REFERENCES
Ackerly, D. (2004). Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological monographs, 74, 25-44. doi:10.1890/03-4022
Adler, P. B., & Levine, J. M. (2007). Contrasting relationships between precipitation and species richness in space and time. Oikos, 116, 221-232. doi:10.1111/j.0030-1299.2007.15327.x
Anthelme, F., Cavieres, L. A., & Dangles, O. (2014). Facilitation among plants in alpine environments in the face of climate change.Frontiers in Plant Scicnce, 5: 387. doi:10.3389/fpls.2014.00387
Armas, C., Ordiales, R., & Pugnaire, F. I. (2004). Measuring plant interactions: a new comparative index. Ecology, 85, 2682-2686. doi:10.1890/03-0650
Austin, M. P., & Smith, T. M. (1989). A new model for the continuum concept. Vegetatio, 83, 35-47. doi:10.1007/BF00031679
Báez, S., Collins, S. L., Pockman, W. T., Johnson, J. E., & Small, E. E. (2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172, 1117-1127. doi:10.1007/s00442-012-2552-0
Bai, Y., She, W., Michalet, R., Zheng, J., Qin, S., & Zhang, Y. (2018). Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem.Applied Vegetation Science, 21, 595-606. doi:10.1111/avsc.12388
Bai, Y., She, W., Zhang, Y., Qiao, Y., Fu, J., & Qin, S. (2019). N enrichment, increased precipitation, and the effect of shrubs collectively shape the plant community in a desert ecosystem in northern China. Science of the Total Environment , 135379. In press. doi:10.1016/j.scitotenv.2019.135379
Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193. doi:10.1016/0169-5347(94)90088-4
Boulangeat, I., Gravel, D., & Thuiller, W. (2012). Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology letters, 15, 584-593. doi:10.1111/j.1461-0248.2012.01772.x
Brooker, R. W. (2006). Plant–plant interactions and environmental change. New Phytologist, 171, 271-284. doi:10.1111/j.1469-8137.2006.01752.x
Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119-125. doi: 10.1016/S0169-5347(02)00045-9
Cavieres, L. A., Brooker, R. W., Butterfield, B. J., Cook, B. J., Kikvidze, Z., Lortie, C. J. et al. (2014). Facilitative plant interactions and climate simultaneously drive alpine plant diversity.Ecology letters, 17, 193-202. doi:10.1111/ele.12217
Chalmandrier, L., Münkemüller, T., Gallien, L., de Bello, F., Mazel, F., Lavergne, S. et al. (2013). A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. Journal of Vegetation Science, 24, 853-864. doi:10.1111/jvs.12031
Chapin, F. S., & Shaver, G. R. (1985). Individualistic Growth Response of Tundra Plant Species to Environmental Manipulations in the Field.Ecology, 66, 564-576. doi:doi:10.2307/1940405
Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L. et al. (2000). Consequences of changing biodiversity. Nature, 405, 234-242. doi:10.1038/35012241
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E.et al. (2012). Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology letters, 15, 533-544. doi:10.1111/j.1461-0248.2012.01764.x
Choler, P., Michalet, R., & Callaway, R. M. (2001). Facilitation and competition on gradients in alpine plant communities. Ecology,82, 3295-3308. doi:10.1890/0012-9658(2001)082[3295:Facogi]2.0.Co;2
Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B., & Wood, S. (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391, 783-786. doi:10.1038/35842
de Bello, F., Lepš, J., & Sebastià, M.-T. (2006). Variations in species and functional plant diversity along climatic and grazing gradients.Ecography, 29, 801-810. doi:10.1111/j.2006.0906-7590.04683.x
de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D. et al. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits.Biodiversity and Conservation, 19, 2873-2893. doi:10.1007/s10531-010-9850-9
de Bello, F., Price, J. N., Münkemüller, T., Liira, J., Zobel, M., Thuiller, W. et al. (2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263-2273. doi:10.1890/11-1394.1
Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295-304. doi:10.1111/j.1654-1103.2004.tb02266.x
Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S. et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. doi: 10.1038/nature16489
Dixon, P. (2003). VEGAN, a package of R functions for community ecology.Journal of Vegetation Science, 14, 927-930. doi:10.1111/j.1654-1103.2003.tb02228.x
Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, H. et al. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology &Biogeography, 27, 1004-1016. doi:10.1111/geb.12759
Duru, M., Jouany, C., Le Roux, X., Navas, M. L., & Cruz, P. (2014). From a conceptual framework to an operational approach for managing grassland functional diversity to obtain targeted ecosystem services: Case studies from French mountains. Renewable Agriculture and Food Systems, 29, 239-254. doi:10.1017/S1742170513000306
Elenberg, H. (1953). Physiologisches und okologisches Verhalten serselben Pflanzenarten. Ber. Deut. Botan. Ges., 65, 351-362.
Forey, E., Touzard, B., & Michalet, R. (2010). Does disturbance drive the collapse of biotic interactions at the severe end of a diversity–biomass gradient? Plant Ecology, 206, 287-295. doi: 10.1007/s11258-009-9642-z
Fridley, J. D., Grime, J. P., Askew, A. P., Moster, B., & Stevens, C. J. (2011). Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biology, 17, 2002-2011. doi:10.1111/j.1365-2486.2010.02347.x
Fry, E. L., Savage, J., Hall, A. L., Oakley, S., Pritchard, W. J., Ostle, N. J. et al. (2018). Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 99, 2260-2271. doi:10.1002/ecy.2437
Gallien, L., Carboni, M., & Münkemüller, T. (2014). Identifying the signal of environmental filtering and competition in invasion patterns – a contest of approaches from community ecology. Methods in Ecology & Evolution, 5, 1002-1011. doi:10.1111/2041-210x.12257
Gao, G.-L., Ding, G.-D., Zhao, Y.-Y., Wu, B., Zhang, Y.-Q., Qin, S.-G.et al. (2014). Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskiishelterbelts in Ningxia, NW China. Ecological Indicators, 43, 236-243. doi:10.1016/j.ecolind.2014.03.001
Gerhold, P., Price, J. N., Püssa, K., Kalamees, R., Aher, K., Kaasik, A., & Pärtel, M. (2013). Functional and phylogenetic community assembly linked to changes in species diversity in a long-term resource manipulation experiment. Journal of Vegetation Science, 24, 843-852. doi:10.1111/jvs.12052
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325-331. doi:10.1016/j.tree.2010.03.002
Gómez-Aparicio, L., & Baraza, E. (2004). Applying Plant Facilitation to Forest Restoration: A Meta-Analysis of the Use of Shrubs as Nurse Plants. Ecological Applications, 14, 1128-1138. doi: 10.1890/03-5084
Graff, P., & Aguiar, M. R. (2017). Do species’ strategies and type of stress predict net positive effects in an arid ecosystem?Ecology, 98, 794-806. doi:10.1002/ecy.1703
Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation.Nature, 242, 344-347. doi: 10.1038/242344a0
Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250, 26-31. doi: 10.1038/250026a0
Grime, J. P., Brown, V. K., Thompson, K., Masters, G. J., Hillier, S. H., Clarke, I. P. et al. (2000). The Response of Two Contrasting Limestone Grasslands to Simulated Climate Change. Science, 289, 762-765. doi:10.1126/science.289.5480.762
Gross, N., Liancourt, P., Choler, P., Suding, K. N., & Lavorel, S. (2010). Strain and vegetation effects on local limiting resources explain the outcomes of biotic interactions. Perspectives in Plant Ecology Evolution & Systematics, 12, 9-19. doi:10.1016/j.ppees.2009.09.001
Harpole, W. S., Potts, D. L., & Suding, K. N. (2007). Ecosystem responses to water and nitrogen amendment in a California grassland.Global Change Biology, 13, 2341-2348. doi:10.1111/j.1365-2486.2007.01447.x
Harrington, R., Anton, C., Dawson, T. P., de Bello, F., Feld, C. K., Haslett, J. R. et al. (2010). Ecosystem services and biodiversity conservation: concepts and a glossary. Biodiversity and Conservation, 19, 2773-2790. doi:10.1007/s10531-010-9834-9
Harte, J., & Shaw, R. (1995). Shifting dominance within a montane vegetation community: results of a climate-warming experiment.Science, 267, 876-880. doi: 10.1126/science.267.5199.876
He, Q., Bertness, M. D., & Altieri, A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress.Ecology letters, 16, 695-706. doi:10.1111/ele.12080
He, Q., & Bertness, M. D. (2014). Extreme stresses, niches, and positive species interactions along stress gradients. Ecology,95, 1437-1443. doi:10.1890/13-2226.1
Holmgren, M., & Scheffer, M. (2010). Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology, 98, 1269-1275. doi:10.1111/j.1365-2745.2010.01709.x
IPCC (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge: Cambridge University Press. UK
Knapp, A. K., Ciais, P., & Smith, M. D. (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47. doi:10.1111/nph.14381
Köchy, M., & Wilson, S. D. (2001). Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology, 89, 807-817. doi:10.1046/j.0022-0477.2001.00600.x
Körner, C., Diemer, M., Schäppi, B., Niklaus, P., & Arnone, J. (1997). The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica, 18, 165-175. doi: 10.1016/S1146-609X(97)80002-1
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C. et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. doi:10.1038/nature16476
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, 1-26. doi:10.18637/jss.v082.i13
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution,12, 474-478. doi: 10.1016/S0169-5347(97)01219-6
Le Bagousse-Pinguet, Y., Forey, E., Touzard, B., & Michalet, R. (2013). Disentangling the effects of water and nutrients for studying the outcome of plant interactions in sand dune ecosystems. Journal of Vegetation Science, 24, 375-383. doi:10.1111/j.1654-1103.2012.01462.x
Le Bagousse-Pinguet, Y., Maalouf, J. P., Touzard, B., & Michalet, R. (2014). Importance, but not intensity of plant interactions relates to species diversity under the interplay of stress and disturbance.Oikos , 123, 777-785. doi:10.1111/oik.00961
Leathwick, J., & Austin, M. (2001). Competitive interactions between tree species in New Zealand’s old‐growth indigenous forests.Ecology, 82, 2560-2573. doi: 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2
Lee, J. A., & Caporn, S. J. M. (1998). Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytologist, 139, 127-134. doi:10.1046/j.1469-8137.1998.00165.x
Liancourt, P., Callaway, R. M., & Michalet, R. (2005a). Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology, 86, 1611-1618. doi:10.1890/04-1398
Liancourt, P., Corcket, E., & Michalet, R. (2005b). Stress tolerance abilities and competitive responses in a watering and fertilization field experiment. Journal of Vegetation Science, 16, 713-722. doi:10.1111/j.1654-1103.2005.tb02414.x
Liancourt, P., Viard-Cretat, F., & Michalet, R. (2009). Contrasting community responses to fertilization and the role of the competitive ability of dominant species. Journal of Vegetation Science , 20, 138-147. doi:10.1111/j.1654-1103.2009.05501.x
Liancourt, P., Le Bagousse-Pinguet, Y., Rixen, C., & Dolezal, J. (2017). SGH: stress or strain gradient hypothesis? Insights from an elevation gradient on the roof of the world. Annals of botany,120, 29-38. doi:10.1093/aob/mcx037
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z. et al.(2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. doi:10.1038/nature11917
Lortie, C. J., Brooker, R. W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F. I., & Callaway, R. M. (2004). Rethinking plant community theory. Oikos, 107, 433-438. doi:10.1111/j.0030-1299.2004.13250.x
Losapio, G., & Schöb, C. (2017). Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Functional Ecology, 31, 1145-1152. doi:10.1111/1365-2435.12839
Maalouf, J. P., Le Bagousse-Pinguet, Y., Marchand, L., Touzard, B., & Michalet, R. (2012). The interplay of stress and mowing disturbance for the intensity and importance of plant interactions in dry calcareous grasslands. Annals of botany , 110, 821-828. doi:10.1093/aob/mcs152
Maestre, F. T., & Cortina, J. (2004). Do positive interactions increase with abiotic stress? - A test from a semi-arid steppe. Proceedings of the Royal Society B-Biological Sciences, 271, 331-333. doi:10.1098/rsbl.2004.0181
Maestre, F. T., Valladares, F., & Reynolds, J. F. (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748-757. doi:10.1111/j.1365-2745.2005.01017.x
Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress‐gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199-205. doi:10.1111/j.1365-2745.2008.01476.x
Maestre, F. T., Salguero-Gomez, R., & Quero, J. L. (2012). It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans R Soc Lond B Biol Sci, 367, 3062-3075. doi:10.1098/rstb.2011.0323
Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112-118. doi:10.1111/j.0030-1299.2005.13886.x
McCluney, K. E., Belnap, J., Collins, S. L., Gonzalez, A. L., Hagen, E. M., Nathaniel Holland, J. et al. (2012). Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews, 87, 563-582. doi:10.1111/j.1469-185X.2011.00209.x
Metz, J., & Tielbörger, K. (2016). Spatial and temporal aridity gradients provide poor proxies for plant–plant interactions under climate change: a large‐scale experiment. Functional Ecology, 30, 20-29. doi: 10.1111/1365-2435.12599
Michalet, R. (2006). Is facilitation in arid environments the result of direct or complex interactions? Commentary. New Phytologist, 169, 3-6. doi:10.1111/j.1468-8137.2006.01617.x
Michalet, R. (2007). Highlighting the multiple drivers of change in interactions along stress gradients. New Phytologist, 173, 3-6. doi:10.1111/j.1469-8137.2006.01949.x
Michalet, R. (2001). Abiotic factors and biological traits determining the biotic interactions, the distribution of dominant populations and the structuring of terrestrial communities: application to some ecosystems of the Alpine Arc. HDR thesis
Michalet, R., Brooker, R. W., Cavieres, L. A., Kikvidze, Z., Lortie, C. J., Pugnaire, F. I. et al. (2006). Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecology letters, 9, 767-773. doi:10.1111/j.1461-0248.2006.00935.x
Michalet, R., Saccone, P., & Brun, J.-J. (2008). Interactions between tree species in mixed forests-The case of hardwoods and softwoods in upland forests. Rev. For. Fr. LX , 60, 139-153.
Michalet, R., Bagousse‐Pinguet, L., Maalouf, J. P., & Lortie, C. J. (2014a). Two alternatives to the stress‐gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. Journal of Vegetation Science, 25, 609-613. doi:10.1111/jvs.12123
Michalet, R., Schöb, C., Lortie, C. J., Brooker, R. W., & Callaway, R. M. (2014b). Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change.Functional Ecology, 28, 75-86. doi:10.1111/1365-2435.12136
Michalet, R., Chen, S. Y., An, L. Z., Wang, X. T., Wang, Y. X., Guo, P.et al. (2015). Communities: are they groups of hidden interactions? Journal of Vegetation Science, 26, 207–218. doi: 10.1111/jvs.12226
Michalet, R., & Pugnaire, F. I. (2016). Facilitation in communities: underlying mechanisms, community and ecosystem implications.Functional Ecology, 30, 3-9. doi: 10.1111/1365-2435.12602
Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?Journal of Classification, 31, 274-295. doi:10.1007/s00357-014-9161-z
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P. et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. doi: 10.1071/BT12225
R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. In: ISBN 3-900051-07-0.
Saccone, P., Delzon, S., Pages, J.-P., Brun, J.-J., & Michalet, R. (2009). The role of biotic interactions in altering tree seedling responses to an extreme climatic event. Journal of Vegetation Science, 20, 403-414. doi:10.1111/j.1654-1103.2009.01012.x
Sandel, B., & Dangremond, E. M. (2012). Climate change and the invasion of California by grasses. Global Change Biology, 18, 277-289. doi:10.1111/j.1365-2486.2011.02480.x
She, W., Bai, Y., Zhang, Y., Qin, S., Jia, X., Feng, W. et al.(2020). Nitrogen enrichment suppresses revegetated shrub growth under increased precipitation via herb-induced topsoil water limitation in a desert ecosystem in northern China. Plant and Soil, 446, 97-110. doi:10.1007/s11104-019-04362-w
Smith, M. D., Knapp, A. K., & Collins, S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289. doi:10.1890/08-1815.1
Svenning, J.-C., Gravel, D., Holt, R. D., Schurr, F. M., Thuiller, W., Münkemüller, T. et al. (2014). The influence of interspecific interactions on species range expansion rates. Ecography, 37, 1198-1209. doi:10.1111/j.1600-0587.2013.00574.x
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe.Proceedings of the National Academy of Sciences, 102, 8245-8250. doi:10.1073/pnas.0409902102
Tian, Q., Liu, N., Bai, W., Li, L., Chen, J., Reich, P. B. et al.(2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74. doi:10.1890/15-0917.1
Tielbörger, K., & Kadmon, R. (2000). Temporal environmental variation tips the balance between facilitation and interference in desert plants.Ecology, 81, 1544-1553. doi: 10.1890/0012-9658(2000)081[1544:TEVTTB]2.0.CO;2
Tilman, D. (1982). Resource competition and community structure : Princeton University Press. New Jersey. USA
Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology letters, 11, 1351-1363. doi:10.1111/j.1461-0248.2008.01250.x
van den Berg, L. J. L., Tomassen, H. B. M., Roelofs, J. G. M., & Bobbink, R. (2005). Effects of nitrogen enrichment on coastal dune grassland: A mesocosm study. Environmental Pollution, 138, 77-85. doi:10.1016/j.envpol.2005.02.024
van den Berg, L. J. L., Vergeer, P., Rich, T. C. G., Smart, S. M., Guest, D., & Ashmore, M. R. (2011). Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology, 17, 1871-1883. doi:10.1111/j.1365-2486.2010.02345.x
van der Wal, R., Pearce, I., Brooker, R., Scott, D., Welch, D., & Woodin, S. (2003). Interplay between nitrogen deposition and grazing causes habitat degradation. Ecology letters, 6, 141-146. doi:10.1046/j.1461-0248.2003.00407.x
Vetaas, O. R. (2002). Realized and potential climate niches: a comparison of four Rhododendron tree species. Journal of Biogeography, 29, 545-554. doi:10.1046/j.1365-2699.2002.00694.x
Wang, X. T., Michalet, R., Chen, S. Y., Zhao, L., An, L. Z., Du, G. Z.et al. (2017). Contrasting understorey species responses to the canopy and root effects of a dominant shrub drive community composition.Journal of Vegetation Science, 28, 1118-1127. doi:10.1111/jvs.12565
Wang, J., Gao, Y., Zhang, Y., Yang, J., Smith, M. D., Knapp, A. K.et al. (2019a). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969. doi:10.1111/gcb.14719
Wang, X., Michalet, R., Liu, Z., Guo, A., Zhou, X., Guozhen, D. et al. (2019b). Stature of dependent forbs is more related to the direct and indirect above- and below-ground effects of a subalpine shrub than are foliage traits.Journal of Vegetation Science, 30, 403-412. doi:10.1111/jvs.12739
Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains.Ecological monographs, 26, 1-80. doi:10.2307/1943577
Wipf, S., Rixen, C., & Mulder, C. P. H. (2006). Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Global Change Biology, 12, 1496-1506. doi:10.1111/j.1365-2486.2006.01185.x
Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F. et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15-30. doi:10.1111/j.1469-185X.2012.00235.x
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. doi:10.1038/nature02403
Xia, J., & Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439. doi:10.1111/j.1469-8137.2008.02488.x
Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L.et al. (2015). Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15, 12345-12360. doi:10.5194/acp-15-12345-2015
Yang, H., Li, Y., Wu, M., Zhang, Z., Li, L., & Wan, S. (2011). Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17, 2936-2944. doi:10.1111/j.1365-2486.2011.02423.x
Yang, X., Yang, Z., Tan, J., Li, G., Wan, S., & Jiang, L. (2018). Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. Journal of Ecology,106, 991-1000. doi:10.1111/1365-2745.12893
Zhang, Y., Feng, J., Loreau, M., He, N., Han, X., & Jiang, L. (2019). Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology letters, 22, 563-571. doi:10.1111/ele.13212
Zhao, T., Chen, L., & Ma, Z. (2014). Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models.Chinese Science Bulletin, 59, 412-429. doi:10.1007/s11434-013-0003-x