References
  1. A. T. Grove, ‎O. Rackham, The Nature of Mediterranean Europe. An Ecological History (Yale University Press, 2001).https://books.google.es/books?id=trcsOyzKvRwC&printsec=frontcover&dq=4.%09Grove+AT,+Rackham+O+The+Nature+of+Mediterranean+Europe.+An+Ecological+History&hl=es&sa=X&ved=0ahUKEwjV3ubnypzmAhU-AmMBHQ5MAeQQ6AEIKzAA#v=onepage&q=4.%09Grove%20AT%2C%20Rackham%20O%20The%20Nature%20of%20Mediterranean%20Europe.%20An%20Ecological%20History&f=false
  2. M. Giampietro, K. Mayumi, A. H. Sorman, Energy Analysis for Sustainable Future: Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (Routledge, 2013).https://books.google.es/books?id=TQatE9J4ez8C&printsec=frontcover&dq=Energy+Analysis+for+Sustainable+Future:+Multi-Scale+Integrated+Analysis+of+Societal+and+Ecosystem+Metabolism&hl=es&sa=X&ved=0ahUKEwih0_enzJzmAhXC8OAKHQh1AOIQ6AEIKzAA#v=onepage&q=Energy%20Analysis%20for%20Sustainable%20Future%3A%20Multi-Scale%20Integrated%20Analysis%20of%20Societal%20and%20Ecosystem%20Metabolism&f=false
  3. S. Sterling, A. Ducharne, Comprehensive data set of global land cover change for land surface model applications. Glob. Biogeochem. Cycles 22 (3),1–20 (2008).https://doi.org/10.1029/2007GB002959.
  4. E. C. Ellis, K. K. Goldewijk, S. Siebert, et al., Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19 (5), 589–606 (2008).https://doi.org/10.1111/j.1466-8238.2010.00540.x.
  5. N. Newbold, L. N. Hudson, A. Purvis, Global effects of land use on terrestrial biodiversity. Nature 520, 45-50 (2015).https://doi.org/10.1038/nature14324.
  6. IPBES, Global Assessment Report on Biodiversity and Ecosystem Services (Bonn, 2019). Available athttps://ipbes.net. Deposited 4 December 2019.
  7. P. González-Moreno, J. Pino, D. Carreras, et al., Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landscape Ecol. 28, 891-903 (2013).https://doi.org/10.1007/s10980-013-9857-1.
  8. M. Gaertner, J. R. U. Wilson, M. W. Cadotte, et al., Non-native species in urban environments: patterns, processes, impacts and challenges. Biol Invasions 19(12), 3461-3469 (2017).https://doi.org/10.1007/s10530-017-1598-7.
  9. M. Vilà, I. Ibáñez, Plant invasions in the landscape. Landscape Ecol. 26, 461–472 (2011).https://doi.org/10.1007/s10980-011-9585-3.
  10. C. Basnou, J. Iguzquiza, J. Pino, Examining the role of landscape structure and dynamics in alien plant invasion from urban Mediterranean coastal habitats. Landscape Urban Plan. 136, 156–164 (2015).https://doi.org/10.1016/j.landurbplan.2014.12.001.
  11. M. L. McKinney, Urbanization as a major cause of biotic homogenization. Biol. Conserv.127, 247–260 (2006).https://doi.org/10.1016/j.biocon.2005.09.005.
  12. K. C. Santos, J. Pino, F. Rodà, et al., Beyond the reserves: The role of non-protected rural areas for avifauna conservation in the area of Barcelona (NE of Spain). Landsc. Urban Plan. 84, 140-151 (2008).https://doi.org/10.1016/j.landurbplan.2007.07.004.
  13. Y. Melero, C. Stefanescu, J. Pino, General declines in Mediterranean butterflies over the last two decades are modulated by species traits.Biol. Conserv. 201, 336-342 (2016).https://doi.org/10.1016/j.biocon.2016.07.029.
  14. C. Stefanescu, J. Carnicer, J. Peñuelas, Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change.Ecography 34(3), 353-363 (2010).https://doi.org/10.1111/j.1600-0587.2010.06264.x.
  15. V. Devictor, C. van Swaay, T. Brereton, et al., Differences in the climatic debts of birds and butterflies at a continental scale.Nat. Clim. Change 2, 121-124 (2012).https://doi.org/10.1038/NCLIMATE1347.
  16. C. Sirami, N. Gross, A. B. Boillod, Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. P. Nat. Acad. Sci. USA 116(33), 16442–16447 (2019).https://doi.org/10.1073/pnas.1906419116.
  17. Y. Melero, C. Stefanescu, S. C. F. Palmer, et al., The role of the urban landscape on species with contrasting dispersal ability: Insights from greening plans for Barcelona. Landsc. Urban Plan. 195, on-line first (2019)https://doi.org/10.1016/j.landurbplan.2019.103707
  18. Haberl, H., The Energetic Metabolism of Societies. Part I: Accounting Concepts. J. Ind. Ecol. 5, 107-136 (2001).https://doi.org/10.1162/108819801753358481.
  19. Wrbka T., Erb K. H., Schulz, N. B., et al., Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21(3), 289-306 (2004).https://doi.org/10.1016/j.landusepol.2003.10.012.
  20. Huston, M. A., Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology 95(9), 2382–2396 (2014).https://doi.org/10.1890/13-1397.1.
  21. Perfecto, I., Vandermeer, J., The agroecological matrix as alternative to the land-sparing/agriculture intensification model. P. Nat. Acad. Sci. USA 107(13), 5786-5791 (2010).https://doi.org/10.1073/pnas.0905455107.
  22. Loreau, M., Mouquet, N., Gonzalez, A., Biodiversity as spatial insurance in heterogeneous landscapes. P. Nat. Acad. Sci. USA100(22), 12765-12770 (2010).https://doi.org/10.1073/pnas.2235465100.
  23. Swift, M. J., Izac, A. M. N., van Noordwijk, M., Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agr. Ecosyst. Environ. 104(1), 113-134 (2004).https://doi.org/10.1016/j.agee.2004.01.013.
  24. Marull, J., Font, C., Padró, R., et al., Energy-Landscape Integrated Analysis: A proposal for measuring complexity in internal agroecosystem processes (Barcelona Metropolitan Region, 1860-2000).Ecol. Indic. 66, 30-46 (2016b).https://doi.org/10.1016/j.ecolind.2016.01.015.
  25. Matthews, R., Selman, P., Landscape as a focus for integrating human and environmental processes. J. Agric. Econ. 57, 199-121 (2006).https://doi.org/10.1111/j.1477-9552.2006.00047.x.
  26. Parrotta, J. A., Trosper, R. L. (eds.), Traditional forest-related knowledge: sustaining communities, ecosystems and biocultural diversity (Springer, 2012).https://books.google.es/books?id=a3fAsBeLwNAC&pg=PA613&dq=26.%09Parrotta,+J.+A.,+Trosper,+R.+L.,+Traditional+forest-related+knowledge:+sustaining+communities,+ecosystems+and+biocultural+diversity+(Springer,+2012&hl=ca&sa=X&ved=0ahUKEwjCz_jCrKPmAhW-BWMBHSIaAnkQ6AEIMTAB#v=onepage&q=26.%09Parrotta%2C%20J.%20A.%2C%20Trosper%2C%20R.%20L.%2C%20Traditional%20forest-related%20knowledge%3A%20sustaining%20communities%2C%20ecosystems%20and%20biocultural%20diversity%20(Springer%2C%202012&f=false
  27. Morowitz, H. J., The Emergence of Everything: How the World Became Complex (Oxford University Press, 2002).https://books.google.es/books?id=Unw8DwAAQBAJ&pg=PR4&dq=The+Emergence+of+Everything:+How+the+World+Became+Complex+(Oxford+University+Press,+2002&hl=ca&sa=X&ved=0ahUKEwjHjaDbraPmAhUHmRQKHe_qC3gQ6AEIJzAA#v=onepage&q=The%20Emergence%20of%20Everything%3A%20How%20the%20World%20Became%20Complex%20(Oxford%20University%20Press%2C%202002&f=false
  28. Gladyshev, G. P., On thermodynamics, entropy and evolution of biological systems: what is life from a physical chemist’s viewpoint.Entropy 1, 9–20 (1999).https://doi.org/10.3390/e1020009.
  29. Schrödinger, E., What is Life? (Cambridge University Press, 1944).https://books.google.es/books?id=hP9-WIEyv8cC&printsec=frontcover&dq=29.%09Schr%C3%B6dinger+What+is+Life?&hl=ca&sa=X&ved=0ahUKEwjDnqndrqPmAhV55-AKHepmCc0Q6AEIZTAG#v=onepage&q=29.%09Schr%C3%B6dinger%20What%20is%20Life%3F&f=false
  30. Ulanowicz, R. E., Some steps toward a central theory of ecosystem dynamics. Comput. Biol. Chem. 27(6), 523-530 (2003).https://doi.org/10.1016/S1476-9271(03)00050-1.
  31. Margalef, R., Teoría de los sistemas ecológicos (Publicacions de la Universitat de Barcelona, 1991).https://books.google.es/books?id=c84Me5PfQJoC&pg=PA283&dq=Margalef,+R.,+Teor%C3%ADa+de+los+sistemas+ecol%C3%B3gicos&hl=ca&sa=X&ved=0ahUKEwjBsq3ir6PmAhUi5eAKHUVTCQAQ6AEIJzAA#v=onepage&q=Margalef%2C%20R.%2C%20Teor%C3%ADa%20de%20los%20sistemas%20ecol%C3%B3gicos&f=false
  32. González-Bernáldez, F., Ecología y paisaje (Editorial Blume, 1981).
  33. Marull, J., Font, C., Tello, E., et al., Towards an Energy-Landscape Integrated Analysis? Exploring the links between socio-metabolic disturbance and landscape ecology performance (Mallorca, Spain, 1956-2011). Landsc. Ecol. 31, 317-336 (2016a).https://doi.org/10.1007/s10980-015-0245-x.
  34. Haberl, H., K. Erb, K. H., Krausmann, F., et al., Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. P. Nat. Acad. Sci. USA 104(31), 12942-12947 (2007).https://doi.org/10.1073/pnas.0704243104.
  35. Krausmann, R., Erb, K. H., Gingrich, S., et al., Global human appropriation of net primary production doubled in the 20th century.P. Nat. Acad. Sci. USA 110(25), 10324-10329 (2013).https://doi.org/10.1073/pnas.1211349110.
  36. Barnes, B., Sidhu, H. S., Roxburgh, S. H., A model integrating patch dynamics, competing species and the intermediate disturbance hypothesis. Ecol. Model . 194, 414–420 (2006).https://doi.org/10.1016/j.ecolmodel.2005.10.040.
  37. Marull, J., Tello, E., Bagaria, G., et al., Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land sparing debate. Sci. Total Environ . 619-620, 1272-1285 (2018).https://doi.org/10.1016/j.scitotenv.2017.11.196.
  38. Peterseil, J., Wrbka, T., Plutzar, C., et al., Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 21(3), 307-320 (2004).https://doi.org/10.1016/j.landusepol.2003.10.011.
  39. Gershenson, C., Fernández, N., Complexity and information: measuring emergence, self-organization, and homeostasis on multiple scales.Complexity 18(2), 29-44 (2012).https://doi.org/10.1002/cplx.21424.
  40. Marull, J., Herrando, S., Brotons L., et al., Building on Margalef: Testing the links between landscape structure, energy and information flows driven by farming and biodiversity. Sci. Total Environ . 674, 603-614 (2019a).https://doi.org/10.1016/j.scitotenv.2019.04.129.
  41. Van Swaay, C. A. M., van Strien, A., Harpke, A., et al., The European butterfly indicator for grassland species 1990–2011. Report VS2012.019, De Vlinderstichting (Wageningen, 2012). Available athttps://www.eea.europa.eu/data-and-maps/data/external/european-grassland-butterfly-indicator Deposited 07 December 2019.
  42. Thomas, J. A., Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. B 360, 339–357 (2005).https://doi.org/10.1098/rstb.2004.1585.
  43. Inger, R., Gregory, R., Duffy, J. P., et al., Common European birds are declining rapidly while less abundant species’ numbers are rising.Ecol. Lett. 18, 28-36 (2015).https://doi.org/10.1111/ele.12387.
  44. Cattaneo, C., Marull, J., Tello, E., Landscape Agroecology. The Dysfunctionalities of Industrial Agriculture and the Loss of the Circular Bioeconomy in the Barcelona Region, 1956–2009.Sustainability 10(2), 1-22 (2018).https://doi.org/10.3390/su10124722.
  45. Tscharntke, T., Clough, Y., Wanger, T. C., et al., Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv . 151, 53-59 (2012).https://doi.org/10.1016/j.biocon.2012.01.068.
  46. Schaffartzik, A., Mayer, A., Gingrich, S. et al., The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Global Environ. Chang . 26, 87-97 (2014).https://doi.org/10.1016/j.gloenvcha.2014.03.013.
  47. Guzmán, G. I., González de Molina, M., Preindustrial agriculture versus organic agriculture: The land cost of sustainability.Land Use Policy 26(2), 502-510 (2009).https://doi.org/10.1016/j.landusepol.2008.07.004.
  48. Marull, J., Pino, J., Tello, E., et al., Social metabolism, landscape change and land use planning in the Barcelona Metropolitan Region.Land Use Policy 27(2), 497-510 (2010).https://doi.org/10.1016/j.landusepol.2009.07.004.
  49. Marull, J., Font, C., “The Energy-Landscape Integrated Analysis (ELIA) of Agroecosystems” in Sociometabolic Perspectives on Sustainability of Local Food Systems. New Insights for Science, Policy and Practice , E. Fraňková, W. Haas, S. J. Singh, Eds. (Springer, 2017), pp. 103-129.https://doi.org/10.1007/978-3-319-69236-4_4.
  50. Tello, E., Galán, E., Sacristán, V. et al., Opening the black box of energy throughputs in agroecosystems: a decomposition analysis of final EROI into its internal and external returns (the Vallès County, Catalonia, c.1860 and 1999). Ecol. Econ . 121, 160-174 (2016).https://doi.org/10.1016/j.ecolecon.2015.11.012.
  51. Vallecillo, S., Brotons, L., Herrando, S., Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodivers. Conserv . 17,103-119 (2008).https://doi.org/10.1007/s10531-007-9233-z.
  52. Jaeger, J., Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol . 15(2), 115-130 (2000).https://doi.org/10.1023/A:100812932.
  53. Marull, J., Mallarach, J. M., A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape Urban Plan 71, 243-262 (2005).https://doi.org/10.1016/j.landurbplan.2004.03.007.
  54. Marull, J., Cattaneo, C., Gingrich, S., et al., Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s. Agric. Syst . 175, 46-57 (2019b).https://doi.org/10.1016/j.agsy.2019.05.011.
  55. Fox, J., Nie, Z., Byrnes, J., SEM: Structural Equation Models. R Package Version 3.1–7 (2016).https://CRAN.R-project.org/package=sem.