imply that

IN

1H390H3 5. (4.3)

[Hopll < c||H3o|® lloll5, forall p € D (HS),

where ¢ = H (Ho_l)sH * . Now, using Young’s inequality, we obtain

c 2
1Hopll < gllell + 5 ¢ IGell, for all g € D(G).

Hence,

7

A
1T2p|| < — Hs@H + = 1Togl], forall ¢ € D(Ty).

Now, let us prove the third inequality. In view of |7, Proposition 6.3|, we have
3
|Higll < (1+2v3) |[H]|, forall g€ D (H).

Making the same reasoning as above and using Young’s inequality, we infer that for
¢ € D (Hy)

IN

Il < (1+2v2) c gl ol
1 2
5 (1+2v2) loll + 5 (1+2v2) el il

Consequently, we have

7

A 2
ITsell < 5 llell + 5 [[Togll,  forall ¢ € D(Ty).
Q.E.D
Proposition 4.3 If 7(§) < %, then the operator Hy» v, x is closed. &

Proof. The result is an immediate consequence of Theorem 3.1, Propositions 4.1 and
4.2. Q.E.D

Now, we are in position to state the objective of this section.
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Theorem 4.1 (i) For 7(§) enough small, the operator Hy» y .\ has a unique point A\, (§)
of its spectrum in the neighborhood of N, = n® and this point is also with multiplicity one.
Moreover, A\, (§) can be developed into a series

M(€) =12 4+ X1 (&) + Mn2(€) 4+ oo + XNni(§) + .

(13) Let @, be an eigenvector of Ty associated to the eigenvalue \,. Then, setting p,(§)
an eigenvector of Hy» v, associated to the eigenvalue A\, (&), we have for & enough small
©n(&) can be developed into a series

Son(g) =en + @n,l(g) + Son,2<£) + .+ (pn,z(é) + ... <>
Proof. The result follows from Theorem 3.3, Propositions 4.1, 4.2 and 4.3. Q.E.D
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