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Abstract

The purpose of the present paper is to formulate some new supplements to
perturbation theory of linear operators [15] by considering a non-analytic perturbation
involving more than one perturbation parameter. An application to a Gribov operator
in Bargmann space illustrates the mathematical problem involved in this paper.
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1 Introduction

Perturbation theory of linear operators has been pioneered by L. Rayleigh [16] and E.
Schrödinger ([18] and [19]) and is the object of many researches until now [12]. In [16],
L. Rayleigh has given a formula for computing the natural frequencies and modes of
a vibrating system deviating slightly from a simpler system which admits a complete
determination of the frequencies and modes. Mathematically speaking, the method was
equivalent to an approximation solution of the eigenvalue problem for a linear operator
slightly di�erent from a simpler operator for which the problem is completely solved.
E. Schrödinger ([18] - [19]) has developed a similar method, with more generality and
systematization, for the eigenvalue problems that appear in quantum mechanics. Later,
T. Kato [13] and F. Rellich [17] have been mainly concerned with the regular perturbation
of self-adjoint operators on a Hilbert space, while some attempts have also been made
towards the treatment of non-regular cases which are not less important in applications.
Another generalization of the theory has been given by B. Sz. Nagy [15]. By his elegant
and powerful method of contour integration, he has been able to transfer most of the
theorems for self-adjoint operators to a wider class of closed linear operators in Banach
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space. More precisely, let A(ε) be a perturbed operator on a Banach space X, depending
on a complex parameter ε as a convergent power series

A(ε) := A0 + εA1 + ε2A2 + · · ·+ εkAk + · · · , (1.1)

where ε ∈ C and A0, A1, A2, A3... are linear operators on X, having the same domain D
and satisfying the relative boundedness condition

‖Akϕ‖ ≤ qk−1(a‖ϕ‖+ b‖A0ϕ‖) (1.2)

for all ϕ ∈ D and for all k ≥ 1, with a, b, q > 0. Among basic results already obtained by
B. Sz. Nagy [15], we focus our attention on the following:
(i) The series

A0ϕ+ εA1ϕ+ ε2A2ϕ+ · · ·+ εkAkϕ+ · · ·

converges for all ϕ ∈ D and for all |ε| < q−1. Setting A(ε)ϕ its limit, we have A(ε) is a
linear operator with domain D.
(ii) If A0 is closed, then A(ε) is also closed, for |ε| < (q + b)−1.
(iii) Suppose that the unperturbed operator A0 has an isolated eigenvalue λn with mul-
tiplicity one. Then A(ε) has a unique eigenvalue λn(ε) in the neighborhood of λn for
su�ciently small |ε| and this eigenvalue can be expanded into a convergent series

λn(ε) = λn + ελn,1 + ε2λn,2 + · · · .

Moreover, the eigenvector ϕn(ε) of A(ε) corresponding to the eigenvalue λn(ε) depends
analytically on ε near 0 :

ϕn(ε) = ϕn + εϕn,1 + ε2ϕn,2 + · · · .

Here ϕn is an eigenvector of A0 corresponding to the eigenvalue λn.

Later, the basis of eigenvectors property was con�rmed for the operator A(ε) in order
to describe the radiation of a vibrating structure in a light �uid and to study strong
interactions in the context of Reggeon theory (see [3], [6], [7], [8] and [11]). After that
[5], it has been proved that the family of exponentials associated to the eigenvalues of
the operator A(ε) forms a Riesz basis. This result was of importance for application to a
non-selfadjoint problem deduced from perturbation method for sound radiation.

We now ask what conclusions can be drawn if we consider a more general type of
non-analytic perturbation involving more than one perturbation parameter?
Indeed, we investigate under this question and we give new variants to B. Sz. Nagy's
results [15]. To this end, we consider the operator

T (ξ) := T0 + ξ1T1 + ξ2T2 + · · ·+ ξkTk + · · · (1.3)

where ξ = (ξk)k≥1 is a sequence of complex numbers such that τ(ξ) =
∑∞

k=1 |ξk| < ∞,
T0 is a closed linear operator on a Banach space X with domain D(T0) and (Tk)k≥1 are
linear operators on X, having the same domain D such that D(T0) ⊂ D and

‖Tkϕ‖ ≤ a‖ϕ‖+ b‖T0ϕ‖, for all ϕ ∈ D(T0), (1.4)
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where a, b > 0. We emphasize on the fact that under those considerations, we give an
essential improvement to the results developed by B. Sz. Nagy [15] since we deal with a
non-analytic perturbation involving more than one perturbation parameter and covering
cases where the results developed in [15] can not be applied.

Based on the analysis started in [15], we study the behavior of spectral properties of T (ξ).
More precisely, we prove that:

(i) The series

T0ϕ+ ξ1T1ϕ+ ξ2T2ϕ+ · · ·+ ξkTkϕ+ · · ·

converges for all ϕ ∈ D(T0). If T (ξ)ϕ denotes its limit, then T (ξ) is a linear operator with
domain D(T0). Moreover, T (ξ) is closed if τ(ξ) < 1

b
.

(ii) Let λn be the eigenvalue number n of T0. If λn is isolated with multiplicity one, then
for τ(ξ) enough small, T (ξ) has a unique simple eigenvalue λn(ξ) in a small neighborhood
of λn. Setting ϕn(ξ) an eigenvector of T (ξ) associated to λn(ξ), then one can develop λn(ξ)
and ϕn(ξ) into series:

λn(ξ) := λn + λn,1(ξ) + λn,2(ξ) + · · ·+ λn,i(ξ) + · · · (1.5)

and

ϕn(ξ) := ϕn + ϕn,1(ξ) + ϕn,2(ξ) + · · ·+ ϕn,i(ξ) + · · · . (1.6)

Notice here that if in particular we take ξk = εkqk−1 and Tk = 1
qk−1Ak (k ≥ 1) in Eqs

(1.3) and (1.4), we recognize the B. Sz. Nagy's perturbation model of linear operators
(see [14]-[15]). Moreover, we regain the spectral study of the operator A(ε) (see Eqs (1.1)
and (1.2)) investigated in [15]. The main novelty in this paper is that we give the exact
expressions of the coe�cients (λn,i)i≥1 and (ϕn,i)i≥1 in Eqs (1.5) and (1.6) (see Theorems
3.2 and 3.3).
The key tool here was the following equalities,

∞∑
n=1

an

(
∞∑
k=1

sk

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

si1si2 · · · sin

and
∞∑
n=1

an

(
∞∑
k=1

Ak

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

Ai1Ai2 · · ·Ain ,

where (ak)k≥0 is a complex bounded sequence and (sk)k≥0 (resp., (Ak)k≥0) is a complex
sequence (resp., is a sequence of bounded linear operators in a Banach space) satisfying
some convergence conditions (see Section 2).

To illustrate the applicability of the abstract results described above, we consider a
Gribov operator in Bargmann space (see [1], [2], [9] and [10]) originated from Reggeon
theory. This theory was introduced by V. N. Gribov [9] in 1967 to study strong interac-
tions, i.e., the interaction between protons and neutrons among other less stable particles.
It is governed by a non-selfadjoint Gribov operator constructed as a polynomial in the
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standard annihilation operator A and the standard creation operator A∗, de�ned in the
Bargmann space:

E =

{
ϕ : C −→ C entire such that

∫
C
e−|z|

2|ϕ(z)|2dzdz̄ <∞ and ϕ(0) = 0

}
.

More precisely, we deal with the operator

Hλ”,λ′,µ,λ := λ”(A∗A)3 + λ′A∗2A2 + µA∗A+ iλA∗(A+ A∗)A, (1.7)

where λ”, λ′, µ and λ are real numbers. The Bargmann space E is a Hilbert space for the
scalar product 〈., .〉 de�ned by 〈., .〉 : E × E −→ C

(ϕ, ψ) −→ 〈ϕ, ψ〉 =

∫
C
e−|z|

2

ϕ(z)ψ̄(z) dzdz̄,

and the associated norm is denoted by ‖ . ‖.
The annihilation operator A and the creation operator A∗, are de�ned by:

A : D(A) ⊂ E −→ E

ϕ −→ Aϕ(z) =
dϕ

dz
(z)

D(A) = {ϕ ∈ E such that Aϕ ∈ E}
and 

A∗ : D(A∗) ⊂ E −→ E
ϕ −→ A∗ϕ(z) = zϕ(z)

D(A∗) = {ϕ ∈ E such that A∗ϕ ∈ E}.

So, the expression of Hλ′′,λ′,µ,λ becomes

Hλ′′,λ′,µ,λ := λ′′z3
d3ϕ

dz3
(z) +

(
(3λ′′ + λ′)z2 + iλz

) d2ϕ

dz2
(z) +

(
iλz2 + (λ′′ + µ)z

) dϕ

dz
(z).

Regarding the aforementioned theoretical part, we give a characterization of the spectrum
of Hλ′′,λ′,µ,λ.

The paper is organized as follow: in Section 2 we develop some preliminary results for
future use. Section 3 constitutes the main results of the paper. An illustrative application
to a Gribov operator in Bargmann space is the topic of Section 4.

2 Preliminaries

The objective of this section is to establish the equalities

∞∑
n=1

an

(
∞∑
k=1

sk

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

si1si2 · · · sin (2.1)

and
∞∑
n=1

an

(
∞∑
k=1

Ak

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

Ai1Ai2 · · ·Ain ,
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where (ak)k≥1 is a complex bounded sequence and (sk)k≥1 (resp., (Ak)k≥1) is a complex
sequence (resp., is a sequence of bounded linear operators in a Banach space) satisfying
some convergence conditions.

To attain this goal, we shall �rst introduce the following technical results for future use.

Lemma 2.1 Let s = (sk)k≥1 be a sequence in C and s? = (s?k)k≥0 be the transformed
sequence given by

s?0 = 1, s?k =
k−1∑
ν=0

s?ν sk−ν , for every k ≥ 1. (2.2)

Then,

s?k =
k∑
l=1

∑
i1+i2+...+il=k

si1si2si3 ...sil , for every k ≥ 1. (2.3)

(Here 1 ≤ il ≤ k, for every l = 1, 2, · · · , k and k ≥ 1) ♦

Proof. Let us proceed by induction on k ≥ 1. For k = 1, the recurrence property is valid,
since s?1 = s?0s1 = s1 =

∑1
l=1

∑
i1=1 si1 . Suppose that the recurrence property is valid up

to the order k (k ≥ 1) and let's show that it remains valid to the order k + 1.
From the recurrence hypothesis and the fact that s?0 = 1, we get

s?k+1 =
k∑
ν=0

s?νsk+1−ν

= s?0sk+1 +
k∑
ν=1

s?νsk+1−ν

= sk+1 +
k∑
ν=1

(
ν∑
l=1

∑
i1+i2+...+il=ν

si1si2si3 ...sil

)
sk+1−ν

= sk+1 +
k∑
l=1

(
k∑
ν=l

∑
i1+i2+...+il=ν

si1si2 ...sil

)
sk+1−ν

= sk+1 +
k+1∑
l=2

 k∑
ν=l−1

∑
i1+i2+...+il−1=ν

si1si2 ...sil−1

 sk+1−ν

= sk+1 +
k+1∑
l=2

∑
i1+i2+...+il=k+1

si1si2 ...sil

=
k+1∑
l=1

∑
i1+i2+...+il=k+1

si1si2 ...sil .

This �nishes the proof of the lemma. Q.E.D

Remarks 2.1

5



1. For any �xed λ in C, let sk = λ, for all k ≥ 1. By an easy induction, we can show
that s?k = λ(1 + λ)k−1, for all k ≥ 1.

2. Due to (2.2), for any sequences s = (sk)k≥1 and t = (tk)k≥1 in C satisfying |sk| ≤ |tk|,
for all k ≥ 1, we have

|s?k| ≤ |tk|
?, for every k ≥ 0. (2.4)

♦

Lemma 2.2 For any �xed x and y in C, the following properties hold.

(i) If we set tk = yxk, for all k ≥ 1, then t?k = yxk(1 + y)k−1, for all k ≥ 1.

(ii)
k∑
l=1

yl
∑

i1+i2+...+il=k

1 = y(1 + y)k−1, for every integer k ≥ 1.

(iii)
∑

i1+i2+...+il=k
1 = C l−1

k−1, for every integers 1 ≤ l ≤ k and k ≥ 1.

(iv) Let s = (sk)k≥1 be a sequence in C. Suppose there exist λ > 0 and 0 < q < 1
λ+1

such

that |sk| ≤ λqk, for every integer k ≥ 1, then
∞∑
k=1

|sk| ≤
λq

1− q
,

∞∑
k=0

|s?k| ≤
1− q

1− q(1 + λ)
. ♦

Proof. (i) If tk = 0, for all integer k ≥ 0, it is clear that t?k = 0, for all integer k ≥ 1.
Assume that x and y are non zero complex numbers and let tk = yxk, for all integer k ≥ 1.
By induction on the integer k ≥ 1, let us show that t?k = yxk(1 + y)k−1 for all integer
k ≥ 1. For k = 1, the recurrence property is true since t?1 = t1 = yx. Suppose that the
recurrence property is valid to the order k (k ≥ 1), and let's show that it remains valid
to the order k + 1. By the recurrence hypothesis and Eq. (2.2), we obtain

t?k+1 =
k∑
ν=0

t?ν tk+1−ν

= tk+1 +
k∑
ν=1

yxν(1 + y)ν−1yxk+1−ν

= yxk+1 + xk+1y2
k∑
ν=1

(1 + y)ν−1

= yxk+1 − xk+1y2
1− (1 + y)k

y

= yxk+1(1 + y)k.

(ii) Due to (i) and Lemma 2.1, we get

y(1 + y)k−1 =
k∑
l=1

yl
∑

i1+i2+...+il=k

1, for every integer k ≥ 1 and every y in C.
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(iii) From (ii) and the binomial expansion formula, we have

k∑
l=1

yl
∑

i1+i2+...+il=k

1 =
k−1∑
l=0

C l
k−1y

l+1 =
k∑
l=1

C l−1
k−1y

l.

By identi�cation, it follows that∑
i1+i2+...+il=k

1 = C l−1
k−1, for every integers 1 ≤ l ≤ k and k ≥ 1.

(iv) Let (sk)k≥1 be a sequence in C satisfying |sk| ≤ λqk, for every integer k ≥ 1, where
λ > 0 and 0 < q < 1

1+λ
. Clearly,

∑∞
k=1 |sk| ≤ λ

∑∞
k=1 q

k = λq
1−q < +∞. Besides, |sk| ≤ |tk|,

for every integer k ≥ 1, where tk = λqk, for every integer k ≥ 1. By (i) and Remark 2.1,
(Eq. (2.4)), it follows that |s?k| ≤ |tk|? = λqk(1 + λ)k−1, for every integer k ≥ 1.

Thus,

∞∑
k=0

|s?k| ≤ 1 +
∞∑
k=1

|tk|?

≤ 1 +
λ

1 + λ

∞∑
k=1

(q(1 + λ))k

≤ 1 +
λq

1− q(1 + λ)

≤ 1− q
1− q(1 + λ)

.

Q.E.D

Now, let's recall the Fubini's absolute convergence inversion criterion.

Lemma 2.3 Let (Un,l)n,l≥1 be a double sequence in C satisfying:

(i) For every �xed integer n ≥ 1, the series
∑

l≥1 |Un,l| converge.

(ii) The series
∑

n≥1
∑

l≥1 |Un,l| converge.

Then, we can interchange the order of summation in a doubly indexed in�nite series:

∞∑
n=1

∞∑
l=1

Un,l =
∞∑
l=1

∞∑
n=1

Un,l. ♦

Having obtained these results, we are ready to prove Eq. (2.1) when (ak)k ≡ 1.

Proposition 2.1 For any sequence s = (sk)k≥1 in C such that τ(s) =
∑∞

k=1 |sk| < 1 and∑∞
k=0 |s?k| < +∞, where s? = (s?k)k≥0 is given by (2.2), the following properties hold.

(i)
∞∑
n=1

(
∞∑
k=1

sk

)n

=
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

si1si2 · · · sil .
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(ii) If
∑∞

k=0 |sk|? < +∞, then we have

(a)
∞∑
n=1

(
∞∑
k=1

sk

)n

=
∞∑
l=1

∞∑
k=l

∑
i1+i2+...+il=k

si1si2 · · · sil .

(b)

(
∞∑
k=1

sk

)l

=
∞∑
k=l

∑
i1+i2+...+il=k

si1si2 · · · sil , for every integer l ≥ 1.

(c)

(
∞∑
k=1

skz
k

)l

=
∞∑
k=l

( ∑
i1+i2+...+il=k

si1si2 · · · sil

)
zk, for z in C such that |z| < 1

and every integer l ≥ 1. ♦

Proof. (i) Setting

S =
∞∑
n=1

(
∞∑
k=1

sk

)n

−
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

si1si2 · · · sil .

By Eq. (2.3) and the fact that s?0 = 1, we can write

S =
∞∑
n=0

(
∞∑
k=1

sk

)n

−
∞∑
n=0

s?n.

Putting s0 = 0 and applying the Cauchy product formula of two absolutely convergent
series, we obtain after taking (2.1) into account,

S

(
∞∑
k=1

sk

)
=

∞∑
n=0

(
∞∑
k=1

sk

)n+1

−
∞∑
n=0

s?n

∞∑
k=0

sk

=
∞∑
n=0

(
∞∑
k=1

sk

)n

− 1−
∞∑
n=0

(
n∑
ν=0

s?ν sn−ν

)

=
∞∑
n=0

(
∞∑
k=1

sk

)n

− 1−
∞∑
n=1

(
n−1∑
ν=0

s?ν sn−ν

)

=
∞∑
n=0

(
∞∑
k=1

sk

)n

− 1−
∞∑
n=1

s?n

=
∞∑
n=0

(
∞∑
k=1

sk

)n

−
∞∑
n=0

s?n = S.

Hence, S (
∑∞

k=1 sk − 1) = 0. Since |
∑∞

k=1 sk| ≤
∑∞

k=1 |sk| < 1, it comes that S = 0.
Accordingly, we get

∞∑
n=1

(
∞∑
k=1

sk

)n

=
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

si1si2 · · · sil .

(ii) Assume that
∑∞

k=0 |sk|? < +∞. Due to (i), we have
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∞∑
n=1

(
∞∑
k=1

sk

)n

=
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

si1si2 · · · sil =
∞∑
n=1

∞∑
l=1

Un,l,

where Un,l = χ[|1,n|](l)
∑

i1+i2+...+il=n
si1si2 · · · sil , for every n, l ≥ 1 and χ[|1,n|] is the char-

acteristic function of [| 1, n |] = {1, 2, ..., n}.

For any �xed integer n ≥ 1, we have

∞∑
l=1

|Un,l| =
n∑
l=1

∣∣∣∣∣ ∑
i1+i2+...+il=n

si1si2 · · · sil

∣∣∣∣∣ < +∞.

Besides,

∞∑
n=1

∞∑
l=1

|Un,l| ≤
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

|si1||si2 | · · · |sil | ≤
∞∑
n=1

|sn|? < +∞.

Using Lemma 2.3, it follows that

∞∑
n=1

(
∞∑
k=1

sk

)n

=
∞∑
n=1

∞∑
l=1

Un,l

=
∞∑
l=1

∞∑
n=1

Un,l

=
∞∑
l=1

∞∑
n=l

∑
i1+i2+...+il=n

si1si2 · · · sil .

Hence, (a) holds.

Let z be a �xed complex number such that | z |< 1. Setting vk = zsk, for all k ≥ 1.
Clearly |vk| ≤ |sk| for every k ≥ 1. From Eq. (2.3), we have |vk|? ≤ |sk|?, ∀ k ≥ 1.

By the assumption, it comes that

∞∑
k=1

|vk| ≤
∞∑
k=1

|sk| < 1 and
∞∑
k=0

|vk|? ≤
∞∑
k=0

|sk|? < +∞.

So, while using (a), we obtain

∞∑
n=1

(
∞∑
k=1

vk

)n

=
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

vi1vi2 · · · vil =
∞∑
l=1

∞∑
k=l

∑
i1+i2+...+il=k

vi1vi2 · · · vil

i.e.,
∞∑
l=1

zl

(
∞∑
k=1

sk

)l

=
∞∑
l=1

zl

(
∞∑
k=l

∑
i1+i2+...+il=k

si1si2 · · · sil

)
,

for every z in C with | z |< 1.

By identi�cation, we infer that
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(
∞∑
k=1

sk

)l

=
∞∑
k=l

∑
i1+i2+...+il=k

si1si2 · · · sil , for every integer l ≥ 1.

Hence, (b) holds.

For a �xed z in C, with |z| < 1, let (wk)k≥1 be the sequence in C, given by wk = zksk, for
every k ≥ 1. Clearly, |wk| ≤ |sk| for all k ≥ 1. By Eq. (2.3), we get |wk|? ≤ |sk|?, ∀ k ≥ 1.

By the assumption, it comes that

∞∑
k=1

|wk| ≤
∞∑
k=1

|sk| < 1 and
∞∑
k=0

|wk|? ≤
∞∑
k=0

|sk|? < +∞.

Due to (b), it follows that(
∞∑
k=1

skz
k

)l

=
∞∑
k=l

( ∑
i1+i2+...+il=k

si1si2 · · · sil

)
zk,

for every z ∈ C with |z| < 1 and every integer l ≥ 1.
Hence (c) holds. Q.E.D

More general, we have the following result.

Theorem 2.1 Let a = (ak)k≥1 and s = (sk)k≥1 be two complex sequences such that a =
(ak)k≥1 is bounded, τ(s) =

∑∞
k=1 |sk| < 1 and

∑∞
k=0 |sk|? < +∞, where |s|? = (|sk|?)k≥0

is de�ned as: 
|s0|? = 1,

|sk|? =
k∑
l=1

∑
i1+i2+...+il=k

|si1||si2| · · · |sil |, k ≥ 1.

Then, we have:

∞∑
n=1

an

(
∞∑
k=1

sk

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

si1si2 · · · sin

=
∞∑
l=1

l∑
n=1

an
∑

i1+i2+...+in=l

si1si2 · · · sin .

♦

Proof. The �rst equality can be deduced from Proposition 2.1 (b). To prove the second
equality, we write

∑∞
n=1 an (

∑∞
k=1 sk)

n
as

∞∑
n=1

an

(
∞∑
k=1

sk

)n

=
∞∑
n=1

∞∑
l=1

Vn,l,

with
Vn,l = an χ[|n,+∞|[(l)

∑
i1+i2+...+in=l

si1si2 · · · sin ,

10



for every integers n, l ≥ 1 and where χ[|n,+∞|[ is the characteristic function of [| n,+∞ | [.
From the assumption and Proposition 2.1 (b), we have

∞∑
l=1

|Vn,l| ≤ |an|
∞∑
l=n

∑
i1+i2+...+in=l

|si1||si2| · · · |sin| = |an| (τ(s))n < +∞,

for every integer n ≥ 1.
Besides,

∞∑
n=1

∞∑
l=1

|Vn,l| ≤
∞∑
n=1

|an| (τ(s))n .

Taking nto account the fact that a = (an)n≥1 is a bounded sequence, i.e., there exists
M > 0 such that |an| ≤M , for every n ≥ 1 and since τ(s) < 1, we obtain

∞∑
n=1

∞∑
l=1

|Vn,l| ≤M
∞∑
n=1

(τ(s))n =
Mτ(s)

1− τ(s)
< +∞.

By virtue of Lemma 2.3, this implies

∞∑
n=1

an

(
∞∑
k=1

sk

)n

=
∞∑
n=1

∞∑
l=1

Vn,l

=
∞∑
l=1

∞∑
n=1

Vn,l

=
∞∑
l=1

l∑
n=1

an
∑

i1+i2+...+in=l

si1si2 · · · sil .

Hence, the second equality holds. Q.E.D

Lemma 2.1, Proposition 2.1 and Theorem 2.1 remain true if we replace the complex
sequence (sk)k≥1 by a sequence of bounded linear operators (Ak)k≥1 on a Banach space
X. To this end, let (A?k)k≥0 denote the transformed sequence de�ned as:

A?0 = I, A?k =
k−1∑
ν=0

A?ν Ak−ν , for every k ≥ 1 (2.5)

and (‖Ak‖?)k≥0 the sequence given by:

‖A0‖? = 1, ‖Ak‖? =
k−1∑
ν=0

‖Aν‖? ‖Ak−ν‖, for every k ≥ 1. (2.6)

Then, we can deduce the following results:

Lemma 2.4 Let (Ak)k≥1 be a sequence of bounded linear operators on a Banach space X
and (A?k)k≥0 the transformed sequence de�ned in Eq. (2.5). Then, we have

A?k =
k∑
l=1

∑
i1+i2+...+il=k

si1si2si3 ...sil , for every k ≥ 1.

11



(Here 1 ≤ il ≤ k, for every l = 1, 2, · · · , k and k ≥ 1) ♦

Proof. The proof is similar to that of Lemma 2.1. Q.E.D

Proposition 2.2 Let (Ak)k≥1 be a sequence of bounded linear operators on a Banach
space X and (A?k)k≥0 (resp., (‖Ak‖?)k≥0) the transformed sequence de�ned in Eq. (2.5)
(resp., Eq. (2.6)). If

∑∞
k=1 ‖Ak‖ < 1 and

∑∞
k=0 ‖A?k‖ < +∞, then the following assertions

hold.

(i)
∞∑
n=1

(
∞∑
k=1

Ak

)n

=
∞∑
n=1

n∑
l=1

∑
i1+i2+...+il=n

Ai1Ai2 · · ·Ail .

(ii) If
∑∞

k=0 ‖Ak‖? < +∞, then we have

(a)
∞∑
n=1

(
∞∑
k=1

Ak

)n

=
∞∑
l=1

∞∑
k=l

∑
i1+i2+...+il=k

Ai1Ai2 · · ·Ail .

(b)

(
∞∑
k=1

Ak

)l

=
∞∑
k=l

∑
i1+i2+...+il=k

Ai1Ai2 · · ·Ail , for every integer l ≥ 1.

(c)

(
∞∑
k=1

Akz
k

)l

=
∞∑
k=l

( ∑
i1+i2+...+il=k

Ai1Ai2 · · ·Ail

)
zk, for z in C such that |z| < 1

and every integer l ≥ 1. ♦

Proof. (i) The proof can be sketched in a similar way to that in Proposition 2.1 (i) since
the Cauchy product formula of two absolutely convergent series remains true for series
with terms in a Banach algebra.

(ii) To prove (a), it su�ces to apply the Fubini's absolute convergence inversion criterion
for double sequences of a Banach space (see [20, Théorème 12]) to the sequence of oper-
ators (An,l)n,l≥1, where An,l = χ[|1,n|](l)

∑
i1+i2+...+il=n

Ai1Ai2 · · ·Ail , for every n, l ≥ 1 and
χ[|1,n|] denotes the characteristic function of [| 1, n |] = {1, 2, ..., n}.
To show (b), we apply (a) to the sequence of operators (Bk)k≥1, where Bk = zAk, ∀k ≥ 1,
with z is a complex number such that |z| < 1.

Finally, the equality of (c) can be deduced from the one of (b) by considering the sequence
of operators (Ck)k≥1, with Ck = zkAk, ∀k ≥ 1, and z is a complex number such that
|z| < 1.

We close this section by the following result.

Theorem 2.2 Let (ak)k≥1 be a bounded complex sequence and (Ak)k≥1 a sequence of
bounded linear operators on a Banach space X such that

∑∞
k=1 ‖Ak‖ < 1 and

∑∞
k=0 ‖Ak‖? <

+∞, where (‖Ak‖?)k≥0 is de�ned in Eq. (2.6)).
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Then, we have:

∞∑
n=1

an

(
∞∑
k=1

Ak

)n

=
∞∑
n=1

an

∞∑
l=n

∑
i1+i2+...+in=l

Ai1Ai2 · · ·Ain

=
∞∑
l=1

l∑
n=1

an
∑

i1+i2+...+in=l

Ai1Ai2 · · ·Ain .

♦

Proof. The �rst equality follows immediately from Proposition 2.2. To prove the sec-
ond equality, it su�ces to apply the Fubini's absolute convergence inversion criterion for
double sequences of a Banach space (see [20, Théorème 12]) to the sequence of opera-
tors (Bn,l)n,l≥1, where Bn,l = an χ[|n,+∞|[(l)

∑
i1+i2+...+in=l

Ai1Ai2 · · ·Ain , for every integers
n, l ≥ 1 and χ[|n,+∞|[ is the characteristic function of [| n,+∞ | [. Q.E.D

3 Main results

Throughout this section, we will consider the following hypotheses:

(H1) Let T0 be a linear operator on a Banach space X with domain D(T0) such that T0
is closed and has isolated discrete eigenvalues.

(H2) Let T1, T2, T3, ... be some linear operators on X having the same domain D and
satisfying:

D(T0) ⊂ D and there exist a, b > 0 such that for every k ≥ 1

‖Tkϕ‖ ≤ a‖ϕ‖+ b‖T0ϕ‖, for all ϕ ∈ D(T0). (3.1)

(H3) Consider (ξk)k≥0 a sequence of complex numbers verifying ξ0 = 1 and τ(ξ) =
Σ∞k=1|ξk| <∞.

The �rst result of this section is formulated in the following theorem.

Theorem 3.1 Assume that the assumptions (H1)- (H3) hold. Then the series
∑

k≥0 ξkTkϕ
converges for all ϕ ∈ D(T0). If T (ξ)ϕ denotes its limit, then we de�ne a linear operator
T (ξ) with domain D(T0). In addition, if τ(ξ) < 1

b
then T (ξ) is closed. ♦

Proof. Let ϕ ∈ D(T0) and n ∈ N?. Using Eq. (3.1) we get∥∥∥∥∥
n∑
k=0

ξkTkϕ

∥∥∥∥∥ ≤
n∑
k=0

|ξk|‖Tkϕ‖

≤ ‖T0ϕ‖ +
n∑
k=1

|ξk|‖Tkϕ‖

≤ ‖T0ϕ‖+
n∑
k=1

|ξk| (a‖ϕ‖+ b‖T0ϕ‖)

≤ τ(ξ)a‖ϕ‖+ (1 + τ(ξ)b) ‖T0ϕ‖.

13



Hence, the series
∑

k≥0 ξkTkϕ is convergent. Setting T (ξ)ϕ its limit, we de�ne a linear
operator T (ξ) with domain D(T0). Similarly, by Eq. (3.1), we obtain

‖(T (ξ)− T0)ϕ‖ ≤ τ(ξ)a‖ϕ‖+ τ(ξ)b‖T0ϕ‖, for all ϕ ∈ D(T0).

Since T0 is a closed operator and τ(ξ) < 1
b
, we deduce in view of [15, Théorème 1] that

the operator T (ξ) is also closed. Q.E.D

In particular, if we take ξk = εkqk−1, T0 = A0 and Tk = 1
qk−1 Ak ∀k ≥ 1, where q > 0, ε

is a complex number and (Ak)k≥1 are linear operators on X verifying Eq. (1.2), we regain
the analytic perturbation A(ε) (see Eq. (1.1)) considered by B. Sz. Nagy in [15]. More
precisely, we have the following result.

Corollary 3.1 Let A0, A1, A2, A3, ... be linear operators on X such that A0 is closed with
domain D(A0) and A1, A2, A3, ... are with the same domain D ⊃ D(A0) and verifying:

‖Akϕ‖ ≤ qk−1 (a‖ϕ‖+ b‖A0ϕ‖) , for all ϕ ∈ D(A0), (3.2)

where a, b and q are strictly positive numbers. Then the series
∑

k≥0 ε
kAkϕ converges for

all ϕ ∈ D(A0) and for |ε| < 1
q
. If A(ε)ϕ denotes its limit, then we de�ne a linear operator

A(ε) with domain D(A0). For |ε| < 1
q+b

, the operator A(ε) is closed. ♦

Proof. We have τ(ξ) =
∑∞

k=1 |ξk| = |ε|
∑∞

k=0(|ε|q)k. If |ε| <
1
q
, then τ(ξ) = |ε|

1−|ε|q < +∞.
Hence, the series

∑
k≥0 ε

kAkϕ converges for all |ε| < 1
q
. Moreover, τ(ξ) < 1

b
if and only if

|ε| < 1
q+b

. So, A(ε) is closed for |ε| < 1
q+b

. Q.E.D

Remark 3.1 Notice here that Corollary 3.1 was �rst cited in [15, Théorème 3]. Then,
we can say that the perturbation T (ξ) is more general than the one adressed in [14]− [15]
where B. Sz. Nagy dealt with an analytic operator with one perturbation parameter ε. ♦

Let n ∈ N∗, λn the isolated eigenvalue number n of the operator T0 with multiplicity one,
dn = d(λn, σ(T0) \ {λn}) : the distance between λn and σ(T0) \ {λn} and Cn = C(λn, rn) :
the closed circle with center λn and radii rn = dn

2
. Since (T0 − zI)−1 is a regular analytic

function of z ∈ ρ(T0), ‖(T0 − zI)−1‖ is a continuous function. So, we denote by:

Mn := max
zn∈Cn

‖(T0 − znI)−1‖,

Nn := max
zn∈Cn

‖T0(T0 − znI)−1‖ = max
zn∈Cn

‖I + zn(T0 − znI)−1‖

and
αn := aMn + bNn.

Proposition 3.1 Assume that the assumptions (H1)-(H3) hold. If τ(ξ) < 1
αn
, then the

resolvent of T (ξ) at zn ∈ Cn is well de�ned. Let Rzn(ξ) := (T (ξ) − znI)−1, then for
τ(ξ) < 1

αn
, the following assertions hold:
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(i) the operator Rzn(ξ) can be developed into a series

Rzn(ξ) := Rzn,0(ξ) +Rzn,1(ξ) +Rzn,2(ξ) + · · ·+Rzn,l(ξ) + · · · ,

where

Rzn,0(ξ) := Rzn := (T0 − znI)−1

Rzn,l(ξ) := (−1)l
∞∑
k=l

∑
i1+i2+···+il=k

ξi1ξi2 · · · ξil Rzn Ti1Rzn Ti2Rzn · · ·TilRzn , ∀ l ≥ 1

(3.3)

(ii) we have

‖Rzn,l(ξ)‖ ≤Mn(αnτ(ξ))l, for every l ≥ 0. ♦

Proof. (i) Let zn ∈ Cn. Using Eq. (3.1), we infer that for all g ∈ X \ {0} and for all
k ≥ 1,

‖Tk(T0 − znI)−1g‖ ≤ a‖(T0 − znI)−1g‖+ b‖T0(T0 − znI)−1g‖

≤ (a‖(T0 − znI)−1‖+ b‖T0(T0 − znI)−1‖) ‖g‖ .

So,

‖Tk(T0 − znI)−1‖ ≤ αn, for all k ≥ 1. (3.4)

We claim that Cn ⊂ ρ(T (ξ)). Indeed, for zn ∈ Cn we have

T (ξ)− znI = T0 + ξ1T1 + ξ2T2 + ...− znI
=

(
I + ξ1T1(T0 − znI)−1 + ξ2T2(T0 − znI)−1 + ...

)
(T0 − znI)

=

(
I +

∞∑
k=1

ξkTkRzn

)
(T0 − znI)

= (I + S) (T0 − znI), (3.5)

where S =
∑∞

k=1ξkTkRzn . In view of Eq. (3.4), we have if τ(ξ) < 1
αn

then

‖S‖ ≤
∑∞

k=1‖ξkTkRzn‖ ≤ αnτ(ξ) < 1.

Hence, I + S is invertible with bounded inverse. Since zn ∈ Cn ⊂ ρ(T0), then Eq. (3.5)
implies that T (ξ) − znI is also invertible with bounded inverse. Hence zn ∈ ρ (T (ξ)) ,
which ends the proof of the claim.
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Now Eq. (3.5) yields

Rzn(ξ) = Rzn(I + S)−1

= Rzn

∞∑
ν=0

(−S)ν

= Rzn

∞∑
ν=0

(
∞∑
k=1

− ξkTkRzn

)ν

= Rzn +Rzn

∞∑
ν=1

(
∞∑
k=1

− ξkTkRzn

)ν

.

Since
∑∞

k=1‖ − ξkTkRzn‖ < 1, then by Proposition 2.2 (ii) (a) we get

Rzn(ξ) = Rzn +Rzn

∞∑
l=1

∞∑
k=l

∑
i1+i2+···+il=k

(−ξi1Ti1Rzn) (−ξi2Ti2Rzn) · · · (−ξilTilRzn)

= Rzn +Rzn

∞∑
l=1

∞∑
k=l

∑
i1+i2+···+il=k

(−1)l ξi1ξi2 · · · ξil Ti1Rzn Ti2Rzn · · ·TilRzn

=
∞∑
l=0

Rzn,l(ξ),

where
Rzn,0(ξ) := Rzn := (T0 − znI)−1

Rzn,l(ξ) := (−1)l
∞∑
k=l

∑
i1+i2+···+il=k

ξi1ξi2 · · · ξil Rzn Ti1Rzn Ti2Rzn · · ·TilRzn , ∀ l ≥ 1.

(ii) By the fact that ‖Rzn‖ ≤ Mn and ‖TkRzn‖ ≤ αn for every k ≥ 1 (see Eq. (3.4)) and
using Proposition 2.1 (ii) (b), the following estimations hold

‖Rzn,l(ξ)‖ ≤ Mn

∞∑
k=l

∑
i1+i2+···+il=k

αln|ξi1| |ξi2| · · · |ξil |

≤ Mnα
l
n

∞∑
k=l

∑
i1+i2+···+il=k

|ξi1| |ξi2| · · · |ξil |

≤ Mnα
l
n(τ(ξ))l,

for every l ≥ 1. This implies that

‖Rzn,l(ξ)‖ ≤Mn(αnτ(ξ))l, for every l ≥ 0. Q.E.D

Consider the operator A(ε) := A0 + εA1 + ε2A2 + ε3A3 + · · · + εkAk + · · · de�ned in
Corollary 3.1. Analogously, let λ̃n be the isolated eigenvalue number n of the operator A0

with multiplicity one, d̃n = d(λ̃n, σ(A0) \ {λ̃n) : the distance between λ̃n and σ(A0) \ {λ̃n}
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and C̃n = C(λ̃n, r̃n) : the closed circle with center λ̃n and radii r̃n = d̃n
2
. Denoting by M̃n,

Ñn and α̃n the following numbers
M̃n := max

zn∈C̃n
‖(A0 − znI)−1‖,

Ñn := max
zn∈C̃n

‖A0(A0 − znI)−1‖ = max
zn∈C̃n

‖I + zn(A0 − znI)−1‖,

α̃n := aM̃n + bÑn,

we can see the following result.

Corollary 3.2 Suppose that the assumptions of Corollary 3.1 hold. Let R̃zn(ε) := (A(ε)−
znI)−1 denote the resolvent of A(ε) at zn ∈ C̃n. If |ε| < 1

q+α̃n
, then:

(i) the operator R̃zn(ε) can be developed into an entire series

R̃zn(ε) := R̃zn,0 + εR̃zn,1 + ε2R̃zn,2 + · · ·+ εlR̃zn,l + · · · ,

where

R̃zn,0 := R̃zn := (A0 − znI)−1

R̃zn,l :=
k∑
l=l

(−1)l
∑

i1+i2+···+il=k

R̃zn Ai1R̃zn Ai2R̃zn · · ·AilR̃zn , ∀ l ≥ 1, (3.6)

(ii) we have

‖R̃zn,l‖ ≤ M̃nα̃n(q + α̃n)l−1, for every l ≥ 1. ♦

Proof. (i) Let ξk = εkqk−1, T0 = A0 and Tk = 1
qk−1 Ak, ∀k ≥ 1. In view of Proposition

3.1, we obtain

R̃zn(ξ)

= R̃zn +
∞∑
l=1

(−1)l
∞∑
k=l

∑
i1+i2+···+il=k

ξi1ξi2 · · · ξil R̃zn Ti1R̃zn Ti2R̃zn · · ·TilR̃zn

= R̃zn +
∞∑
l=1

(−1)l
∞∑
k=l

∑
i1+i2+···+il=k

εi1qi1−1 εi2qi2−1 · · · εilqil−1 R̃zn

Ai1R̃zn

qi1−1
Ai2R̃zn

qi2−1
· · · AilR̃zn

qil−1

= R̃zn +
∞∑
l=1

(−1)l
∞∑
k=l

εk
∑

i1+i2+···+il=k

R̃zn Ai1R̃zn Ai2R̃zn · · ·AilR̃zn

= R̃zn +
∞∑
k=1

εk
k∑
l=1

(−1)l
∑

i1+i2+···+il=k

R̃zn Ai1R̃zn Ai2R̃zn · · ·AilR̃zn

=
∞∑
k=0

εkR̃zn,k ,

where 
R̃zn,0 := R̃zn := (A0 − znI)−1

R̃zn,k :=
k∑
l=1

(−1)l
∑

i1+i2+···+il=k

R̃zn Ai1R̃zn Ai2R̃zn · · ·AilR̃zn , ∀ k ≥ 1.

17



(ii) In view of Eq. (3.2), we get ‖AkRzn‖ ≤ qk−1α̃n. So, by Lemma 2.2 (ii) we have for
every k ≥ 1

‖R̃zn,k‖ ≤
k∑
l=1

∑
i1+i2+···+il=k

M̃n

(
qi1−1α̃n

) (
qi2−1α̃n

)
· · ·
(
qi1−1α̃n

)
≤ M̃n q

k

k∑
l=1

∑
i1+i2+···+il=k

(
α̃n
q

)l

≤ M̃n q
k

k∑
l=1

(
α̃n
q

)l ∑
i1+i2+···+il=k

1

≤ M̃n q
k α̃n
q

(
1 +

α̃n
q

)k−1
≤ M̃nα̃n (q + α̃n)k−1 .

Q.E.D

Remarks 3.1 (i) Notice that Corollary 3.2 improves [15, p. 133]. Indeed, in [15], B. Sz.
Nagy has proved that the resolvent R̃zn(ε) of A(ε) at zn ∈ C̃n can be developed into an
entire series without giving the explicit expression of the coe�cients of this series. Besides,
he has given the estimation of these coe�cients by comparing them to those of an other
series. The main novelty here, is that we give the explicit expression of the coe�cients
(R̃zn,k)k≥1, which allows us to estimate them.

(ii) Proposition 3.1 extends [15, p. 133] since in our considerations, we deal with a non-analytic
perturbation including more than one parameter, whereas in [15], B. Sz. Nagy has dealt
with an analytic operator with one perturbation parameter ε. ♦

Having obtained these results, we are now ready to investigate under the spectral prop-
erties of the perturbed operator T (ξ). In that line our �rst result asserts:

Theorem 3.2 Assume that hypotheses (H1)-(H3) hold. Let ϕn (respectively, ϕ∗n) be an
eigenvector of T0 (respectively, T ∗0 : the adjoint of T0) associated to the eigenvalue λn
(respectively, λn) such that ‖ϕn‖ = ‖ϕ∗n‖ = ωn and ϕ∗n(ϕn) = 1. Then, the following
assertions hlod.

(i) If τ(ξ) < 1
αn(1+rnMn)

, then T (ξ) has a unique point λn(ξ) of its spectrum in the
neighborhood of λn and this point is also with multiplicity one,

(ii) If τ(ξ) < 1
αn(1+ω2

nrnMn)
, then the eigenvalue λn(ξ) can be developed into a series

λn(ξ) := λn + λn,1(ξ) + λn,2(ξ) + · · ·+ λn,i(ξ) + · · · ,

where

λn,i(ξ) =
i−1∑
l=0

bn,l(ξ) cn,i−l(ξ) for all i ≥ 1,
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with

bn,0(ξ) = 1,

bn,l(ξ) =
∞∑
k=l

∑
i1+i2+···+il=k

βi1 βi2 · · · βil , ∀l ≥ 1

βk = −ϕ∗n (Pn,k(ξ)ϕn) , ∀ k ≥ 1,

Pn,k(ξ) =
−1

2iπ

∫
Cn
Rzn,k(ξ) dzn, ∀ k ≥ 1, (3.7)

cn,k(ξ) = ϕ∗n (Bn,k(ξ)ϕn) , ∀ k ≥ 1,

Bn,k(ξ) =
−1

2iπ

∫
Cn

(zn − λn)Rzn,k(ξ) dzn, ∀ k ≥ 1,

and (Rzn,k(ξ))k≥1 is de�ned in Eq. (3.3),

(iii) We have

|λn,i(ξ)| ≤
ω2
nr

2
nMn (1− αnτ(ξ))

αnτ(ξ)− 1 + ω2
nrnMn

((
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)i
− (αnτ(ξ))i

)
, ∀ i ≥ 1.

♦

Proof. (i) Let Pn(ξ) (resp., Pn) be the spectral projection of T (ξ) (resp., T0) correspond-
ing to the eigenvalue λn(ξ) (resp., λn) and Rn(ξ) (resp., Rn) the eigenspace for λn(ξ)
(resp., λn). In view of Proposition 3.1, we have

Pn(ξ) =
−1

2πi

∫
Cn
Rzn(ξ) dzn

=
−1

2πi

∫
Cn

(
Rzn +

∞∑
k=1

Rzn,k(ξ)

)
dzn

= Pn +
∞∑
k=1

Pn,k(ξ),

where

Pn,k(ξ) =
−1

2πi

∫
Cn
Rzn,k(ξ) dzn, ∀ k ≥ 1.

Since

‖Pn,k(ξ)‖ ≤
1

2π

∫
Cn
‖Rzn,k(ξ)‖ dzn ≤ rnMn(αnτ(ξ))k,
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then, for τ(ξ) < 1
αn(1+rnMn)

we have

‖Pn(ξ)− Pn‖ =

∥∥∥∥∥
∞∑
k=1

Pn,k(ξ)

∥∥∥∥∥
≤

∞∑
k=1

‖Pn,k(ξ)‖

≤
∞∑
k=1

rnMn(αnτ(ξ))k

≤ rnMnαnτ(ξ)

1− αnτ(ξ)
< 1.

Consequently, dimRn(ξ) = dimRn = 1. So, T (ξ) has a unique eigenvalue λn(ξ) in Cn, for
τ(ξ) < 1

αn(1+rnMn)
. Moreover, λn(ξ) is with multiplicity one.

(ii) Let

ϕn(ξ) =
Pn(ξ)ϕn

[ϕ∗n(Pn(ξ)ϕn)]
1
2

be an eigenvector of T (ξ) associated to the eigenvalue λn(ξ). We have

λn(ξ)− λn = (λn(ξ)− λn)
ϕ∗n (ϕn(ξ))

ϕ∗n (ϕn(ξ))

=
ϕ∗n ((λn(ξ)− λn)ϕn(ξ))

ϕ∗n (ϕn(ξ))

=
ϕ∗n (T (ξ)ϕn(ξ)− λnϕn(ξ))

ϕ∗n (ϕn(ξ))

=
ϕ∗n ((T (ξ)− λnI)Pn(ξ)ϕn)

ϕ∗n(Pn(ξ)ϕn)
(3.8)

Since ϕ∗n(Pnϕn) = ϕ∗n(ϕn) = 1, then Eq. (3.8) implies that

λn(ξ)− λn =
ϕ∗n ((T (ξ)− λnI)Pn(ξ)ϕn)

1 + ϕ∗n((Pn(ξ)− Pn)ϕn)
. (3.9)

Or, for τ(ξ) < 1
αn(1+rnMnω2

n)
we have

‖ϕ∗n((Pn(ξ)− Pn)ϕn)‖ ≤ ‖ϕ∗n‖ ‖(Pn(ξ)− Pn)ϕn‖
≤ ‖Pn(ξ)− Pn‖ ‖ϕn‖ ‖ϕ∗n‖

≤ rnMnαnτ(ξ)

1− αnτ(ξ)
ω2
n

< 1.

So,
1

1 + ϕ∗n((Pn(ξ)− Pn)ϕn)
=
∞∑
ν=0

(−1)ν [ϕ∗n ((Pn(ξ)− Pn)ϕn)]ν . (3.10)
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On the other hand, we have

(T (ξ)− λnI)Pn(ξ) = T (ξ)Pn(ξ)− λnPn(ξ)

=
−1

2πi

∫
Cn
znRzn(ξ) dzn − λn

(
−1

2πi

)∫
Cn
Rzn(ξ) dzn

=
−1

2πi

∫
Cn

(zn − λn)Rzn(ξ) dzn

=
−1

2πi

∫
Cn

(zn − λn)

(
Rzn +

∞∑
k=1

Rzn,k(ξ)

)
dzn

=
−1

2πi

∫
Cn

(zn − λn)Rzn dzn +
∞∑
k=1

(
−1

2πi

∫
Cn

(zn − λn)Rzn,k(ξ) dzn

)
=

∞∑
k=1

Bn,k(ξ), (3.11)

where

Bn,k(ξ) =
−1

2πi

∫
Cn

(zn − λn)Rzn,k(ξ) dzn.

Consequently, Eqs (3.9), (3.10) and (3.11) imply that

λn(ξ)− λn =
∞∑
ν=0

(−1)ν [ϕ∗n ((Pn(ξ)− Pn)ϕn)]ν ϕ∗n

(
∞∑
l=1

Bn,l(ξ)ϕn

)

=
∞∑
ν=0

(−1)ν

(
∞∑
k=1

ϕ∗n (Pn,k(ξ)ϕn)

)ν ∞∑
l=1

ϕ∗n (Bn,l(ξ)ϕn)

=
∞∑
ν=0

(
∞∑
k=1

− ϕ∗n (Pn,k(ξ)ϕn)

)ν ∞∑
l=1

ϕ∗n (Bn,l(ξ)ϕn) (3.12)

Denoting by βk = −ϕ∗n (Pn,k(ξ)ϕn) , ∀ k ≥ 1, we can easily check that if τ(ξ) < 1
αn(1+rnMnω2

n)
,

then
∑∞

k=1|βk| < 1 and
∑∞

k=0β̃
?
k < +∞, where β̃?k =

∑k
l=1

∑
i1+i2+···+il=k |βi1 | |βi2| · · · |βil |.

Hence, in view of Proposition 2.1 (ii)(b), we get

∞∑
ν=0

(
∞∑
k=1

− ϕ∗n (Pn,k(ξ)ϕn)

)ν

=
∞∑
l=0

bn,l(ξ),

where bn,0(ξ) = 1, bn,l(ξ) =
∑∞

k=l

∑
i1+i2+···+il=k βi1 βi2 · · · βil , ∀l ≥ 1. So, using Eq.

(3.12) we get

λn(ξ)− λn =
∞∑
l=0

bn,l(ξ)
∞∑
k=1

cn,k(ξ),

where cn,k(ξ) = ϕ∗n (Bn,k(ξ)ϕn) , ∀ k ≥ 1. By the Cauchy product of two series, we get

λn(ξ)− λn =
∞∑
i=1

λn,i(ξ), where λn,i(ξ) =
i−1∑
l=0

bn,l(ξ) cn,i−l(ξ).
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(iii) In order to estimate the coe�cients (|λn,i(ξ)|)i≥1, we shall �rst estimate (|bn,l(ξ)|)l≥0
and (|cn,k(ξ)|)k≥1. Indeed, in view of Proposition 2.1 (ii)(b), we have for l ≥ 1

|bn,l(ξ)| ≤
∞∑
k=l

∑
i1+i2+···+il=k

|βi1| |βi2| · · · |βil | ≤

(
∞∑
k=1

|βk|

)l

.

Since

|βk| ≤ ‖ϕ∗n‖‖Pn,k(ξ)‖ ‖ϕn‖ ≤ ω2
nMnrn(αnτ(ξ))k, ∀k ≥ 1,

we obtain

|bn,l(ξ)| ≤
(
ω2
nMnrnαnτ(ξ)

1− αnτ(ξ)

)l
, ∀l ≥ 1.

As bn,0(ξ) = 1, we get

|bn,l(ξ)| ≤
(
ω2
nMnrnαnτ(ξ)

1− αnτ(ξ)

)l
, ∀l ≥ 0. (3.13)

On the other hand, we have for l ≥ 1

|cn,l(ξ)| ≤ ‖ϕ∗n‖‖Bn,l(ξ)‖ ‖ϕn‖ ≤ ω2
n

1

2π

∥∥∥∥∫
Cn

(zn − λn)Rzn,k(ξ)dzn

∥∥∥∥ ≤ ω2
nr

2
nMn(αnτ(ξ))l.

(3.14)
Consequently, combining Eqs (3.13) and (3.14), we get

|λn,i(ξ)| ≤
i−1∑
l=0

|bn,l(ξ)| |cn,i−l(ξ)|

≤ ω2
nr

2
nMn

i−1∑
l=0

(
ω2
nMnrnαnτ(ξ)

1− αnτ(ξ)

)l
(αnτ(ξ))i−l .

Regarding that Mn ≥ 1
rn

and ω2
n ≥ 1, we obtain 1 − ω2

nMnrn ≤ 0. So, τ(ξ) 6= 1
αn

(1 −
ω2
nMnrn). Hence, ω

2
nMnrnαnτ(ξ)
1−αnτ(ξ)

6= αnτ(ξ) and then we get

|λn,i(ξ)| ≤ ω2
nr

2
nMnαnτ(ξ)

(
ω2
nrnMnαnτ(ξ)
1−αnτ(ξ)

)i
− (αnτ(ξ))i

ω2
nrnMnαnτ(ξ)
1−αnτ(ξ)

− αnτ(ξ)

≤ ω2
nr

2
nMn (1− αnτ(ξ))

αnτ(ξ)− 1 + ω2
nrnMn

((
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)i
− (αnτ(ξ))i

)
.

Q.E.D

We have the analogue of Theorem 3.2 if we consider the analytic operator

A(ε) := A0 + εA1 + ε2A2 + · · ·+ εkAk + · · · .
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Corollary 3.3 Suppose that the assumptions of Corollary 3.1 are satis�ed. Let ϕ̃n (respectively,
ϕ̃∗n) be an eigenvector of A0 (respectively, A∗0: the adjoint of A0) associated to the eigenvalue

λ̃n (respectively, λ̃n) such that ‖ϕ̃n‖ = ‖ϕ̃∗n‖ = ω̃n and ϕ̃∗n(ϕ̃n) = 1. Then:

(i) for |ε| < 1
q+α̃n+r̃nM̃nα̃n

, A(ε) has a unique point λ̃n(ε) of its spectrum in the neighborhood

of λ̃n and this point is also with multiplicity one,

(ii) if |ε| < 1
q+α̃n+ω̃2

nr̃nM̃nα̃n
, then λ̃n(ε) can be developed into an entire series

λ̃n(ε) := λ̃n + ελ̃n,1 + ε2λ̃n,2 + · · ·+ εkλ̃n,k + · · · ,

where

λ̃n,k =
k−1∑
i=0

b̃n,i c̃n,k−i., for all k ≥ 1,

with

b̃n,k =
k∑
l=0

(−1)l
∑

i1+i2+···+il=k

β̃i1 β̃i2 · · · β̃il , ∀ k ≥ 1,

β̃k = ϕ̃∗n

(
P̃n,kϕ̃n

)
, ∀ k ≥ 1,

P̃n,k =
−1

2iπ

∫
C̃n
R̃zn,k dzn, ∀ k ≥ 1, (3.15)

c̃n,k = ϕ̃∗n

(
B̃n,kϕ̃n

)
, ∀ k ≥ 1,

B̃n,k =
−1

2iπ

∫
C̃n

(zn − λ̃n)R̃zn,k dzn, ∀ k ≥ 1,

and
(
R̃zn,k

)
k≥1

is de�ned in Eq. (3.6).

(iii) we have

|λ̃n,k| ≤ ω̃2
nr̃

2
nM̃nα̃n

(
(q + α̃n + ω̃2

nr̃nM̃nα̃n)k−1 − (q + α̃n)k−1
)
, for all k ≥ 1. (3.16)

♦

Proof. (i) The result is an immediate consequence of Theorem 3.2, it su�ces to take
T0 = A0, Tk = 1

qk−1 Ak and ξk = εkqk−1, ∀k ≥ 1. In this case, we have

τ(ξ) = |ε|
1−|ε|q <

1
α̃n(1+r̃nM̃n)

if and only if |ε| < 1
q+α̃n+r̃nM̃nα̃n

.

(ii) Let P̃n(ε) (resp., P̃n) be the spectral projection of A(ε) (resp., A0) corresponding to

the eigenvalue λ̃n(ε). Consider ϕ̃n(ε) = P̃n(ε)ϕ̃n

[ϕ̃∗n(P̃n(ε)ϕ̃n)]
1
2
an eigenvector of A(ε) associated to

the eigenvalue λ̃n(ε). Making the same reasoning as the one in the proof of Theorem 3.2
(ii), we obtain

λ̃n(ε)− λ̃n =
ϕ̃∗n

(
(A(ε)− λ̃nI) P̃n(ε)ϕ̃n

)
1 + ϕ̃∗n((P̃n(ε)− P̃n)ϕ̃n)

. (3.17)
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If |ε| < 1
q+α̃n+ω̃2

nr̃nM̃nα̃n
, we have ‖ϕ̃∗n((P̃n(ε)− P̃n)ϕ̃n)‖ < 1. So,

1

1 + ϕ̃∗n((P̃n(ε)− P̃n)ϕ̃n)
=

∞∑
ν=0

(−1)ν
[
ϕ̃∗n

(
(P̃n(ε)− P̃n)ϕ̃n

)]ν
=

∞∑
ν=0

(
∞∑
k=1

−εkϕ̃∗n(P̃n,kϕn)

)ν

.

Since
∑∞

k=1

∣∣∣εkϕ̃∗n (P̃n,kϕ̃n)∣∣∣ < 1, for |ε| < 1
q+α̃n+ω̃2

nr̃nM̃nα̃n
, we get in view of Proposition

2.1 (i),
∞∑
ν=0

(
∞∑
k=1

− εkϕ̃∗n
(
P̃n,kϕ̃n

))ν

=
∞∑
k=0

εkb̃n,k, (3.18)

where b̃n,0 = 1 and b̃n,k =
∑k

l=1(−1)l
∑

i1+i2+···+il=k βi1 βi2 · · · βil and βk = ϕ̃∗n

(
P̃n,kϕ̃n

)
,

∀ k ≥ 1.

On the other hand, in view of Corollary 3.2 and proceeding as in Theorem 3.2, we get(
A(ε)− λ̃nI

)
P̃n(ε) =

∞∑
k=1

εkB̃n,k, where B̃n,k =
−1

2πi

∫
C̃n

(zn − λ̃n)R̃zn,k dzn, ∀k ≥ 1.

So we deduce that,

ϕ̃∗n

((
A(ε)− λ̃nI

)
P̃n(ε)ϕ̃n

)
=
∞∑
k=1

εkc̃n,k, where c̃n,k = ϕ̃∗n

(
B̃n,kϕ̃n

)
, ∀k ≥ 1. (3.19)

Consequently, Eqs (3.17), (3.18) and (3.19) yield

λ̃n(ε)− λ̃n =
∞∑
k=0

εkb̃n,k

∞∑
k=1

εkc̃n,k =
∞∑
k=1

εkλ̃n,k, where λ̃n,k =
k−1∑
i=0

b̃n,i c̃n,k−i.

(iii) We have

|b̃n,k| ≤
k∑
l=1

∑
i1+i2+···+il=k

|βi1 | |βi2| · · · |βil | .

Or,

|βk| =
∣∣∣ϕ̃∗n (P̃n,kϕ̃n)∣∣∣ ≤ ω̃2

nr̃nM̃nα̃n(q + α̃n)k−1.

Hence,

|b̃n,k| ≤ ω̃2
nr̃nM̃nα̃n

k∑
l=1

∑
i1+i2+···+il=k

(q + α̃n)i1−1(q + α̃n)i2−1 · · · (q + α̃n)il−1

≤ ω̃2
nr̃nM̃nα̃n

k∑
l=1

∑
i1+i2+···+il=k

(q + α̃n)k−l

≤ ω̃2
nr̃nM̃nα̃n(q + α̃n)k

k∑
l=1

1

(q + α̃n)l

∑
i1+i2+···+il=k

1.
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Using Lemma 2.2 (ii), we deduce that∣∣∣b̃n,k∣∣∣ ≤ ω̃2
nr̃nM̃nα̃n(1 + q + α̃n)k−1. (3.20)

On the other hand, we have

|c̃n,k| ≤
∣∣∣ϕ̃∗n (B̃n,kϕ̃n

)∣∣∣ ≤ ω̃2
nr̃

2
nM̃nα̃n(q + α̃n)k−1. (3.21)

Consequently, Eqs (3.20) and (3.21) imply

|λ̃n,k| ≤
k−1∑
i=1

|b̃n,i| |c̃n,k−i|

≤ ω̃4
nr̃

3
nM̃

2
nα̃

2
n

k−1∑
i=1

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i−1
(q + α̃n)k−1−i

≤ ω̃4
nr̃

3
nM̃

2
nα̃

2
n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)k−1
− (q + α̃n)k−1

ω̃2
nr̃nM̃nα̃n

≤ ω̃2
nr̃

2
nM̃nα̃n

((
q + α̃n + ω̃2

nr̃nM̃nα̃n

)k−1
− (q + α̃n)k−1

)
.

Q.E.D

Remarks 3.2 (i) As in [15, p. 136], we prove that the eigenvector λ̃n(ε) of A(ε) can be
developed into an entire series. The main contribution here is that we give the explicit
expression of the coe�cients (λ̃n,i)i≥1, which enables us to estimate them; whereas in [15],
the author has given the estimation of these coe�cients by comparing them to those of an
other series. This approach can't be applied if we consider the non-analytic operator T (ξ).

(ii) Its is clear here that Theorem 3.2 is more general than [15, p. 136] since we deal with
a non-analytic perturbation including more than one parameter. ♦

Now, setting ϕn(ξ) an eigenvector of T (ξ) associated to the eigenvalue λn(ξ), we prove
the analogue of Theorem 3.2 for ϕn(ξ).

Theorem 3.3 Assume that the hypotheses (H1)-(H3) hold. Let ϕn (respectively, ϕ∗n) be
an eigenvector of T0 (respectively, T ∗0 : the adjoint of T0) associated to the eigenvalue λn
(respectively, λn) such that ‖ϕn‖ = ‖ϕ∗n‖ and ϕ∗n(ϕn) = 1. Then, for τ(ξ) < 1

αn(1+rnMnω2
n)

we have:

(i) the eigenvector ϕn(ξ) can be developed into a series

ϕn(ξ) := ϕn + ϕn,1(ξ) + ϕn,2(ξ) + · · ·+ ϕn,i(ξ) + · · · ,
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where 

ϕn,i(ξ) :=
i∑

k=1

dn,k(ξ)Pn,i−k(ξ)ϕn, ∀ i ≥ 1

dn,0(ξ) = 1,

dn,l(ξ) =
∞∑
k=l

C l
− 1

2

∑
i1+i2+···+il=k

γi1γi2 · · · γil , ∀ l ≥ 1,

γl = ϕ∗n(Pn,l(ξ) ϕn), ∀ l ≥ 1

and (Pn,k(ξ))k≥1 is de�ned in Eq. (3.7).

(ii) the coe�cients (ϕn,i(ξ))i≥1 satisfy

‖ϕn,i(ξ)‖ ≤
ω3
nr

2
nM

2
n

ω2
nrnMn − 1 + αnτ(ξ)

[(
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)i
− (αnτ(ξ))i

]
.

♦

Proof. (i) We have

ϕn(ξ) =
Pn(ξ)ϕn

[ϕ∗n(Pn(ξ)ϕn)]
1
2

= [ϕ∗n(Pn(ξ)ϕn)]−
1
2Pn(ξ)ϕn

= (1 + ϕ∗n((Pn(ξ)− Pn)ϕn)))−
1
2

∞∑
l=0

Pn,l(ξ)ϕn,

where (Pn,k(ξ))k≥1 is de�ned in Eq. (3.7). Since for τ(ξ) < 1
αn(1+rnMnω2

n)
, we have

‖ϕ∗n((Pn(ξ)− Pn)ϕn)‖ < 1 then

(1 + ϕ∗n((Pn(ξ)− Pn)ϕn)))−
1
2 =

∞∑
ν=0

Cν
− 1

2
[ϕ∗n ((Pn(ξ)− Pn)ϕn)]ν .

So,

ϕn(ξ) =
∞∑
ν=0

Cν
− 1

2
(ϕ∗n ((Pn(ξ)− Pn)ϕn))ν

∞∑
l=0

Pn,l(ξ)ϕn

=
∞∑
ν=0

Cν
− 1

2

(
ϕ∗n

(
∞∑
k=1

Pn,k(ξ)ϕn

))ν ∞∑
l=0

Pn,l(ξ)ϕn. (3.22)

Setting γk = ϕ∗n (Pn,k(ξ)ϕn) , ∀ k ≥ 1, we can easily check that if τ(ξ) < 1
αn(1+rnMnω2

n)
,

then
∑∞

k=1|γk| < 1 and
∑∞

k=0γ̃
?
k < +∞, where γ̃?k =

∑k
l=1

∑
i1+i2+···+il=k |γi1| |γi2| · · · |γil|.

Consequently, in view of Theorem 2.1 (i), we get

∞∑
ν=0

Cν
− 1

2

(
∞∑
k=1

ϕ∗n(Pn,k(ξ)ϕn)

)ν

=
∞∑
l=0

dn,l(ξ),
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where 
dn,0(ξ) = 1,

dn,l(ξ) = C l
− 1

2

∞∑
k=l

∑
i1+i2+···+il=k

γi1γi2 · · · γil , ∀ l ≥ 1.

By the Cauchy product of the two series we get

ϕn(ξ) =
∞∑
l=0

dn,l(ξ)
∞∑
l=0

Pn,l(ξ)ϕn =
∞∑
i=0

ϕn,i(ξ),

where 
ϕn,0(ξ) := ϕn,

ϕn,i(ξ) :=
i∑

k=1

dn,k(ξ)Pn,i−k(ξ)ϕn, ∀ i ≥ 1.

(ii) Since
∣∣∣Cν
− 1

2

∣∣∣ < 1
2
, ∀ ν ≥ 1, then for every l ≥ 1 we have

|dn,l(ξ)| ≤
1

2

∞∑
k=l

∑
i1+i2+···+il=k

|γi1| |γi2 | · · · |γil |.

Denoting that for all l ≥ 1

|γl| = |ϕ∗n(Pn,l(ξ) ϕn)| ≤ ω2
nrnMn (αnτ(ξ))l ,

we get in view of Proposition 2.1 (ii)(b),

|dn,l(ξ)| ≤
1

2

∞∑
k=l

∑
i1+i2+···+il=k

(ω2
nrnMn)l (αnτ(ξ))k

≤ 1

2
(ω2

nrnMn)l
∞∑
k=l

∑
i1+i2+···+il=k

(αnτ(ξ))i1+i2+···+il

≤ 1

2
(ω2

nrnMn)l

(
∞∑
k=1

(αnτ(ξ))k
)l

≤ 1

2
(ω2

nrnMn)l
(

αnτ(ξ)

1− αnτ(ξ)

)l
.

Hence,

|dn,l(ξ)| ≤
1

2

(
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)l
, for all l ≥ 0. (3.23)

On the other hand, we have

‖Pn,i−k(ξ)ϕn‖ ≤ ωnrnMn (αnτ(ξ))i−k , ∀i ≥ 1 and ∀k ≥ 0. (3.24)
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Consequently, Eqs (3.23) and (3.24) imply that for all i ≥ 1

‖ϕn,i(ξ)‖ ≤
i∑

k=1

|dn,k(ξ)|‖Pn,i−k(ξ)ϕn‖

≤
i∑

k=1

(
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)k
ωnrnMn (αnτ(ξ))i−k

≤ ωnrnMn

i∑
k=1

(
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)k
(αnτ(ξ))i−k

≤ ω3
nr

2
nM

2
nαnτ(ξ)

1− αnτ(ξ)

i∑
k=1

(
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)k−1
(αnτ(ξ))i−k . (3.25)

Now, making the same reasoning as the one in the proof of Theorem 3.2, we have
ω2
nrnMnαnτ(ξ)
1−αnτ(ξ)

6= αnτ(ξ). So, Eq. (3.25) yields for every i ≥ 1

‖ϕn,i(ξ)‖ ≤
ω3
nr

2
nM

2
nαnτ(ξ)

1− αnτ(ξ)

(
ω2
nrnMnαnτ(ξ)
1−αnτ(ξ)

)i
− (αnτ(ξ))i

ω2
nrnMnαnτ(ξ)
1−αnτ(ξ)

− αnτ(ξ)

≤ ω3
nr

2
nM

2
n

αnτ(ξ)− 1 + ω2
nrnMn

((
ω2
nrnMnαnτ(ξ)

1− αnτ(ξ)

)i
− (αnτ(ξ))i

)
.

Q.E.D

Let us consider the analytic perturbation A(ε) (see Eq. (1.1)) and let ϕ̃n(ε) be an eigen-
vector of A(ε) associated to the eigenvalue λ̃n(ε). Then, we can see the following result.

Corollary 3.4 Suppose that the assumptions of Corollary 3.1 are satis�ed. Let ϕ̃n (respectively,
ϕ̃∗n) be an eigenvector of A0 (respectively, A∗0: the adjoint of A0) associated to the eigenvalue

λ̃n (respectively, λ̃n) such that ‖ϕ̃n‖ = ‖ϕ̃∗n‖ and ϕ̃∗n(ϕ̃n) = 1. Then, for |ε| < 1
q+α̃n+ω̃2

nr̃nM̃nα̃n
,

we have:

(i) the eigenvector ϕ̃n(ε) can be developed into an entire series

ϕ̃n(ε) := ϕ̃n + εϕ̃n,1 + ε2ϕ̃n,2 + · · ·+ εkϕ̃n,k + · · · ,

where 

ϕ̃n,i :=
i∑

k=1

d̃n,k P̃n,i−kϕ̃n, ∀ i ≥ 1,

d̃n,k = Ck
− 1

2

k∑
l=1

∑
i1+i2+···+il=k

γ̃i1 γ̃i2 · · · γ̃il , ∀ k ≥ 1,

γ̃k = ϕ̃∗n(P̃n,k ϕ̃n), ∀ k ≥ 1
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and
(
P̃n,k

)
k≥1

is de�ned in Eq. (3.15).

(ii) the coe�cients (ϕ̃n,i)i≥1 satisfy

‖ϕ̃n,i‖ ≤ r̃nM̃nα̃n


(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
− (q + α̃n)i

q + α̃n

 . (3.26)

♦

Proof. (i) We have

ϕ̃n(ε) =
P̃n(ε)ϕ̃n

[ϕ̃∗n(P̃n(ε)ϕ̃n)]
1
2

.

Making the same reasoning as the one in the proof of Theorem 3.3 and using Theorem
2.1, we get (

1 + ϕ̃∗n((P̃n(ε)− P̃n)ϕ̃n))
)− 1

2
=
∞∑
k=0

εkd̃n,k,

where 

d̃n,0 = 1,

d̃n,k =
k∑
l=1

C l
− 1

2

∑
i1+i2+···+il=k

γ̃i1 γ̃i2 · · · γ̃il , ∀ k ≥ 1,

γ̃k = ϕ̃∗n(P̃n,k ϕ̃n), ∀ k ≥ 1,

P̃n,k =
−1

2iπ

∫
C̃n
R̃zn,k dzn, ∀ k ≥ 1.

So, we have

ϕ̃n(ε) =
∞∑
k=0

εkd̃n,k

∞∑
k=0

εkP̃n,kϕ̃n =
∞∑
i=0

εiϕ̃n,i,

where 
ϕ̃n,0 := ϕ̃n,

ϕ̃n,i :=
i∑

k=1

d̃n,k P̃n,i−kϕ̃n, ∀ i ≥ 1.

(ii) We have ∣∣∣d̃n,k∣∣∣ =
k∑
l=1

∑
i1+i2+···+il=k

|γ̃i1| |γ̃i2| · · · |γ̃il |, ∀ k ≥ 1.

Since
|γ̃k| ≤ ω̃2

nr̃nM̃nα̃n(q + α̃n)k−1, ∀ k ≥ 1,
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then using Lemma 2.2 (ii)(b) we deduce that for all k ≥ 1

|dn,k| ≤
k∑
l=1

(
ω̃2
nr̃nM̃nα̃n

)l ∑
i1+i2+···+il=k

(q + α̃n)k−l

≤ (q + α̃n)k
k∑
l=1

(
ω̃2
nr̃nM̃nα̃n
q + α̃n

)l ∑
i1+i2+···+il=k

1

≤ (q + α̃n)k
ω̃2
nr̃nM̃nα̃n
q + α̃n

(
1 +

ω̃2
nr̃nM̃nα̃n
q + α̃n

)k−1

≤ ω̃2
nr̃nM̃nα̃n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)k−1
. (3.27)

Noting that ∥∥∥P̃n,k∥∥∥ ≤ r̃nM̃nα̃n(q + α̃n)k−1, ∀k ≥ 1,

we get in view of Eq. (3.27) that for all i ≥ 1,

‖ϕ̃n,i‖ ≤ ω2
nr

2
nM

2
nα

2
n

i∑
k=1

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)k−1
(q + α̃n)i−k−1

≤ ω2
nr

2
nM

2
nα

2
n

q + α̃n

i∑
k=1

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)k−1
(q + α̃n)i−k

≤ ω2
nr

2
nM

2
nα

2
n

q + α̃n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
− (q + α̃n)i

ω̃2
nr̃nM̃nα̃n

≤ r̃nM̃nα̃n


(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
− (q + α̃n)i

q + α̃n

 .
Q.E.D

Remarks 3.3 (i) In Corollary 3.4, we give some supplements to [15, p. 136]. Indeed, in
[15] has proved that the eigenvector λ̃n(ε) of A(ε) can be developed into an entire series of
ε and he has given the estimation of the coe�cients (ϕ̃n,i)i≥1, by comparing them to those
of an other series. In our considerations, we estimate the coe�cients (ϕ̃n,i)i≥1 by means
of their expression. The obtained estimations are more precise than the one given by B.
Sz. Nagy since Eq. (3.26) implies that

‖ϕn,i‖ ≤ r̃nM̃nα̃n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
q + α̃n

≤ r̃nM̃n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
≤ ω̃nr̃nM̃n

(
q + α̃n + ω̃2

nr̃nM̃nα̃n

)i
.
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(ii) Theorem 3.3 extends [15, p. 136] to a new type of perturbed operator depending on
many parameters. This new situation is much wider in the scope of applications. ♦

4 Application to a Gribov operator

In this section, we consider the Gribov operator Hλ”,λ′,µ,λ de�ned in Eq. (1.7).

Let S, H0 and H1 be the operators de�ned by:
S : D(S) ⊂ E −→ E

ϕ −→ Sϕ(z) = A∗2A2ϕ(z)
D(S) = {ϕ ∈ E such that Sϕ ∈ E},


H0 : D(H0) ⊂ E −→ E

ϕ −→ H0ϕ(z) = A∗Aϕ(z)
D(H0) = {ϕ ∈ E such that H0ϕ ∈ E}

and 
H1 : D(H1) ⊂ E −→ E

ϕ −→ H1ϕ(z) = A∗(A+ A∗)Aϕ(z)
D(H1) = {ϕ ∈ E such that H1ϕ ∈ E}.

Remark 4.1 Due to [10, Lemme 3 p. 112], H0 is a self-adjoint operator with compact
resolvent. Moreover, {en(z) = zn√

n!
}∞1 is a system of eigenvectors associated to the eigenvalues

{n}. So, the spectral decomposition of H0 is given by:

H0 =
∞∑
n=1

n〈., en〉en. ♦

Let G = H3
0 . So, G is de�ned by

G : D(G) ⊂ E −→ E

ϕ −→ Gϕ =
∞∑
n=1

n3〈ϕ, en〉en

D(G) =

{
ϕ ∈ E such that

∞∑
n=1

n6|〈ϕ, en〉|2 <∞

}
.

The expression of Hλ”,λ′,µ,λ becomes then:

Hλ”,λ′,µ,λ := λ”G+ λ′S + µH0 + iλH1.

Regarding [10], we can see the following result:
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Proposition 4.1 We have the following assertions:
(i) G is a closed linear operator with dense domain.
(ii) The resolvent set of G is not empty. In fact, 0 ∈ ρ(G).
(iii) G is a self-adjoint operator with compact resolvent.
(iv) The eigenvalues of G are simple and isolated. ♦

Let T0 := λ”G, D = D(S)∩D(H0)∩D(H1) and T1 (respectively, T2 and T3) the restriction

of λ”S (respectively, λ”
c
H0 and λ”

(1+2
√
2)c
H1) to D, where c =

∥∥∥(H−10

)3∥∥∥ 1
6
. Hence, the

operators (Tk)1≤k≤3 have the same domain D and we have D(T0) ⊂ D.
Moreover, the operator Hλ”,λ′,µ,λ can be written as:

Hλ”,λ′,µ,λ := T0 + ξ1T1 + ξ2T2 + ξ3T3,

where ξ1 = λ′

λ”
, ξ2 = cµ

λ”
and ξ3 = (1+2

√
2)cλ

λ”
.

The �rst result of this section is formulated in the following proposition.

Proposition 4.2 The operators (Tk)1≤k≤3 satisfy the following estimation

‖Tkϕ‖ ≤ a‖ϕ‖+ b‖T0ϕ‖, for all ϕ ∈ D(T0),

where a = λ”
3

and b = 2
3
. ♦

Proof. Due to [4, Lemma 4.1, (ii)], we have

‖Sϕ‖ ≤ ‖Gϕ‖
2
3 ‖ϕ‖

1
3 , for all ϕ ∈ D(G).

Using Young's inequality, we obtain

‖Sϕ‖ ≤ 1

3
‖ϕ‖+

2

3
‖Gϕ‖, for all ϕ ∈ D(G).

Hence,

‖T1ϕ‖ ≤
λ”

3
‖ϕ‖+

2

3
‖T0ϕ‖, for all ϕ ∈ D(T0).

Moreover, we have

‖H0ϕ‖ =

(
∞∑
n=1

n2 |〈ϕ, en〉|2
) 1

2

≤

(
∞∑
n=1

n3 |〈ϕ, en〉|2
) 1

2

≤
∥∥∥H 3

2
0 ϕ
∥∥∥ , for all ϕ ∈ D

(
H

3
2
0

)
.

(4.1)
Taking into account Cauchy Schwartz's inequality, we get∥∥∥H 3

2
0 ϕ
∥∥∥2 =

〈
H

3
2
0 ϕ,H

3
2
0 ϕ
〉

=
〈
H3

0ϕ, ϕ
〉
≤ ‖H3

0ϕ‖‖ϕ‖, for all ϕ ∈ D
(
H3

0

)
.
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So, Eq. (4.1) together with the fact that D (H3
0 ) ⊂ D

(
H

3
2
0

)
yield

‖H0ϕ‖ ≤ ‖H3
0ϕ‖

1
2 ‖ϕ‖

1
2 , for all ϕ ∈ D

(
H3

0

)
. (4.2)

On the other hand, since 0 ∈ ρ(H0), we get for ϕ ∈ D (H3
0 )∥∥H3

0ϕ
∥∥ 1

2 ‖ϕ‖
1
2 =

∥∥∥(H−10

)3
H3

0ϕ
∥∥∥ 1

6 ∥∥H3
0ϕ
∥∥ 1

2 ‖ϕ‖
1
3

≤
∥∥∥(H−10

)3∥∥∥ 1
6 ∥∥H3

0ϕ
∥∥ 2

3 ‖ϕ‖
1
3 . (4.3)

Consequently, Eqs (4.2) and (4.3) imply that

‖H0ϕ‖ ≤ c
∥∥H3

0ϕ
∥∥ 2

3 ‖ϕ‖
1
3 , for all ϕ ∈ D

(
H3

0

)
,

where c =
∥∥∥(H−10

)3∥∥∥ 1
6
. Now, using Young's inequality, we obtain

‖H0ϕ‖ ≤
c

3
‖ϕ‖+

2

3
c ‖Gϕ‖, for all ϕ ∈ D (G) .

Hence,

‖T2ϕ‖ ≤
λ”

3
‖ϕ‖+

2

3
‖T0ϕ‖, for all ϕ ∈ D(T0).

Now, let us prove the third inequality. In view of [7, Proposition 6.3], we have

‖H1ϕ‖ ≤
(

1 + 2
√

2
)
‖H

3
2
0 ‖, for all ϕ ∈ D

(
H3

0

)
.

Making the same reasoning as above and using Young's inequality, we infer that for
ϕ ∈ D (H3

0 )

‖H1ϕ‖ ≤
(

1 + 2
√

2
)
c ‖H3

0ϕ‖
2
3‖ϕ‖

1
3

≤ 1

3

(
1 + 2

√
2
)
c‖ϕ‖+

2

3

(
1 + 2

√
2
)
c‖H3

0ϕ‖.

Consequently, we have

‖T3ϕ‖ ≤
λ”

3
‖ϕ‖+

2

3
‖T0ϕ‖, for all ϕ ∈ D(T0).

Q.E.D

Proposition 4.3 If τ(ξ) < 3
2
, then the operator Hλ”,λ′,µ,λ is closed. ♦

Proof. The result is an immediate consequence of Theorem 3.1, Propositions 4.1 and
4.2. Q.E.D

Now, we are in position to state the objective of this section.
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Theorem 4.1 (i) For τ(ξ) enough small, the operator Hλ”,λ′,µ,λ has a unique point λn(ξ)
of its spectrum in the neighborhood of λn = n3 and this point is also with multiplicity one.
Moreover, λn(ξ) can be developed into a series

λn(ξ) := n3 + λn,1(ξ) + λn,2(ξ) + ...+ λn,i(ξ) + ....

(ii) Let ϕn be an eigenvector of T0 associated to the eigenvalue λn. Then, setting ϕn(ξ)
an eigenvector of Hλ”,λ′,µ,λ associated to the eigenvalue λn(ξ), we have for ξ enough small
ϕn(ξ) can be developed into a series

ϕn(ξ) := en + ϕn,1(ξ) + ϕn,2(ξ) + ...+ ϕn,i(ξ) + .... ♦

Proof. The result follows from Theorem 3.3, Propositions 4.1, 4.2 and 4.3. Q.E.D
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