Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
Conflicts of interest
“There are no conflicts to declare”.
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760921(PANBioRA).
References
Arzillo, M., Mangiapia, G., Pezzella, A., Heenan, R. K., Radulescu, A., Paduano, L., & d’Ischia, M. (2012). Eumelanin Buildup on the Nanoscale: Aggregate Growth/Assembly and Visible Absorption Development in Biomimetic 5,6-Dihydroxyindole Polymerization. Biomacromolecules, 13 (8), 2379-2390. doi:10.1021/bm3006159
Ball, V. (2018). Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and Applications. Frontiers in Bioengineering and Biotechnology, 6 (109). doi:10.3389/fbioe.2018.00109
Chassepot, A., & Ball, V. (2014). Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin. Journal of Colloid and Interface Science, 414 , 97-102. doi:https://doi.org/10.1016/j.jcis.2013.10.002
Chen, X., Huang, Y., Yang, G., Li, J., Wang, T., H. Schulz, O., & K. Jennings, L. (2015). Polydopamine Integrated Nanomaterials and Their Biomedical Applications. Current Pharmaceutical Design, 21 (29), 4262-4275.
Chia-Che Ho, S.-J. D. (2013). The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. Journal of Materials Science: Materials in Medicine, 24 (10), 2381–2390. doi:https://doi.org/10.1007/s10856-013-4994-2
Clancy, C. M. R., & Simon, J. D. (2001). Ultrastructural Organization of Eumelanin from Sepia officinalis Measured by Atomic Force Microscopy.Biochemistry, 40 (44), 13353-13360. doi:10.1021/bi010786t
Dong, Z., Gong, H., Gao, M., Zhu, W., Sun, X., Feng, L., . . . Liu, Z. (2016). Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy.Theranostics, 6 (7), 1031-1042. doi:10.7150/thno.14431
El Yakhlifi, S., Ihiawakrim, D., Ersen, O., & Ball, V. (2018). Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO4 Oxidation of Dopamine. Biomimetics, 3 (4), 36.
Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018). Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 199 , 445-460. doi:https://doi.org/10.1016/j.carbpol.2018.06.114
Han, L., Zhang, Y., Lu, X., Wang, K., Wang, Z., & Zhang, H. (2016). Polydopamine Nanoparticles Modulating Stimuli-Responsive PNIPAM Hydrogels with Cell/Tissue Adhesiveness. ACS Applied Materials & Interfaces, 8 (42), 29088-29100. doi:10.1021/acsami.6b11043
Hauser, D., Estermann, M., Milosevic, A., Steinmetz, L., Vanhecke, D., Septiadi, D., . . . Rothen-Rutishauser, B. (2018). Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing.Nanomaterials, 8 (12), 1065.
Hoffman, A. S. (2012). Hydrogels for biomedical applications.Advanced Drug Delivery Reviews, 64 , 18-23. doi:https://doi.org/10.1016/j.addr.2012.09.010
Hu, J., Lou, Y., & Wu, F. (2019). Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. The Journal of Physical Chemistry B, 123 (12), 2636-2644. doi:10.1021/acs.jpcb.8b10483
Hunt, J. A., Chen, R., van Veen, T., & Bryan, N. (2014). Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B, 2 (33), 5319-5338. doi:10.1039/C4TB00775A
Kang, S. M., Rho, J., Choi, I. S., Messersmith, P. B., & Lee, H. (2009). Norepinephrine: Material-Independent, Multifunctional Surface Modification Reagent. Journal of the American Chemical Society, 131 (37), 13224-13225. doi:10.1021/ja905183k
Kim, H.-K., Davaa, E., Myung, C.-S., & Park, J.-S. (2010). Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. International Journal of Pharmaceutics, 392 (1), 141-147. doi:https://doi.org/10.1016/j.ijpharm.2010.03.047
Knopf-Marques, H., Barthes, J., Lachaal, S., Mutschler, A., Muller, C., Dufour, F., . . . Vrana, N. E. (2019). Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly(arginine). Materials Science and Engineering: C, 104 , 109898. doi:https://doi.org/10.1016/j.msec.2019.109898
Koldsland, O. C., Scheie, A. A., & Aass, A. M. (2010). Prevalence of Peri-Implantitis Related to Severity of the Disease With Different Degrees of Bone Loss. Journal of Periodontology, 81 (2), 231-238. doi:10.1902/jop.2009.090269
Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings.Science, 318 (5849), 426-430. doi:10.1126/science.1147241
Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for Tissue Engineering.Chemical Reviews, 101 (7), 1869-1880. doi:10.1021/cr000108x
Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 1 , 16071. doi:10.1038/natrevmats.2016.71
https://www.nature.com/articles/natrevmats201671#supplementary-information
Li, S., Zhang, L., Liang, X., Wang, T., Chen, X., Liu, C., . . . Wang, C. (2019). Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy.Chemical Engineering Journal, 378 , 122175. doi:https://doi.org/10.1016/j.cej.2019.122175
Li, W.-Q., Wang, Z., Hao, S., He, H., Wan, Y., Zhu, C., . . . Zheng, S.-Y. (2017). Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug Resistance. ACS Applied Materials & Interfaces, 9 (20), 16793-16802. doi:10.1021/acsami.7b01540
Mani, I., Sharma, V., Tamboli, I., & Raman, G. (2001). Interaction of Melanin with Proteins – The Importance of an Acidic Intramelanosomal pH. Pigment Cell Research, 14 (3), 170-179. doi:doi:10.1034/j.1600-0749.2001.140306.x
Mateescu, M., Metz-Boutigue, M.-H., Bertani, P., & Ball, V. (2016). Polyelectrolytes to produce nanosized polydopamine. Journal of Colloid and Interface Science, 469 , 184-190. doi:https://doi.org/10.1016/j.jcis.2016.02.023
Meloni, B. P., South, S. M., Gill, D. A., Marriott, A. L., Déziel, R. A., Jacques, A., . . . Knuckey, N. W. (2019). Poly-Arginine Peptides R18 and R18D Improve Functional Outcomes After Endothelin-1-Induced Stroke in the Sprague Dawley Rat. Journal of Neuropathology & Experimental Neurology, 78 (5), 426-435. doi:10.1093/jnen/nlz014
Meredith, P., & Sarna, T. (2006). The physical and chemical properties of eumelanin. Pigment Cell Research, 19 (6), 572-594. doi:doi:10.1111/j.1600-0749.2006.00345.x
Mohamad, N., Loh, E. Y. X., Fauzi, M. B., Ng, M. H., & Mohd Amin, M. C. I. (2019). In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Delivery and Translational Research, 9 (2), 444-452. doi:10.1007/s13346-017-0475-3
Mutschler, A., Tallet, L., Rabineau, M., Dollinger, C., Metz-Boutigue, M.-H., Schneider, F., . . . Lavalle, P. (2016). Unexpected Bactericidal Activity of Poly(arginine)/Hyaluronan Nanolayered Coatings.Chemistry of Materials, 28 (23), 8700-8709. doi:10.1021/acs.chemmater.6b03872
Ng, V. W. L., Chan, J. M. W., Sardon, H., Ono, R. J., García, J. M., Yang, Y. Y., & Hedrick, J. L. (2014). Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections.Advanced Drug Delivery Reviews, 78 , 46-62. doi:https://doi.org/10.1016/j.addr.2014.10.028
Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 38 (4), 1139-1151. doi:10.1039/B811392K
Poinard, B., Neo, S. Z. Y., Yeo, E. L. L., Heng, H. P. S., Neoh, K. G., & Kah, J. C. Y. (2018). Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy. ACS Applied Materials & Interfaces, 10 (25), 21125-21136. doi:10.1021/acsami.8b04799
Ponzio, F., Barthès, J., Bour, J., Michel, M., Bertani, P., Hemmerlé, J., . . . Ball, V. (2016). Oxidant Control of Polydopamine Surface Chemistry in Acids: A Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings. Chemistry of Materials, 28 (13), 4697-4705. doi:10.1021/acs.chemmater.6b01587
Rathna, G. V. N., Mohan Rao, D. V., & Chatterji, P. R. (1996). Hydrogels of Gelatin-Sodium Carboxymethyl Cellulose: Synthesis and Swelling Kinetics. Journal of Macromolecular Science, Part A, 33 (9), 1199-1207. doi:10.1080/10601329608010914
Ribeiro, M., Ferraz, M. P., Monteiro, F. J., Fernandes, M. H., Beppu, M. M., Mantione, D., & Sardon, H. (2017). Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 13 (1), 231-239. doi:https://doi.org/10.1016/j.nano.2016.08.026
Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., . . . Selvamurugan, N. (2010). Synthesis and Characterization of NanoscaleHydroxyapatite-Copper for Antimicrobial Activity Towards Bone Tissue Engineering Applications. Journal of Biomedical Nanotechnology, 6 (4), 333-339. doi:10.1166/jbn.2010.1138
Sahraro, M., Barikani, M., & Daemi, H. (2018). Mechanical reinforcement of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft nanoparticles. Carbohydrate Polymers, 187 , 102-109. doi:https://doi.org/10.1016/j.carbpol.2018.01.028
Salomé Veiga, A., & Schneider, J. P. (2013). Antimicrobial hydrogels for the treatment of infection. Peptide Science, 100 (6), 637-644. doi:doi:10.1002/bip.22412
Samberg, M. E., Loboa, E. G., Oldenburg, S. J., & Monteiro-Riviere, N. A. (2012). Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine, 7 (8), 1197-1209. doi:10.2217/nnm.12.18
Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., & Selvamurugan, N. (2011). Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering.International Journal of Biological Macromolecules, 49 (2), 188-193. doi:https://doi.org/10.1016/j.ijbiomac.2011.04.010
Sheffield, C., Meyers, K., Johnson, E., & Rajachar, R. M. (2018). Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels, 4 (2), 51.
Stanić, V., Janaćković, D., Dimitrijević, S., Tanasković, S. B., Mitrić, M., Pavlović, M. S., . . . Raičević, S. (2011). Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Applied Surface Science, 257 (9), 4510-4518. doi:https://doi.org/10.1016/j.apsusc.2010.12.113
Trop, M., Novak, M., Rodl, S., Hellbom, B., Kroell, W., & Goessler, W. (2006). Silver-Coated Dressing Acticoat Caused Raised Liver Enzymes and Argyria-like Symptoms in Burn Patient. Journal of Trauma and Acute Care Surgery, 60 (3), 648-652. doi:10.1097/01.ta.0000208126.22089.b6
Wang, L., Dai, W., Yang, M., Wei, X., Ma, K., Song, B., . . . Zhao, J. (2019). Cell membrane mimetic copolymer coated polydopamine nanoparticles for combined pH-sensitive drug release and near-infrared photothermal therapeutic. Colloids and Surfaces B: Biointerfaces, 176 , 1-8. doi:https://doi.org/10.1016/j.colsurfb.2018.12.057
Wei, Q., Zhang, F., Li, J., Li, B., & Zhao, C. (2010). Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 1 (9), 1430-1433. doi:10.1039/C0PY00215A
Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K. J., Madihally, S. V., Köhler, G. A., & Tayebi, L. (2014). Hybrid Macroporous Gelatin/Bioactive-Glass/Nanosilver Scaffolds with Controlled Degradation Behavior and Antimicrobial Activity for Bone Tissue Engineering.Journal of Biomedical Nanotechnology, 10 (6), 911-931. doi:10.1166/jbn.2014.1783
Yu, H., Xu, X., Chen, X., Lu, T., Zhang, P., & Jing, X. (2007). Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. Journal of Applied Polymer Science, 103 (1), 125-133. doi:doi:10.1002/app.24835
Zhou, C., & Wu, Q. (2011). A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids and Surfaces B: Biointerfaces, 84 (1), 155-162. doi:https://doi.org/10.1016/j.colsurfb.2010.12.030
Zilberman, M. (2015). Drug delivery from gelatin-based systems AU - Foox, Maytal. Expert Opinion on Drug Delivery, 12 (9), 1547-1563. doi:10.1517/17425247.2015.1037272