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Abstract44

The structure of coral reef communities results from interacting evolutionary, ecolog-45

ical and environmental forces. How these factors interact in structuring these com-46

munities at a global scale, and how such effects might vary among biogeographical47

regions is unclear. We partitioned sources of reef community assemblage patterns by48

environmental, latent (i.e. unobserved), and random factors on 291 coral reefs dis-49

tributed across five biogeographical regions. We then estimated how these factors were50

related to variations in abundance and co-occurrence among 16 functional groups. La-51

tent factors better explained the distributions of opportunistic functional groups like52

algae, whereas environmental factors better explained abundance and co-occurrence of53

hard corals. Co-occurrence patterns revealed complex interactions between coral and54

algae groups that were not related to environmental factors but influenced by regional55

biogeography. Our results show that environmental factors are not the sole drivers of56

coral reef structure highlighting the importance of assemblage-level interactions and57

unobserved variables.58

Introduction59

Biological communities are shaped by processes that control the colonization of species60

from their regional species pool and subsequent interactions at finer spatial scales (Col-61

orado Zuluaga, 2015). These ecological processes operate at diverse spatial, temporal62

and taxonomic scales resulting in near infinite potential for unique community compo-63

sitions (Rapacciuolo & Blois, 2019). For example, speciation can influence community64

assemblage at coarse spatial and temporal scales whereas selection, dispersal and eco-65

logical drift can operate across multiple spatial and temporal scales (Vellend, 2010).66

Understanding global patterns of community assembly requires knowledge of underly-67

ing relationships that can be generalised across space and time (Connolly et al., 2017a;68

McGill, 2019; Rapacciuolo & Blois, 2019). The integration of ecological theories,69

different sources and types of data, and modern quantitative methods for ecological70
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communities are likely to be important in order to consider the complexity associated71

with the understanding of multispecies assemblages (Ovaskainen et al., 2017; Vercel-72

loni et al., 2017; Sequeira et al., 2018; Pearse et al., 2018; Wüest et al., 2019; Brandl73

et al., 2019; Rapacciuolo & Blois, 2019).74

A fundamental approach of community assembly patterns is to understand the in-75

fluence of environmental forces in selecting the most adapted species (Rapacciuolo &76

Blois, 2019). In particular, the current focus on abiotic drivers of community struc-77

ture has been reinforced by the unprecedented loss of biodiversity as a result of global78

changes in climates and habitats (Ceballos et al., 2015). Concurrently, new perspec-79

tive on species coexistence emphasizes the importance of biotic interactions and other80

relationships unrelated to the environmental conditions in shaping community struc-81

ture such as variation in species traits (Kraft et al., 2015; Cadotte & Tucker, 2017;82

Ovaskainen et al., 2017). Indeed, organisms that share similar ecological traits (or83

function) tend to be selected in the same ways resulting in positive co-occurrences84

within an assemblage (Cadotte et al., 2013; Mouillot et al., 2013). These ecological85

differences among taxa can restrict the transfer from assemblage-level patterns and86

associated relationships across spatial scales (Yates et al., 2018). Some of these eco-87

logical traits are themselves correlated with environmental factors (Cadotte & Tucker,88

2017). Therefore, shifts in an assemblage may be the result of changes in community89

structuring mechanisms such as lower population growth rates which cannot be esti-90

mated using presence/absence (i.e. observational) data only; Kraft et al. (2015). De-91

spite current limits to our understanding of how ecological communities are structured,92

generalizing the effects of environmental pressures at an assembly level is essential for93

predicting their structural changes across spatial scales (Sequeira et al., 2018; Yates94

et al., 2018).95

Coral reefs are being exposed to more and more frequent and intense disturbances96

(Hoegh-Guldberg, 2014; Hughes et al., 2017; Bellwood et al., 2019b; Hoegh-Guldberg97

et al., 2019). Recent changes in reef assembly patterns have been largely attributed to98

changing disturbance regimes including the increased frequency of thermal anomalies99

(Heron et al., 2016; Hughes et al., 2018), intensity of cyclones (Puotinen et al., 2016),100
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coral diseases (Maynard et al., 2015), predator outbreaks (Kayal et al., 2012), human101

population pressure (Darling et al., 2019) and over-fishing (Mellin et al., 2016). These102

pressures can shape coral reef assemblies by selecting against maladapted species (Dar-103

ling et al., 2013; Mouillot et al., 2013; Kayal et al., 2015) which are filtered out and104

replaced by generalist species that are typically more stress-tolerant (Darling et al.,105

2012; Kayal et al., 2018). Hard corals in reef communities interact with other benthic106

groups including competing for space and light (Brown et al., 2018), processes that107

can shift community dominance away from hard corals in the presence of high levels108

of environmental pressure (Hughes et al., 2003; Norström et al., 2009). Therefore, un-109

derstanding disturbance impacts on community assembly patterns in complex ecosys-110

tems such coral reefs requires accounting for potential interactions among species and111

environmental regimes (Warton et al., 2015; Fisher et al., 2015).112

To address this shortfall in our understanding of coral reef assembly patterns across113

spatial and taxonomic scales, we partitioned reef benthic community structure based114

on three potential sources of variation; (1) environmental factors composed of three115

major reef disturbance types: human population density, cyclone exposure and coral116

bleaching; (2) latent factors related to sources not accounted for by responses to the117

environmental factors such as biotic interactions or missing environmental informa-118

tion, and (3) random factors at the reef level. The structure of coral reef community119

assemblies was estimated from half million of images from the regions of the west-120

ern Atlantic Ocean, eastern Australia, central Indian Ocean, central Pacific Ocean and121

Southeast Asia (González-Rivero et al., 2019). Images were automatically annotated122

using machine learning image analysis (González-Rivero et al., 2020) and character-123

ized using up to 16 benthic coral reef functional groups. We hypothesize that the en-124

vironmental factors will be the primary drivers of reef assembly patterns, as quantified125

by our expectation that they would explain a higher proportion of variation in com-126

munity assembly patterns. This hypothesis is consistent with earlier studies that found127

environmental factors are strong drivers of benthic distributions (Darling et al., 2013;128

Mouillot et al., 2013; Darling et al., 2019). We also hypothesize that the latent factors129

would capture biotic interactions among benthic functional groups, namely the direct130
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interactions between algae and hard corals (Hughes et al., 2003; Brown et al., 2018).131

This approach allows us to explore sources of community assembly patterns across132

broad spatial scales creating new insights on regional variation in structuring fine-scale133

benthic coral reefs assemblies.134

Methods135

Data processing. Compositional data were collected across kilometers of coral136

fore-reef slopes from the Atlantic, Australia, Indian Ocean, Pacific and Southeast (SE)137

Asia (González-Rivero et al., 2019; González-Rivero et al., 2020) and used to assess138

assembly patterns of benthic flora and fauna within coral reefs at the regional scale139

(Fig. 1). Surveys were conducted over the period September 2012 - May 2016, with140

surveys occurring prior to any regional mass coral bleaching events of 2014-2017.141

They were conducted on reef slopes between 8 to 12 meters depth using dive propulsion142

vehicles fitted with cameras that acquired 1 x 1 m2 high-definition, downward-facing143

reef images every three seconds along two kilometer long transects (González-Rivero144

et al., 2014). A convolutional neural network was used to automatically classify benthic145

categories and estimate their relative abundances per geo-referenced image (González-146

Rivero et al., 2020). The protocol involved manual annotation of hundreds images by147

experts in coral reef species identification using the CoralNet platform (Beijbom et al.,148

2015). For each image, 100 randomly placed points were manually assigned a benthic149

category to train the machine learning algorithm and find the optimal neural network150

parameterisation that minimized model errors (González-Rivero et al., 2016; González-151

Rivero et al., 2020). Abundances of benthic categories on the remaining images were152

then automatically estimated based on 50 random points per image deriving propor-153

tions of different benthic categories per m2. This method was applied independently to154

each biogeographical region using different target categories. Benthic categories were155

chosen for their functional relevance to regional coral reefs and their ability to be reli-156

ably identified from images (González-Rivero et al., 2016). A total of ∼ 447,000, 1 x157

1 m2 reef images, were automatically annotated by the machine learning algorithm.158
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Figure 1: Locations of the surveyed coral reefs at the global scale (top map) and
within the five biogeographical regions (bottom maps). Data are accessible through the
following open access repository: https://espace.library.uq.edu.au/
view/UQ:734799, (González-Rivero et al., 2019).
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Characterization of community assembly. Coral reef communities were159

characterized at the reef scale using up to 16 functional groups that were based on160

broad morphological traits (Table 1). These functional groups ensured consistent com-161

parisons across biogeographical regions, by assuming similar functions. The influences162

of the data aggregation into functional groups were tested through a case study using163

data from the Atlantic region. In this region, lower species diversity enabled the coral164

reef benthic communities to be sampled at the finest taxonomic level allowable (genera165

in most cases), giving us the opportunity to test the effects of the functional grouping166

on the estimation of assembly patterns (See Case Study in Supplementary Material,167

SM).168

Table 1: Description of the functional group and their presence in the Atlantic (Atl),
Australia (Aus), Indian Ocean (Ind), Pacific (Pac) and SE Asia (Asia) regions.

Functional group Benthic group Morphological traits Region

ACR BRA hard coral branching and hispidose Acropora spp. Atl, Aus, Ind and Asia
ACR TCD hard coral table, corymbose and digitate Acropora spp. Aus, Ind and Asia
BRA nACR hard coral branching non-Acropora spp. All
ELS hard coral encrusting, laminar and submassive Atl and Pac
FLP hard coral foliose, laminar and plate All
FREE hard coral free living Ind and Asia
MSE hard coral massive, submassive and encrusting All
MSEM hard coral massive, submassive and encrusting mendroid All
NON HERM hard coral non-hermatypic Atl, Ind and Asia
GORG soft coral mixed fragile soft corals Atl, Aus, Ind and Asia
OTH-SF soft coral encrusting and erect Atl, Aus, Ind and Asia
SPONG other sponges (excl. cryptic sponges) Atl, Ind, Pac and Asia
CCA algae crustose coralline algae All
EAM algae epilithic algal matrix (<1 cm in height, i.e. Turf algae) All
MACRO algae upright macroalgae (>1 cm in height) and cyanobacteria mats All
NON COLONIZABLE, Sedi other sand, terrigenous sediments and unconsolidated rubble All

Reef community assemblies were estimated by reef and region using a sampling169

design approach (SM1). The relative proportions of functional groups per image were170

used to estimate Spearman rank pairwise-correlation values within each transect. Based171

on these correlation values we determine the minimum number of images needed to172

ensure that the functional group abundances were representative at the transect scale.173

Indeed, community assembly patterns at the image level do not represent the scale at174

which the coral reef communities typically aggregate. A lack of consideration for spa-175

tial properties of benthic organisms can hinder the detection of spatial and temporal176

changes and lead to erroneous statistical conclusions (Perkins et al., 2019). Here, we177

assumed that community assemblies at the transect level were relatively homogeneous178
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for the purpose of the study. A total of 291 reef assemblages across five biogeograph-179

ical regions were obtained using this approach. At the regional scale, the Atlantic was180

the most surveyed region with 108 reefs, followed by the Indian Ocean (58 reefs), SE181

Asia (49 reefs), Australia (34 reefs) and the Pacific (42 reefs). When more than one182

transect per reef was available, the average of the minimum number of images across183

transects was used to obtain coral reef community assemblages at the reef scale. In184

the Pacific, community assemblages at the transect scale were used in the analysis185

because the main Hawaiian islands are composed of fringing reefs that are not distin-186

guishable from each other. The proportions of each functional group per reef were then187

transformed into counts by multiplying these values by 50 as per the machine learning188

image analysis (González-Rivero et al., 2020).189

Environmental factors of community assembly. Environmental pressures190

were characterized using three global datasets. For every surveyed reef location, met-191

rics for human population density (Doxsey-Whitfield et al., 2015), historical exposure192

to damaging cyclones (Carrigan & Puotinen, 2011) and coral bleaching occurrences193

(Donner et al., 2017) were extracted (SM2). Each raster layer was reprojected and194

resampled to facilitate the integration with reef community data and their associated195

spatial extent. For reef locations with missing values of environmental pressures, the196

closest known values from neighboring reef areas were used. These environmental197

pressures were chosen for consideration as they are assumed to be strong drivers of198

reef community structure (Nyström et al., 2000; Hughes et al., 2003) and are avail-199

able at the global scale. For example, a high level of cyclone exposure reduces the200

abundance of branching corals and increases the presence of coral rubble (i.e. un-201

consolidated assemblage) (Cheal et al., 2017). In this study, ”Cyclone exposure” was202

defined as the average number of days of exposure to cyclonic conditions (i.e. gale203

force winds of at least 63 km/hr) between 1985-2009. The tracks of cyclones were204

derived from climate historical records (Knapp et al., 2010) and cyclonic conditions205

reconstructed for each cyclone that followed the above conditions. These data were206

then combined into a grid with a 50 km spatial resolution and predicted for each day207
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between 1985-2009 (Carrigan & Puotinen, 2011). Human population densities, which208

can impact coral reef ecosystem functioning (Mora et al., 2011), were estimated as the209

number of people per square kilometer from a gridded map that partitioned records210

from the 2010 round of censuses into cells of ∼ 1 km resolution. This approach pro-211

duces a comparable metric between countries by removing the variety in country size212

and shape (Doxsey-Whitfield et al., 2015). ”Bleaching occurrence” was defined as the213

maximum probability of coral bleaching based on observations from 1987 to 2010.214

Yearly bleaching probabilities were spatially interpolated at a 5 km spatial resolution215

from a logistic model using coral bleaching presence-only data. Where available, pub-216

lished coral bleaching reports with at least 10% coral bleaching were used, for a given217

year. In years when no reports were published, positive Degree Heating Week val-218

ues from NOAA Coral Reef Watch (Eakin et al., 2010) were used as a proxy for the219

presence of bleaching.220

For each biogeographical region, environmental pressures were categorized as ”high”221

or ”low” based on the median values of their distribution (SM2). The raster (Hijmans222

et al., 2015) and gdistance (Etten, 2017) packages for these analyses in R statistical223

Software (R Core Team, 2019).224

Modelling community assembly patterns. Coral reef assembly patterns225

were partitioned using a multivariate latent variable model (Warton et al., 2015; Hui,226

2016). Community assembly patterns were characterized as relative counts for each227

reef i, and functional group j. Counts were modelled using a negative binomial dis-228

tribution (NB) parameterized with a mean parameter (µi j) and an over-dispersion pa-229

rameter (φ j) specific to the functional group. These parameters were linked to linear230

factors via a log-link. The linear factors account for three different sources of assembly231

patterns (Eq. 1).232
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yi j ∼ NB(µi j, φ j)

log(µi j) = θi + xT
i β j + zT

i λ j

(1)

The environmental factors, xT
i β j, are composed of three environmental predictors233

and an intercept β j0 that accounts for differences in functional group abundance (Eq. 2).234

These factors were used to estimate community assemblage patterns due to similarities235

in responses to environmental pressures.236

xT
i β j = β j0 +β j1Cyclonei +β j2Bleachingi +β j3HumanDensityi

(2)

The latent factors, zT
i λ j, were used to estimate the residual patterns in community237

assembly that were not accounted for by responses to environmental factors (Letten238

et al., 2015). These factors are composed of two correlated latent variables zT
i formu-239

lated as random parameters and loading factors λ j (Eq. 3). Other sources of variation240

such as biotic interactions (e.g. competition), missing predictors and other influential241

drivers not related to the major environmental pressures (i.e. latent) were captured242

within this component (Warton et al., 2015). In addition, the reef-level intercepts (θi)243

are modelled as a random effect.244

zT
i λ j = zi1λ j1 + zi2λ j2

(3)

The joint hierarchical structure of this multivariate model is the key to exploring the245

sources of variation in the abundance and co-occurrence of several functional groups246
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that make up coral reefs communities across biogeographical regions (Warton et al.,247

2015; Hui, 2016; Ovaskainen et al., 2017). Co-occurrences were parameterized using248

multivariate normal distributions with mean equal to 0 and covariance c0I (Eq. 4).249

zi1 ,zi2 ∼ N (0, I)

β j0 ,β j1 ,β j2 ,β j3 ,θi,λ j1 ,λ j2 ∼ N (0, c0I)

φ ∼ U (0, 10)

c0 = 10 (4)

The model was implemented for each biogeographical region independently be-250

cause all functional groups were not present in all regions. The R package Boral (Hui,251

2016) was used to implement the model. Posterior distributions were based on 1,400252

iterations derived from Markov Chain Monte Carlo (MCMC) simulations of length253

90,000 with the first 3,000 discarded as the burn-in period and a thinning rate of 50254

iterations. Diagnostic checks of the MCMC were performed visually using trace and255

density-plots of parameters.256

Model selection and assessment results are presented in SM3. The best model for-257

mulation was selected from 12 different models using the Deviance Information Crite-258

ria (Figures SM3−1 to −4). Spatial correlations between community assemblies were259

tested using Euclidean distances and the exponential correlation structure on the latent260

factors. Model validation was assessed by examining Bayesian posterior predictive261

distributions of the response variables. Posterior predictive distributions preserve the262

same structure than the data (Gelman et al., 1996), which allowed us to assess model263

fit for each functional group between regions. The discrepancy distributions were es-264

timated from the differences between posterior predictive distributions and observed265

counts for each MCMC simulation (Figures SM3−5 to −8). These distributions were266

used to compute posterior predictive p-values and root mean squared errors (RMSE,267

Tables SM3−1 to −4). These assessments can be compared to cross-correlation ap-268

proaches typically used for model validation with the added benefit of being able to be269
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implemented directly from model outputs. Model goodness-of-fit was also diagnosed270

by plotting observed values against discrepancy distributions, overall predicted versus271

observed data and model residual distributions per functional group.272

Sources of community assemblage patterns. Variance decomposition was273

used to partition sources of variation in the abundance of each functional group across274

regions. This approach uses the total variance associated with parameter estimates275

from the linear predictors (Eq. 1) and assigns a percentage of variability based on their276

proportions (Hui, 2016). If the variation in functional composition of communities is277

mainly associated with variation in environmental factors, this suggests that specific en-278

vironmental requirements are needed in order for those functional groups to be present279

on a reef.280

Interactions between functional groups were explored using the residual correla-281

tion from the covariance matrix. We interpreted these correlations as evidence of co-282

occurrence related to interactions not accounted for by responses to the environmental283

factors we examined. Interactions due to shared responses to environmental factors284

were estimated by calculating the covariance between model estimates of environmen-285

tal factors. Co-occurrence is expressed in terms of significant correlations varying286

between -1 and 1 where 95% credible intervals of their posterior distributions did not287

include zero. The R package Boral was used to partition these sources of interactions288

(Hui, 2016).289

Results290

Structure of community assembly across regions A total of 8 functional291

groups were common to all five regions, with a maximum of 15 groups occurring in292

the Indian Ocean and SE Asia regions and a minimum of 10 groups occurring in the293

Pacific (Table 1). The most abundant functional group was the ”epilithic algal ma-294

trix” (EAM) with similar proportions across regions, varying between 51.4% ±11.2%295

Standard Deviation (SD) and 65.6% ±13.4% SD (Fig. 2). Hard corals were the sec-296

ond most abundant group with total coverage estimated as ranging between 18.8% to297
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26.5% in all regions with the exception of the Atlantic. For the Atlantic region, hard298

corals were estimated to be less than 7.5% with assemblages mostly dominated by299

macroalgae (MACRO, 11.6% ±8.6% SD) and mixed fragile soft corals (GORG, 6.3%300

±5.7% SD) followed by EAM and sediments. Massive, submassive and encrusting301

(MSE) forms of hard corals were the most abundant in the Indian Ocean (9.1% ±6.4%302

SD) and SE Asia (7.0% ±4.2% SD) and branching non-Acropora (BRA nACR) in the303

Pacific (9.4% ±12.3% SD) and Australia (5.7% ±3.1% SD) (Fig. 2). Encrusting and304

erect forms of soft corals (OTHER-SF) were abundant in Australia (7.4% ±5.0% SD)305

and SE Asia (7.8% ±9.9% SD).306
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Figure 2: Proportions of the 16 coral reef functional groups by benthic group and re-
gion. Dots show the mean proportions in percentage and error bars denote the standard
errors. Missing dots show an absence of observations for specific functional group per
region. Proportions were log-transformed for visualisations.

Environmental factors of community assembly. Human population den-307

sity was low in Australia with a median value close to zero (Fig. 3a, Fig. SM2-2).308

Cyclone exposure was absent on surveyed reefs of the Indian Ocean and Pacific (Figs.309

SM2-3 and -4) whereas SE Asia showed the greatest exposure to cyclones specifically310
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in the Taiwan sub-region with an average of 17.4 ±1.1 days of exposure to cyclonic311

conditions (Fig. 3b). The median values of coral bleaching probability were close to312

zero for the Pacific and SE Asia, reaching 20% in Australia and greater than 50% in313

the Atlantic and, close to 1 in the Indian Ocean (Fig. 3c).314

Figure 3: Distributions of environmental pressures for the five biogeographical regions.
The grey dots represent the individual coral reefs within regions, slightly jittered for
better visualisation. The coloured dots show the median values that were used as cut-
offs to define the low and high environmental pressure levels. The coloured lines de-
limit 95% of the data distribution.

Community assembly patterns. The multivariate models performed in sim-315

ilar ways across the biogeographical regions (SM3). Model parameters for the first316

latent factor (LV1) showed positive and negative means across functional groups and317

regions and variable uncertainties in model estimates. The second latent factor (LV2)318

and environmental factors were often close to zero with smaller credible intervals (Figs.319

SM3−10 to −14). The effect of environmental pressures was not consistent across re-320

gions. However, validation diagnostics show that the models provided satisfactory fits321

to the data. The posterior predictive p-values were close to 0.5 indicating good model322

fit, excepted for one or two functional groups per region, (p-values ∼ 0.80, Tables323

SM3−1 to −4). The RMSE values were largest for the epilithical algae (EAM) and324

non-colonizable (e.g. sediments, rubble and sand) groups; noting that observed EAM325

values were also consistently outside the discrepancy distributions (Figs. SM3−5 to326

−9).327
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Sources of community assemblage patterns. Within the Atlantic, Pacific328

and Indian Ocean regions, variance decomposition of functional groups was mainly as-329

sociated with variation in the latent factors (Fig. 4a). Variation in the presence of func-330

tional groups was comparable between Australia and SE Asia, but were not related331

to any particular factor (variance ∼ 50%). Among functional groups across regions332

(Fig. 4b), the sources of occurrence of fragile corals such as ACR BRA, BRA nACR,333

and also gorgonians (GORG) were related to the environmental factors; whereas al-334

gal groups such as MACRO, EAM and CCA were associated with the latent factors.335

The Atlantic displayed the highest variability among functional groups for both envi-336

ronmental and latent factors suggesting that cyclone exposure was strongly associated337

with the occurrence of hard corals and gorgonians associated with human density and338

bleaching occurrence (Fig. SM4−1).339

Figure 4: Partitioning of variance by source and region (a) and functional group (b).
The bars show variance values used to produce the distributions. Two functional groups
are missing in panel B because they were present in only two biogeographical regions
precluding estimation of their distributions.

Ecological interactions were associated with the latent and environmental factors in340

all regions except for Australia and the Pacific, which had no significant co-occurrences341

related to latent and environmental factors, respectively (Fig. 5 and Figs. SM4−2 and342
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−5). The co-occurrence patterns related to the latent factor in the Atlantic revealed343

strong positive correlations between fragile (GORG) and encrusting and erect (OTH-344

SF) octocorals and massive hard corals (MSE and MSEM) and negative correlations345

with macroalgae (MACRO). Branching and hispidose Acropora spp. (ACR BRA) and346

epilithic algal matrix (EAM) were also positively correlated with massive hard corals347

(MSE and MSEM). In the Indian Ocean, the major Acropora groups (ACR BRA and348

ACR TCD) were positively correlated with each other and were negatively correlated349

with coralline algae (CCA) and other branching non-Acropora species (BRA nACR).350

In SE Asia, MSE corals were positively correlated with EAM. Co-occurrence patterns351

related to shared environmental responses were positively related between BRA nACR352

and ACR TCD in Australia, both being negatively correlated to EAM. Two indepen-353

dent patterns were revealed in the Atlantic with positive correlations between branching354

non-Acropora spp. and foliose, laminar and plate (BRA nACR and FLP, respectively)355

corals and BRA nACR-MSE and negative correlations between GORG and soft sed-356

iments (Sedi). In the Indian Ocean, octocorals (OTH-SF and GORG) responded in a357

similar way to environmental responses and were negatively correlated with EAM. Two358

additional patterns were found in SE Asia, where MSE and FLP corals were positively359

correlated with one another and negatively correlated with FREE and Sedi. The sec-360

ond pattern was a positive correlation between GORG and EAM, both of which were361

negatively correlated with OTH-SF.362
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Figure 5: Significant interactions between functional groups (whose 95% credible in-
tervals did not contain zero), by source with latent (red) and environmental (green)
factors, and region. For example a red line going from MACRO to MSE in the At-
lantic region means that a negative co-occurrence between macroalgae and massive
hard corals was estimated. Empty networks denote an absence of significant correla-
tions. See (Table 1) for descriptions of functional groups.
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Discussion363

Using a global dataset with unprecedented high taxonomic and spatial resolution, we364

evaluated the importance of environmental pressures versus latent factors on coral reef365

benthic communities. Importantly, our approach allowed us to detect strong commu-366

nity assembly patterns (coral-algae, coral-coral) not associated to environmental forces367

as important sources of community structure variability at a regional scale. The esti-368

mation of community assembly patterns in marine ecosystems, including tropical coral369

reefs, has contributed to a better understanding of the size and membership of regional370

species pools (Plaisance et al., 2011; Knowlton et al., 2010; Caley et al., 2014; Fisher371

et al., 2015), the development and application of theoretical models for predicting372

global patterns of community assembly (Bellwood et al., 2005; Dornelas et al., 2006;373

Connolly et al., 2017a), and how the behavior of biodiversity indices affects of our abil-374

ity to quantify community structure and diversity (Loiseau & Gaertner, 2015; Connolly375

et al., 2017a). Research interest in reef community assembly is shifting towards a bet-376

ter understanding of ecosystem function and associated drivers versus species identity377

in coral reef structure in order to maintain its functionalities in a changing environment378

(Darling et al., 2012; Mouillot et al., 2013; Bellwood et al., 2019b; Brandl et al., 2019).379

The approach and findings associated to the present study open new opportunities for380

reaching this goal.381

Community assembly across functional groups. As expected, environ-382

mental factors drove the abundance of the branching hard corals and the co-existence383

of different forms of hard corals because of their similar environmental requirements384

(Done et al., 1983). The percentage of observed variation in functional groups by re-385

gion explained by the environmental factors varied between 16.9-50.5% which is in386

the range of other global studies (Darling et al., 2019). The novelty of this study is387

that we were able to explore sources of variability after accounting for environmental388

predictors. Complex algae-corals and corals-corals interactions were detected within389

the latent components including the Atlantic and Indian Ocean regions. Several forms390

20



of interactions between these groups have been observed, such as coral-macroalgae391

competition. Our findings of correlations among functional groups may not be solely392

attributable to biotic interaction and may also be related to environmental predictors not393

accounted for in this study (Warton et al., 2015; Dormann et al., 2018). The broad spa-394

tial scale of our study challenged the choice of environmental factors and levels of data395

aggregation into ecological groups. The combination of the three global datasets that396

were used to explain reef community structure was not relevant for all the regions. For397

example, the reefs surveyed in the Pacific were not exposed to cyclonic conditions and398

bleaching before September 2015 along with minimal cyclone exposure in the Indian399

Ocean. Also, the range of values was narrow for bleaching occurrence in the Indian400

Ocean and SE Asia and human population in Australia which impeded statistical detec-401

tion of their effects on reef community structure. These variable patterns of occurrence402

were reflected in the large uncertainties estimated by the model for some environmental403

factors in some locations. Using continuous values of these variables maybe more in-404

tuitive than their categorization into the low and high environmental pressure levels as405

done here. However, the almost half million observations used to estimate reef assem-406

blies ensured a broad range of combinations of responses of these communities for a407

similar level of environmental pressure. The functional groupings used here was based408

on broad morphological forms only, and therefore, does not consider life traits such as409

reproduction mode, growth rate and heat-stress tolerance that may be important in driv-410

ing the structure of hard coral communities in response to disturbances (Darling et al.,411

2012). Currently, however, challenges associated with the development of coral reef412

trait-based data (Madin et al., 2016) and the high diversity of coral reefs (Brandl et al.,413

2019) impede the integration of different types of data other than abundances into com-414

munity assembly approaches as compared to for example terrestrial plants (HilleRis-415

Lambers et al., 2012) or macroorganisms (Aguilar-Trigueros et al., 2017). Despite this416

limitation, the application of the model and associated analyses using data at a finer tax-417

onomic scale for the Atlantic region shows that functional grouping are able to capture418

the main trends (i.e. case study). The assembly patterns found are in agreement with419

some of the long established observations by ecologists about bioregional differences420
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in community structuring, for example, the predominance of gorgonians in the Atlantic421

at surveyed depths and other soft coral types in the Pacific (Spalding et al., 2001). Our422

approach here, therefore, is arguably a reasonable method to improve estimations of423

patterns of reef community assembly at a relatively fine taxonomic resolution, parti-424

tion their variability into different sources, and gain knowledge about their potential425

drivers.426

Community assembly across regions. The structure of community assem-427

blies across five biogeographical regions were estimated in a consistent manner and428

spanned a broad range of environmental gradients, biodiversity, historical factors, and429

phylogeny. Comparing these communities in this way allows for a space-for-time sub-430

stitution in understanding the main drivers of community assembly patterns. In our431

study, drivers of community assembly were different across regions. Reef structures in432

the Indian Ocean and Pacific were mostly driven by the latent factors only, equal contri-433

butions of latent and environmental factors in SE Asia and Australia, or had no distinct434

pattern in the Atlantic. This is likely to be due to the comparatively less impacted state435

of Indian Ocean and Pacific allowing latent factors to present, compared to the highly436

impacted state of the Caribbean where communities have been strongly pushed in one437

direction by environmental pressures, or other underlying factors (Roff & Mumby,438

2012). Broadly, the finding that the Atlantic is the one region no longer dominated by439

coral is an indication that the drivers that govern the assembly of such ecosystems are440

likely to be different compared to the Indo-Pacific. However, additional investigations441

would be needed to understand if these similarities in responses to different drivers are442

associated with broad spatio-temporal scales processes such the evolutionary history of443

oceanic basins (Veron, 2000), disturbance regimes, or other common drivers that con-444

tributed to shape the community assembly in the same ways (Roff & Mumby, 2012;445

Darling et al., 2019). Our findings also suggest that assumption of similar mechanisms446

of community assembly drivers across regions is potentially problematic. Challenges447

associated with regional variability were previously mentioned in some key papers that448

compared reef assemblies between the Indian Ocean and Pacific (Bellwood & Hughes,449
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2001), the Caribbean and the Indo-Pacific (Roff & Mumby, 2012) and across the Pa-450

cific region (Smith et al., 2016).451

Most global analyses of coral reefs integrate measurements from different surveys452

with distinct sampling methodologies which is useful in order to improve spatial pre-453

dictions when data are sparse (Peterson et al., 2018). However, data integration in-454

fluences estimation of abundance in rare species (Perkins et al., 2016) and habitat455

structures (Griffin et al., 2017) and ultimately impacts estimation of spatio-temporal456

changes (Perkins et al., 2019) and drivers of reef community structure (Darling et al.,457

2019). While these aspects were controlled in our analyses, differences in sampling in-458

tensity, from a minimum of 34 reefs surveyed in Australia to 108 reefs in the Atlantic,459

may have contributed to hinder detection of common drivers of community assembly460

across regions. The size of single coral reef differed greatly between regions com-461

plicated further the application of the method across regions. It is also possible that462

patterns of reef community assembly operate at spatial scales finer than the region.463

This specific finding reveals the importance of considering for regional variability in464

the establishment of global management strategies because similar actions may lead to465

different outcomes depending on the geographical location (Brandl et al., 2019).466

The joint hierarchical modelling approach. The spatial mismatch between467

environmental impacts and management interventions is important to address in order468

to protect coral reefs from further climate change (Bellwood et al., 2019b). Envi-469

ronmental drivers tend to have the best predictability at sub-regional to global scales,470

while corresponding ecological responses have their highest predictability at fine scales471

(Eakin et al., 2019). New techniques that use the rapid acquisition of images which are472

then analysed using artificial intelligence have huge potential to help bridge this gap473

(González-Rivero et al., 2020). However, additional challenges appear when dealing474

with big data including the use of traditional analytical methods (Wüest et al., 2019).475

To date, only Brown & Hamilton (2018) used a joint hierarchical modelling approach476

to estimate the impacts of pollution on benthic reef communities in the Solomon Is-477

lands. These authors were able to predict compositional turnover across a gradient of478
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turbidity by introducing latent variables in their model. Here, we used latent variables479

to account for interactions between functional groups that were not captured by the480

environmental factors. This approach can be compared to the use of correlation struc-481

tures that capture the residual spatial variability not accounted by model predictors.482

Latent variables have the benefits of being estimated by a model and allow to reduce483

the number of model parameters to be estimated (Warton et al., 2015; Connolly et al.,484

2017b; Brown & Hamilton, 2018). This approach creates new opportunities to predict485

abundance and co-occurrence across many coral reef communities and understand the486

effects of different evolutionary, ecological, and environmental forces, at management487

scales.488

Conclusions. While global strategies for the conservation of coral reefs are crit-489

ically important for curbing further declines (Hughes et al., 2017; Bellwood et al.,490

2019a; Hoegh-Guldberg et al., 2019), the knowledge gaps associated with broad spatial491

scale estimation of patterns of reef community assembly may challenge the practical492

application of these strategies (Brandl et al., 2019). Here, we have used a global coral493

reef datasets to partition sources of reef community structure and predict assembly pat-494

terns across 16 functional groups, from half million of 1 x 1 m2 images to entire bio-495

geographical regions. We estimated a small contribution of our environmental factors496

which potentially highlights relevance and spatial mismatches between these drivers497

and reef assembly responses. Accounting for the evolutionary and biogeographical498

context of the changes observed on reef assemblies is important but challenging in499

terms of characterization and quantification. However, focusing on the variation not500

accounted for by responses to environmental factors, we predict complex interactions501

at the assembly-level influenced by regional biogeography. Environmental factors may502

not be the unique drivers of coral reef structure in which the contributions of diverse503

functional groups could also play a role in structuring coral reef ecosystems. That is,504

focusing on a few key functional groups instead of species diversity per se may con-505

tinue to impede a more complete understanding of patterns of community assembly on506

coral reefs across space and time. Recent improvements in collection and integration of507
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different data types across taxonomic, ecological traits and spatial resolutions (Wüest508

et al., 2019), unified model-based methods (Warton et al., 2015; Hui, 2016; Ovaskainen509

et al., 2017) and new concepts of ecosystem functioning (Kraft et al., 2015; Brandl510

et al., 2019; Rapacciuolo & Blois, 2019) are promising to guide the development of511

future quests on the origins of coral reef biodiversity.512

Acknowledgments. The authors would like to thank the XL Catlin Seaview Sur-513

vey, Vulcan Inc., the Global Change Institute, the Ocean Agency, Underwater Earth,514

the Waitt Foundation, the Living Oceans Foundation, the Joy Family Foundation, the515

Australian Department for Energy and Environment, CARMABI, BIOS, the Indone-516

sian Institute of Sciences, Karimunjawa National Park Office, Bunaken National Park517

Office, Tubbataha Management Office, Jon Schleyer, the Chagos Conservation Trust,518

Maldives Marine Research Institute, Academia Sinica, Allen Chen, NOAA and IUCN519

for their support. This research was funded by XL Catlin Ltd. (now AXA XL; to OHG)520

and the Australian Research Council (ARC Laureate and ARC Centre for Excellence521

to OHG).522

References523

Aguilar-Trigueros, C.A., Rillig, M.C. & Ballhausen, M.B. (2017). Environmental fil-524

tering is a relic. a response to cadotte and tucker. Trends in ecology & evolution, 32,525

882–884.526

Beijbom, O., Edmunds, P.J., Roelfsema, C., Smith, J., Kline, D.I., Neal, B.P., Dunlap,527

M.J., Moriarty, V., Fan, T.Y., Tan, C.J. et al. (2015). Towards automated annotation528

of benthic survey images: Variability of human experts and operational modes of529

automation. PloS one, 10, e0130312.530

Bellwood, D., Hughes, T., Connolly, S. & Tanner, J. (2005). Environmental and geo-531

metric constraints on indo-pacific coral reef biodiversity. Ecology Letters, 8, 643–532

651.533

25



Bellwood, D.R. & Hughes, T.P. (2001). Regional-scale assembly rules and biodiversity534

of coral reefs. Science, 292, 1532–1535.535

Bellwood, D.R., Pratchett, M.S., Morrison, T.H., Gurney, G.G., Hughes, T.P., Álvarez-536
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Wüest, R.O., Zimmermann, N.E., Zurell, D., Alexander, J.M., Fritz, S.A., Hof, C.,750

Kreft, H., Normand, S., Cabral, J.S., Szekely, E. et al. (2019). Macroecology in the751

age of big data–where to go from here? Journal of Biogeography.752

Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., Field-753

ing, A.H., Bamford, A.J., Ban, S., Barbosa, A.M. et al. (2018). Outstanding chal-754

lenges in the transferability of ecological models. Trends in Ecology & Evolution,755

33, 790–802.756

34


	Statement of authorship:
	Data accessibility statement.
	Running title.
	Type of article.
	Words.
	References.
	Figures/Tables.
	E-mail addresses.
	Abstract
	Introduction
	Methods
	Data processing.
	Characterization of community assembly.
	Environmental factors of community assembly.
	Modelling community assembly patterns.
	Sources of community assemblage patterns.
	Results
	Structure of community assembly across regions
	Environmental factors of community assembly.
	Community assembly patterns.
	Sources of community assemblage patterns.

	Discussion
	Community assembly across functional groups.
	Community assembly across regions.
	The joint hierarchical modelling approach.
	Conclusions.
	Acknowledgments.














