Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
Conflicts of interest
“There are no conflicts to declare”.
Acknowledgements
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No
760921(PANBioRA).
References
Arzillo, M., Mangiapia, G., Pezzella, A., Heenan, R. K., Radulescu, A.,
Paduano, L., & d’Ischia, M. (2012). Eumelanin Buildup on the Nanoscale:
Aggregate Growth/Assembly and Visible Absorption Development in
Biomimetic 5,6-Dihydroxyindole Polymerization. Biomacromolecules,
13 (8), 2379-2390. doi:10.1021/bm3006159
Ball, V. (2018). Polydopamine Nanomaterials: Recent Advances in
Synthesis Methods and Applications. Frontiers in Bioengineering
and Biotechnology, 6 (109). doi:10.3389/fbioe.2018.00109
Chassepot, A., & Ball, V. (2014). Human serum albumin and other
proteins as templating agents for the synthesis of nanosized
dopamine-eumelanin. Journal of Colloid and Interface Science,
414 , 97-102.
doi:https://doi.org/10.1016/j.jcis.2013.10.002
Chen, X., Huang, Y., Yang, G., Li, J., Wang, T., H. Schulz, O., & K.
Jennings, L. (2015). Polydopamine Integrated Nanomaterials and Their
Biomedical Applications. Current Pharmaceutical Design, 21 (29),
4262-4275.
Chia-Che Ho, S.-J. D. (2013). The pH-controlled nanoparticles size of
polydopamine for anti-cancer drug delivery. Journal of Materials
Science: Materials in Medicine, 24 (10), 2381–2390.
doi:https://doi.org/10.1007/s10856-013-4994-2
Clancy, C. M. R., & Simon, J. D. (2001). Ultrastructural Organization
of Eumelanin from Sepia officinalis Measured by Atomic Force Microscopy.Biochemistry, 40 (44), 13353-13360. doi:10.1021/bi010786t
Dong, Z., Gong, H., Gao, M., Zhu, W., Sun, X., Feng, L., . . . Liu, Z.
(2016). Polydopamine Nanoparticles as a Versatile Molecular Loading
Platform to Enable Imaging-guided Cancer Combination Therapy.Theranostics, 6 (7), 1031-1042. doi:10.7150/thno.14431
El Yakhlifi, S., Ihiawakrim, D., Ersen, O., & Ball, V. (2018).
Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles
Produced by NaIO4 Oxidation of Dopamine. Biomimetics, 3 (4), 36.
Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018).
Chitosan based hydrogels and their applications for drug delivery in
wound dressings: A review. Carbohydrate Polymers, 199 , 445-460.
doi:https://doi.org/10.1016/j.carbpol.2018.06.114
Han, L., Zhang, Y., Lu, X., Wang, K., Wang, Z., & Zhang, H. (2016).
Polydopamine Nanoparticles Modulating Stimuli-Responsive PNIPAM
Hydrogels with Cell/Tissue Adhesiveness. ACS Applied Materials &
Interfaces, 8 (42), 29088-29100. doi:10.1021/acsami.6b11043
Hauser, D., Estermann, M., Milosevic, A., Steinmetz, L., Vanhecke, D.,
Septiadi, D., . . . Rothen-Rutishauser, B. (2018).
Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing.Nanomaterials, 8 (12), 1065.
Hoffman, A. S. (2012). Hydrogels for biomedical applications.Advanced Drug Delivery Reviews, 64 , 18-23.
doi:https://doi.org/10.1016/j.addr.2012.09.010
Hu, J., Lou, Y., & Wu, F. (2019). Improved Intracellular Delivery of
Polyarginine Peptides with Cargoes. The Journal of Physical
Chemistry B, 123 (12), 2636-2644. doi:10.1021/acs.jpcb.8b10483
Hunt, J. A., Chen, R., van Veen, T., & Bryan, N. (2014). Hydrogels for
tissue engineering and regenerative medicine. Journal of Materials
Chemistry B, 2 (33), 5319-5338. doi:10.1039/C4TB00775A
Kang, S. M., Rho, J., Choi, I. S., Messersmith, P. B., & Lee, H.
(2009). Norepinephrine: Material-Independent, Multifunctional Surface
Modification Reagent. Journal of the American Chemical Society,
131 (37), 13224-13225. doi:10.1021/ja905183k
Kim, H.-K., Davaa, E., Myung, C.-S., & Park, J.-S. (2010). Enhanced
siRNA delivery using cationic liposomes with new polyarginine-conjugated
PEG-lipid. International Journal of Pharmaceutics, 392 (1),
141-147.
doi:https://doi.org/10.1016/j.ijpharm.2010.03.047
Knopf-Marques, H., Barthes, J., Lachaal, S., Mutschler, A., Muller, C.,
Dufour, F., . . . Vrana, N. E. (2019). Multifunctional polymeric implant
coatings based on gelatin, hyaluronic acid derivative and chain
length-controlled poly(arginine). Materials Science and
Engineering: C, 104 , 109898.
doi:https://doi.org/10.1016/j.msec.2019.109898
Koldsland, O. C., Scheie, A. A., & Aass, A. M. (2010). Prevalence of
Peri-Implantitis Related to Severity of the Disease With Different
Degrees of Bone Loss. Journal of Periodontology, 81 (2), 231-238.
doi:10.1902/jop.2009.090269
Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007).
Mussel-Inspired Surface Chemistry for Multifunctional Coatings.Science, 318 (5849), 426-430. doi:10.1126/science.1147241
Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for Tissue Engineering.Chemical Reviews, 101 (7), 1869-1880. doi:10.1021/cr000108x
Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug
delivery. Nature Reviews Materials, 1 , 16071.
doi:10.1038/natrevmats.2016.71
https://www.nature.com/articles/natrevmats201671#supplementary-information
Li, S., Zhang, L., Liang, X., Wang, T., Chen, X., Liu, C., . . . Wang,
C. (2019). Tailored synthesis of hollow MOF/polydopamine Janus
nanoparticles for synergistic multi-drug chemo-photothermal therapy.Chemical Engineering Journal, 378 , 122175.
doi:https://doi.org/10.1016/j.cej.2019.122175
Li, W.-Q., Wang, Z., Hao, S., He, H., Wan, Y., Zhu, C., . . . Zheng,
S.-Y. (2017). Mitochondria-Targeting Polydopamine Nanoparticles To
Deliver Doxorubicin for Overcoming Drug Resistance. ACS Applied
Materials & Interfaces, 9 (20), 16793-16802. doi:10.1021/acsami.7b01540
Mani, I., Sharma, V., Tamboli, I., & Raman, G. (2001). Interaction of
Melanin with Proteins – The Importance of an Acidic Intramelanosomal
pH. Pigment Cell Research, 14 (3), 170-179.
doi:doi:10.1034/j.1600-0749.2001.140306.x
Mateescu, M., Metz-Boutigue, M.-H., Bertani, P., & Ball, V. (2016).
Polyelectrolytes to produce nanosized polydopamine. Journal of
Colloid and Interface Science, 469 , 184-190.
doi:https://doi.org/10.1016/j.jcis.2016.02.023
Meloni, B. P., South, S. M., Gill, D. A., Marriott, A. L., Déziel, R.
A., Jacques, A., . . . Knuckey, N. W. (2019). Poly-Arginine Peptides R18
and R18D Improve Functional Outcomes After Endothelin-1-Induced Stroke
in the Sprague Dawley Rat. Journal of Neuropathology &
Experimental Neurology, 78 (5), 426-435. doi:10.1093/jnen/nlz014
Meredith, P., & Sarna, T. (2006). The physical and chemical properties
of eumelanin. Pigment Cell Research, 19 (6), 572-594.
doi:doi:10.1111/j.1600-0749.2006.00345.x
Mohamad, N., Loh, E. Y. X., Fauzi, M. B., Ng, M. H., & Mohd Amin, M. C.
I. (2019). In vivo evaluation of bacterial cellulose/acrylic acid wound
dressing hydrogel containing keratinocytes and fibroblasts for burn
wounds. Drug Delivery and Translational Research, 9 (2), 444-452.
doi:10.1007/s13346-017-0475-3
Mutschler, A., Tallet, L., Rabineau, M., Dollinger, C., Metz-Boutigue,
M.-H., Schneider, F., . . . Lavalle, P. (2016). Unexpected Bactericidal
Activity of Poly(arginine)/Hyaluronan Nanolayered Coatings.Chemistry of Materials, 28 (23), 8700-8709.
doi:10.1021/acs.chemmater.6b03872
Ng, V. W. L., Chan, J. M. W., Sardon, H., Ono, R. J., García, J. M.,
Yang, Y. Y., & Hedrick, J. L. (2014). Antimicrobial hydrogels: A new
weapon in the arsenal against multidrug-resistant infections.Advanced Drug Delivery Reviews, 78 , 46-62.
doi:https://doi.org/10.1016/j.addr.2014.10.028
Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009).
Synthetic polymer scaffolds for tissue engineering. Chemical
Society Reviews, 38 (4), 1139-1151. doi:10.1039/B811392K
Poinard, B., Neo, S. Z. Y., Yeo, E. L. L., Heng, H. P. S., Neoh, K. G.,
& Kah, J. C. Y. (2018). Polydopamine Nanoparticles Enhance Drug Release
for Combined Photodynamic and Photothermal Therapy. ACS Applied
Materials & Interfaces, 10 (25), 21125-21136.
doi:10.1021/acsami.8b04799
Ponzio, F., Barthès, J., Bour, J., Michel, M., Bertani, P., Hemmerlé,
J., . . . Ball, V. (2016). Oxidant Control of Polydopamine Surface
Chemistry in Acids: A Mechanism-Based Entry to
Superhydrophilic-Superoleophobic Coatings. Chemistry of Materials,
28 (13), 4697-4705. doi:10.1021/acs.chemmater.6b01587
Rathna, G. V. N., Mohan Rao, D. V., & Chatterji, P. R. (1996).
Hydrogels of Gelatin-Sodium Carboxymethyl Cellulose: Synthesis and
Swelling Kinetics. Journal of Macromolecular Science, Part A,
33 (9), 1199-1207. doi:10.1080/10601329608010914
Ribeiro, M., Ferraz, M. P., Monteiro, F. J., Fernandes, M. H., Beppu, M.
M., Mantione, D., & Sardon, H. (2017). Antibacterial silk
fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles
for bone regeneration. Nanomedicine: Nanotechnology, Biology and
Medicine, 13 (1), 231-239.
doi:https://doi.org/10.1016/j.nano.2016.08.026
Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N.,
Ramasamy, K., . . . Selvamurugan, N. (2010). Synthesis and
Characterization of NanoscaleHydroxyapatite-Copper for Antimicrobial
Activity Towards Bone Tissue Engineering Applications. Journal of
Biomedical Nanotechnology, 6 (4), 333-339. doi:10.1166/jbn.2010.1138
Sahraro, M., Barikani, M., & Daemi, H. (2018). Mechanical reinforcement
of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft
nanoparticles. Carbohydrate Polymers, 187 , 102-109.
doi:https://doi.org/10.1016/j.carbpol.2018.01.028
Salomé Veiga, A., & Schneider, J. P. (2013). Antimicrobial hydrogels
for the treatment of infection. Peptide Science, 100 (6), 637-644.
doi:doi:10.1002/bip.22412
Samberg, M. E., Loboa, E. G., Oldenburg, S. J., & Monteiro-Riviere, N.
A. (2012). Silver nanoparticles do not influence stem cell
differentiation but cause minimal toxicity. Nanomedicine, 7 (8),
1197-1209. doi:10.2217/nnm.12.18
Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., &
Selvamurugan, N. (2011). Preparation, characterization and antimicrobial
activity of a bio-composite scaffold containing
chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering.International Journal of Biological Macromolecules, 49 (2),
188-193.
doi:https://doi.org/10.1016/j.ijbiomac.2011.04.010
Sheffield, C., Meyers, K., Johnson, E., & Rajachar, R. M. (2018).
Application of Composite Hydrogels to Control Physical Properties in
Tissue Engineering and Regenerative Medicine. Gels, 4 (2), 51.
Stanić, V., Janaćković, D., Dimitrijević, S., Tanasković, S. B., Mitrić,
M., Pavlović, M. S., . . . Raičević, S. (2011). Synthesis of
antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone
tissue engineering. Applied Surface Science, 257 (9), 4510-4518.
doi:https://doi.org/10.1016/j.apsusc.2010.12.113
Trop, M., Novak, M., Rodl, S., Hellbom, B., Kroell, W., & Goessler, W.
(2006). Silver-Coated Dressing Acticoat Caused Raised Liver Enzymes and
Argyria-like Symptoms in Burn Patient. Journal of Trauma and Acute
Care Surgery, 60 (3), 648-652. doi:10.1097/01.ta.0000208126.22089.b6
Wang, L., Dai, W., Yang, M., Wei, X., Ma, K., Song, B., . . . Zhao, J.
(2019). Cell membrane mimetic copolymer coated polydopamine
nanoparticles for combined pH-sensitive drug release and near-infrared
photothermal therapeutic. Colloids and Surfaces B: Biointerfaces,
176 , 1-8.
doi:https://doi.org/10.1016/j.colsurfb.2018.12.057
Wei, Q., Zhang, F., Li, J., Li, B., & Zhao, C. (2010). Oxidant-induced
dopamine polymerization for multifunctional coatings. Polymer
Chemistry, 1 (9), 1430-1433. doi:10.1039/C0PY00215A
Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K. J., Madihally,
S. V., Köhler, G. A., & Tayebi, L. (2014). Hybrid Macroporous
Gelatin/Bioactive-Glass/Nanosilver Scaffolds with Controlled Degradation
Behavior and Antimicrobial Activity for Bone Tissue Engineering.Journal of Biomedical Nanotechnology, 10 (6), 911-931.
doi:10.1166/jbn.2014.1783
Yu, H., Xu, X., Chen, X., Lu, T., Zhang, P., & Jing, X. (2007).
Preparation and antibacterial effects of PVA-PVP hydrogels containing
silver nanoparticles. Journal of Applied Polymer Science, 103 (1),
125-133. doi:doi:10.1002/app.24835
Zhou, C., & Wu, Q. (2011). A novel polyacrylamide nanocomposite
hydrogel reinforced with natural chitosan nanofibers. Colloids and
Surfaces B: Biointerfaces, 84 (1), 155-162.
doi:https://doi.org/10.1016/j.colsurfb.2010.12.030
Zilberman, M. (2015). Drug delivery from gelatin-based systems AU -
Foox, Maytal. Expert Opinion on Drug Delivery, 12 (9), 1547-1563.
doi:10.1517/17425247.2015.1037272