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Abstract. In this work, we consider the inverse spectral problem
for the impulsive Dirac systems on (0, π) with the jump condition
at the point π

2 . We conclude that the matrix potential Q(x) on the
whole interval can be uniquely determined by a set of eigenvalues

for two cases: (i) the matrix potential Q(x) is given on
(

0, (1+α)π
4

)
;

(ii) the matrix potential Q(x) is given on
(

(1+α)π
4 , π

)
, where 0 <

α < 1.

1. Introduction

Define ρ(x) =

 1, x <
π

2

α, x >
π

2

(0 < α < 1). Consider the following

impulsive Dirac systems:

ly := By′(x) +Q(x)y(x) = λρ(x)y(x), x ∈
(

0,
π

2

)
∪
(π

2
, π
)
, (1.1)

with the boundary conditions

y1(0) = 0, (1.2)

y2(π) = 0, (1.3)

and the jump conditions

y
(π

2
+ 0
)

= Ay
(π

2
− 0
)
, (1.4)

where

B =

(
0 1

− 1 0

)
, Q(x) =

(
p(x) q(x)

q(x) −p(x)

)
, y(x) =

(
y1(x)

y2(x)

)
,
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p(x) and q(x) are real-valued functions in L2(0, π), λ is the spectral

parameter, and A =

(
β 0

0 β−1

)
, β ∈ R+. The problem (1.1)-(1.4),

denoted by L = L(p(x), q(x), ρ(x), β), is called a boundary value prob-
lem of the Dirac equations with the discontinuity conditions at π

2
.

The boundary value problems with a discontinuous are related to dis-
continuous material characters of a intermediary. This kind of problem
has been studied by many authors (see, e.g., [1, 9, 10]).

The inverse problem for the Dirac operator was completely solved by
two spectra in [3, 4]. Mochizuki and Trooshin [8] studied the problem
L = L(p(x), q(x), 1, 1) with the separable boundary conditions. They
gave the uniqueness theorem by a set of values of eigenfunctions in
some internal point and spectrum. In [9], Ozkan and Amirov studied
the boundary value problem L = L(p(x), q(x), 1, β) and showed that
the potential function can be uniquely determined by a set of values
of eigenfunctions at some internal point and one spectrum. Amirov
[1] gave representations of solutions of the Dirac equation, properties
of spectral data and showed that the Dirac operator can be unique-
ly determined by the Weyl function on a finite interval (0, π) for the
problem L = L(p(x), q(x), 1, β).

For the impulsive Dirac operator, Mamedov and Akcay [7] proved
that the sequences of eigenvalues and normalizing numbers can u-
niquely determine the potential and they gave the theorem on the
necessary and sufficient conditions for the solvability and a solution
algorithm of the inverse problem for the boundary value problem L =
L(p(x), q(x), ρ(x), 1). In [10], Güldü studied the problem L and proved
by Hochstadt and Lieberman’s method [5] that if the potential function
p(x) is given on the interval (π

2
, π), then one spectrum can determine

p(x) on the whole interval.
In this paper, we consider the problem L = L(p(x), q(x), ρ(x), β). It

is shown two cases that (i) if the potential p(x) and q(x) are given on

(0, (1+α)π
4

); (ii) if the potential p(x) and q(x) are given on ( (1+α)π
4

, π),
respectively, then only a single spectrum is sufficient to determine p(x),
q(x) on (0, π), ρ(x) and β.

2. Preliminaries

Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1.1), satisfying the initial
conditions

ϕ(0, λ) =

(
0

− 1

)
, ψ(π, λ) =

(
1

0

)
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and the jump condition (1.4), respectively. Denote σ(x)=
∫ x

0
ρ(t)dt, τ=

Imλ.
From [6, 10], we can get that ϕ(x, λ) has the following representation:

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0

K1(x, t)ϕ0(t, λ)dt,

where ϕ0(x, λ) = (ϕ01(x, λ), ϕ02(x, λ))T satisfies the following forms:

ϕ01(x, λ) =

 sinλσ(x), 0 < x <
π

2
,

A+ cosλσ(x) + A− cosλ(π − σ(x)),
π

2
< x < π,

(2.1)

ϕ02(x, λ) =

 − cosλσ(x), 0 < x <
π

2
,

A+ sinλσ(x)− A− sinλ(π − σ(x)),
π

2
< x < π.

(2.2)

Similarly, we can compute that the following representation holds for
ψ(x, λ):

ψ(x, λ) = ψ0(x, λ) +

∫ π

x

K2(x, t)ψ0(t, λ)dt, (2.3)

where ψ0(x, λ) = (ψ01(x, λ), ψ02(x, λ))T satisfies the following forms:

ψ01(x, λ) =


β+ sinλ(σ(π)− σ(x))

− β− sinλ(σ(π) + σ(x)− π), 0 < x <
π

2
,

− cosλ(σ(π)− σ(x)),
π

2
< x < π,

(2.4)

ψ02(x, λ) =


β+ cosλ(σ(π)− σ(x))

+ β− cosλ(σ(π) + σ(x)− π), 0 < x <
π

2
,

sinλ(σ(π)− σ(x)),
π

2
< x < π,

(2.5)

where A± = 1
2
(β ± 1

β
), β± = 1

2
( 1
β
± β) and Kn(x, t) = (Kijn(x, t))i,j=1,2

(n = 1, 2) with Kijn(x, t) are real-valued continuous functions for i, j =
1, 2.

Denote

∆(λ) := W [ϕ(x, λ), ψ(x, λ)] = ϕ2(x, λ)ψ1(x, λ)− ϕ1(x, λ)ψ2(x, λ).
(2.6)
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The function ∆(λ) is called the characteristic function of L, which is
entire in λ.

It follows from (2.3)-(2.5) and [10], we have

∆(λ) = ∆0(λ) + o(exp |τ |σ(π)), (2.7)

where ∆0(λ) = β+ sinλσ(π)− β− sinλ(σ(π)− π).
Using the standard method in [2], or referring [10, 11], one can obtain

the following Lemma.

Lemma 2.1. 1) The problem L has an at most countable set of eigen-
values such that all of them are real and simple.
2) The eigenvalues denoted by {λn}n≥0 can be represented by the fol-
lowing asymptotic formula for n→∞:

λn =
nπ

σ(π)

(
1 +O

( 1

n

))
, λ ∈ Gε,

where Gε := {λ : |λ− λ0
n| ≥ ε > 0, n ≥ 0}.

3) |∆(λ)| ≥ Cε exp(|τ |σ(π)) = Cε exp
[

(1+α)π|τ |
2

]
for λ ∈ Gε, where Cε

is some constant.

3. Results

Together with the problem L we consider a boundary value prob-
lem L̃ = L(p̃(x), q̃(x), ρ̃(x), β̃) of the same form but with the different

coefficients p̃(x), q̃(x), ρ̃(x) and β̃. We agree that if a certain symbol
υ denotes an object related to L, then υ̃ denote the analogous object
related to L̃. In this paper the main results are as follows.

Theorem 3.1. If λn = λ̃n for all n ≥ 0, Q(x) = Q̃(x) on
(

0, (1+α)
4
π
)
,

then Q(x) = Q̃(x) almost everywhere on (0, π).

Theorem 3.2. If λn = λ̃n for all n ≥ 0, Q(x) = Q̃(x) on
(

(1+α)
4
π, π

)
,

then Q(x) = Q̃(x) almost everywhere on (0, π).

Before proving the results, we shall mention the following Lemma
which will be needed later.

Lemma 3.3. If λn = λ̃n for all n ≥ 0, then ρ(x) = ρ̃(x) and β = β̃.

Proof. It follows from Lemma 2 that α = α̃, that is ρ(x) = ρ̃(x).
We know that ∆(λ) and ∆̃(λ) are entire functions of λ of order 1.
By the Hadamard’s factorization theorem, the characteristic functions
can be uniquely determined by the eigenvalues up to multiplicative
constants. Similar to [11], since λn = λ̃n for all n ≥ 0, we can get that
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∆(λ) = C∆̃(λ), where C 6= 0 is some constant. From (2.7), we have

β+ = Cβ̃+ and β− = Cβ̃−. Thus,

1

2

(
β ± 1

β

)
=
C

2

(
β̃ ± 1

β̃

)
. (3.1)

Consequently, β = Cβ̃ and 1
β

= C 1
β̃
. In view of β, β̃ > 0, we can obtain

that β = β̃. �

Proof of Theorem 3.1. By virtue of Lemma 3.3, we know that ρ(x) =

ρ̃(x) and β = β̃. For convenience, denote d = (1+α)π
4

. Substituting
λ = λn into (2.6), we can get that for n ≥ 0

ϕ2(d, λn)ψ1(d, λn)− ϕ1(d, λn)ψ2(d, λn) = 0.

If ϕ2(d, λn) 6= 0, then

ϕ1(d, λn)

ϕ2(d, λn)
=
ψ1(d, λn)

ψ2(d, λn)
, n ≥ 0. (3.2)

The same relation holds for L̃:

ϕ̃1(d, λn)

ϕ̃2(d, λn)
=
ψ̃1(d, λn)

ψ̃2(d, λn)
, n ≥ 0. (3.3)

Since p(x) = p̃(x) and q(x) = q̃(x) on (0, d), we can obtain that
ϕ(x, λ) = ϕ̃(x, λ). That is, ϕ1(x, λ) = ϕ̃1(x, λ) and ϕ2(x, λ) = ϕ̃2(x, λ)
for x ∈ [0, d]. Together 3.2 with 3.3, it yields

ψ2(d, λn)ψ̃1(d, λn)− ψ̃2(d, λn)ψ1(d, λn) = 0. (3.4)

Note that ϕ2(d, λn) = 0 implies ψ2(d, λn) = ψ̃2(d, λn) = 0, so this case
also leads to 3.4.

Define

A(λ) = ψ2(d, λ)ψ̃1(d, λ)− ψ̃2(d, λ)ψ1(d, λ).

It is obvious that A(λ) has zeros {λn}n≥0. Next, we will show that
A(λ) ≡ 0 in the whole complex plane.

From (2.3)-(2.5) and the similar representations for ψ̃1(x, λ) and

ψ̃2(x, λ), we have

A(λ) = O(exp 2|τ |(σ(π)− σ(d))) = O(exp |τ |σ(π)), |λ| → ∞. (3.5)

Define G(λ) := A(λ)
∆(λ)

, which is entire in C. It follows from (3.5) and 3)

in Lemma 2.1 that

|G(λ)| ≤ B1, for λ ∈ Gε,
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where B1 is some a positive constant. Thus, by Liouville’s theorem, we
know that G(λ) is constant. Furthermore, it follows from (2.3)-(2.5)
and Riemann-Lebesque Lemma that for λ ∈ R,

lim
λ→∞

G(λ) = 0,

which means G(λ) = 0. Thus, A(λ) = 0 for all λ in C. Hence

ψ2(d, λ)

ψ1(d, λ)
=
ψ̃2(d, λ)

ψ̃1(d, λ)
.

Note that ψ2(d,λ)
ψ1(d,λ)

is the Weyl function, defined in [1], of the bound-

ary value problem for (1.1) on (d, π) with y1(d, λ) = 0 and the jump
condition (1.4). It has been proved in [1] that the Weyl function can
uniquely determine the p(x) and q(x) on (d, π). Thus, we can get that
Q(x) = Q̃(x) a.e. on (d, π). This completes the proof. �

Proof of Theorem 3.2. By Theorem 3.1 and Lemma 3.3, we have α = α̃,
β = β̃, p(x) = p̃(x) and q(x) = q̃(x) on (d, π). So, ψ(x, λ) = ψ̃(x, λ) on
(d, π). From (3.2) and (3.3), we show that

ϕ1(d, λn)ϕ̃2(d, λn)− ϕ̃1(d, λn)ϕ2(d, λn) = 0.

From (2.1)-(2.2) and the similar representations for ϕ̃1(x, λ) and ϕ̃2(x, λ),
we have

A1(λ) = O(exp 2|τ |σ(d)) = O(exp |τ |σ(π)), |λ| → ∞. (3.6)

Define G1(λ) := A1(λ)
∆(λ)

, which is entire in C. It follows from (3.6) and

3) in Lemma 2.1 that

|G1(λ)| ≤ B2, for λ ∈ Gε,

where B2 is some a positive constant. Following the proof of Theorem
3.1, we have A1(λ) = 0 for all λ in C, so

ϕ2(d, λ)

ϕ1(d, λ)
=
ϕ̃2(d, λ)

ϕ̃1(d, λ)
.

Note that ϕ2(d,λ)
ϕ1(d,λ)

is the Weyl function, defined in [1], of the bound-

ary value problem for (1.1) on (0, d) with y1(d, λ) = 0 and the jump
condition (1.4). It has been proved in [1] that the Weyl function can
uniquely determine the p(x) and q(x) on (0, d). Thus, we can get that
Q(x) = Q̃(x) a.e. on (0, d). This completes the proof. �
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